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We present a powerful application of ultra high-throughput sequencing, SAGE-Seq, for the accurate quantification of
normal and neoplastic mammary epithelial cell transcriptomes. We develop data analysis pipelines that allow the mapping
of sense and antisense strands of mitochondrial and RefSeq genes, the normalization between libraries, and the identi-
fication of differentially expressed genes. We find that the diversity of cancer transcriptomes is significantly higher than
that of normal cells. Our analysis indicates that transcript discovery plateaus at 10 million reads/sample, and suggests
a minimum desired sequencing depth around five million reads. Comparison of SAGE-Seq and traditional SAGE on
normal and cancerous breast tissues reveals higher sensitivity of SAGE-Seq to detect less-abundant genes, including those
encoding for known breast cancer-related transcription factors and G protein–coupled receptors (GPCRs). SAGE-Seq is
able to identify genes and pathways abnormally activated in breast cancer that traditional SAGE failed to call. SAGE-Seq
is a powerful method for the identification of biomarkers and therapeutic targets in human disease.

[Supplemental material is available online at http://www.genome.org. The data from this study have been submitted
to the NCBI Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo) under accession no. GSE24491. Software
for SAGE-Seq data analysis is available at http://www.liulab.dfci.harvard.edu/sageExpress/.]

Microarrays and sequencing-based technologies have been widely

used for gene expression profiling to create global pictures of cellular

function (Adams et al. 1991; Schena et al. 1995; Velculescu et al.

1995). Early gene expression data analysis algorithms focused on

biases and limitations introduced by each technology. For array-

based technologies such as Affymetrix and NimbleGen microarrays,

methods have been developed to overcome probe-specific behavior,

GC content bias, dye bias, and cross-hybridization (Yang and Speed

2002; Johnson et al. 2006; Song et al. 2007). While traditional se-

quencing-based gene expression methods such as serial analysis of

gene expression (SAGE) (Velculescu et al. 2000; Polyak and Riggins

2001) and expressed sequence tag (EST) (Adams et al. 1991) se-

quencing allow the identification and quantification of both known

and novel genes, they were severely limited by sequencing

throughput and cost (Adams et al. 1991; Velculescu et al. 1995). As

next-generation sequencing platforms provide increased through-

put at reduced cost (Johnson et al. 2007), their applications to SAGE

become a natural choice for comprehensive analysis of gene ex-

pression (SAGE-Seq) or other applications (Bloushtain-Qimron et al.

2008) and promise greater sensitivity and specificity (Morrissy et al.

2009). However, SAGE-Seq poses its unique challenges with regard to

data normalization, read alignment, identification of differentially

expressed genes, and comparison to traditional SAGE.

To address the above questions, we describe data analysis

pipelines to process SAGE-Seq data on mammary epithelial cells iso-

lated from normal and cancerous human breast tissue samples deep

sequenced on the Illumina platform (formerly known as Solexa).

In order to normalize the SAGE-Seq raw data across different

libraries, we utilize a nonparametric empirical Bayes method to re-

duce the sequence sampling bias (Robbins 1956; Gale and Sampson

1995). Appropriate global diversity measurements within and across

data sets are evaluated and used to cluster the libraries. We propose

a mapping strategy to align SAGE-Seq tags to the genome. We utilize

the mapping information to minimize sequencing errors and obtain

accurate quantification of sense and antisense transcripts corre-

sponding to RefSeq and mitochondrial genes. We develop a method

to identify differentially expressed genes with statistical significance

and show its utility on differential gene detection between normal

and neoplastic mammary epithelial cells. We also compare tradi-

tional SAGE and SAGE-Seq data sets and demonstrate the over-

whelming power of SAGE-Seq to detect 20 times more differentially

expressed genes with higher statistical confidence. Pathway analysis

shows that the greater sequencing depth obtained by SAGE-Seq al-

lows the identification of more than three times as many statisti-

cally significant Gene Ontology (GO) terms than by traditional
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SAGE and improves their statistical significance score. Many of

these pathways are newly identified by SAGE-Seq and are com-

pletely missed by traditional SAGE.

Results

SAGE-Seq library generation

SAGE-Seq libraries in this study were generated from 50,000 to

100,000 uncultured mammary epithelial cells isolated from breast

tissue of normal healthy women and from primary invasive ductal

breast carcinomas (Table 1). Immunomagnetic bead purification of

the cells and SAGE library generation was performed essentially as

previously described (Shipitsin et al. 2007), except when modifi-

cations were necessary for sequencing on the Illumina platform

(see Methods). The raw Illumina data consists of millions of se-

quence tags, but only the first 21 bp of each read is useful here. The

first 4 bp are all ‘‘CATG,’’ which is the recognition site of the NlaIII-

mapping restriction enzyme used during the construction of the

SAGE libraries. MmeI is used as a tagging enzyme to cut 21 bp 39 of

its recognition site present in the linker immediately 59 to the

NlaIII site. Thus, a SAGE-Seq tag is composed of a 59 ‘‘CATG’’ fol-

lowed by a 17-bp unique transcript-specific sequence. The cross-

lane correlation shows high reproducibility of the abundance

measurement in SAGE-Seq libraries (Supplemental Fig. S1).

Pipelines for tag mapping and sequencing error minimization

To analyze the expression of individual genes, we used SeqMap

( Jiang and Wong 2008) and propose a mapping pipeline (Supple-

mental Fig. S3) to align tags to RefSeq genes. This mapping pipeline

allows us to map tags to mitochondrial, sense, and antisense tran-

scripts of RefSeq genes. If a transcript has multiple CATGs, then the

one closest to the poly(A) tail (39 end) is called the best tag (Fig. 1A).

If a tag is mapped to multiple RefSeq locations with only one tag

being a best tag, the best tag is considered as the uniquely mapped

location. Otherwise, the tag is a nonunique tag, and its count is

evenly divided among mapped locations. Sense tags are defined as

tags that are mapped to the sense strand of exons of known tran-

scripts. Antisense tags are defined as tags that cannot be mapped as

sense tags, but are able to map against the antisense strand of

known transcribed genes (He et al. 2008).

Mapping results can also be used to identify sequencing errors

as shown in Figure 1C. We combined the counts of the tags that are

uniquely mapped to the same genes at the same locations to reduce

noise and sampling bias due to sequencing error (sequencing error

minimization), which reduces the number of false positives in sub-

sequent differentially expressed gene analysis. The tag in the refer-

ence genome is used as the consensus tag for sequencing error

minimization. For example, suppose there are 190,793 occurrences

of the tag ‘‘GCCGTGTCCGCCTGCTA,’’ which maps exactly to the

reference genome. If there are 3198 tags that differ from this tag by

a single base pair, combined together after sequencing error mini-

mization there is a total of 193,961; therefore, the fraction of single

base pair mismatches is 1.6% (3198/193,961). This is equivalent to

a 0.1% sequencing error rate per base (17 3 0.001 3 [1 – 0.001]16 =

1.7%). This is consistent with the estimation for high-quality reads

of Illumina (Shendure and Ji 2008). Using library N1 as an example,

we demonstrate that about 76% of the tags can be uniquely mapped

using our pipeline; 6% of these tags are mitochondrial tags, 46% are

unique RefSeq sense best tags, 14% are unique sense non-best tags,

and 10% are unique antisense tags (Fig. 1B; Supplemental spread-

sheet 1 for the mapping results of other libraries). All subsequent

analyses are conducted on the 46% of unique sense best tags.

Overview of normal and cancer transcriptomes

Gene expression patterns of cell populations in many ways resemble

species populations of different species in an ecosystem, where an

individual of a species is like a transcript in our study. In typical

ecosystems some species are abundant, whereas the majority of

species are rare (Magurran 2003). Similarly, SAGE-Seq profiling data

shows that most of the genes are expressed at low levels (rare tran-

scripts) and a few genes are expressed in large amounts (abundant

transcripts) (Fig. 2A,B). Interestingly, although rarely expressed tags

are the majority, highly expressed unique tags are still dominant

when considering their population (expression level). By plotting

the accumulative fraction of tag count out of total tag count as

a function of unique tag count, we found that although the unique

tags with one count are 63% of S (overall number of unique tags),

they only account for 3% of N (the total tag count) (Fig. 2B). The

question arises as to whether these low-count tags are spurious tags

dominated by sequencing errors or true tags expressed at very low

levels. As described above, after sequencing-error minimization, tags

with one mismatch due to sequencing errors can be identified and

corrected based on mapping information. Tags with more than two

mismatches represent only 0.01% of all the reads (see Methods).

Thus, these low-count tags cannot be explained by sequencing er-

rors, as they are much more abundant than what could be explained

by such errors. They are possibly a mixture of low-abundant tran-

scripts and nucleic acid contamination (possibly genomic DNA), as

the Sage-Seq preparation protocol does not include a step for the

elimination of genomic DNA from the RNA samples.

Table 1. SAGE-Seq libraries of normal and cancer groups

Normal

N (Total tags)
N1 N2 N3 N4 N5 N6 N7

9,618,916 13,522,703 2,983,207 1,800,069 1,824,933 1,045,874 11,007,864
S (No. of unique tags) 475,975 533,972 342,066 222,314 173,973 129,323 333,462

Cancer

N (Total tags)
C1 C2 C3 C4 C5 C6 C7

4,334,958 4,710,675 4,116,502 3,550,342 3,848,898 4,263,862 3,373,871
S (No. of unique tags) 477,158 657,887 383,450 374,584 434,886 466,774 372,801

N1–N7 denotes mammary epithelial cells isolated from reduction mammoplasty specimens of normal healthy women, whereas C1–C7 indicates primary
invasive breast carcinomas. Total and unique tag counts are listed for each library.
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Nonparametric empirical Bayes normalization

If each SAGE library were sequenced to the same depth (i.e., the same

N), tag counts in different libraries would be directly comparable.

However, although most of the samples were subjected to one lane of

Illumina sequencing, N varies from 1 million to 13 million in dif-

ferent libraries (Table 1). Thus, in order to accurately compare gene

expression patterns of different libraries, normalization of tag counts

is needed. One intuitive way for normalization is to use proportion p,

defined as n/N, where n is the count of a unique tag. Known as

the maximum likelihood (ML) estimator for population frequency

(Fisher 1922). This approach has the drawback that the p of any tag

that is missing from the sequencing data (undetected tags) is assigned

to be zero, while it overestimates the p of low and intermediate

abundance tags and underestimates highly abundant tags (Fig. 2C,

black symbols). In addition, high-throughput quality reads from the

Illumina Genome Analyzer provide a good estimate for the pop-

ulation frequency of tags at different enrichment levels (Fig. 2A). This

heterogeneous population of tag frequency applied as a prior in-

dicates that the best estimation of tag enrichment should be smaller

than the observed count, because the population of less-abundant

transcripts is larger than that of abundant ones (Fig. 2A). Thus, a more

sophisticated approach for SAGE-Seq data normalization is needed.

We applied the nonparametric empirical Bayes (NEB) method

(Good 1953; Robbins 1956; Orlitsky et al. 2003) to normalize li-

braries with different sequencing depths (see Methods). There are

two advantages of NEB over ML. First, whereas ML simply considers

the undetected tags as zero, NEB estimates the proportion of un-

detected tags as P0 = n1/N, where n1 is the frequency of unique tags

with count one. To validate the accuracy of the NEB estimator of P0,

we randomly sampled library N1 from 1% to 10% at a step of 1% to

generate 10 pseudo libraries with different sequencing depths. We

used NEB to estimate the P0 of the undetected tags in each pseudo

library, compared them with their respective proportion in the

original library, and found that they were in good agreement

(Supplemental Fig. S2). Second, NEB adjusts tag counts based on

both the observed count and the nature of

the frequency distribution of unique tag

counts (Fig. 2A), which is applied as the

empirical prior to reduce the sequence

sampling bias (Gale and Sampson 1995). It

also renormalizes the adjusted proportion

by the estimated total proportion of

detected tags to 1 – P0 (See Supplemental

material section ‘‘Algorithms compari-

son for differentially expressed genes’’ for

comparison between NEB and ML nor-

malization). To show the effect of sam-

pling bias, we randomly sampled 10%

(pseudo library 1) and 1% (pseudo library

2) tags from library N1 to generate two

pseudo libraries with a 10-fold difference

in sequencing depth. When comparing

the proportion of tags in the two

pseudo libraries, we found that the pro-

portions are much more comparable

after NEB normalization, whereas ML

overestimates p for low-count tags and

underestimates p for high-count tags in

pseudo library 2 with lower sequencing

depth (Fig. 2C).

Diversity of normal and cancer transcriptomes

One advantage of sequence-based gene expression profiling is that

it measures the absolute expression levels of many genes simulta-

neously. Thus, we can obtain a global view of transcript diversity

within the cells and also among libraries. We used two different

measures to compare transcript diversity in the libraries we ana-

lyzed. First, we used Simpson index of diversity (SID) (Simpson

1949) to characterize transcriptome diversity within each library.

SID captures the variance of the tag count distribution and is in-

dependent of sequencing depth (see Methods). Higher values in-

dicate higher diversity, which means the tag counts are more

widely distributed among different genes. We found in our data

sets that libraries from cancer samples, in general, have higher

diversity than that from normal (Fig. 3A,B; Wilcoxon rank-sum

test, P = 0.07284; the P-value is in the borderline of significance due

to limited number of samples). This trend could be due to the fact

that tumors express many more genes, either because they are com-

posed of more diverse populations of cells or because they lost nor-

mal epigenetic controls that maintain tissue and cell type-specific

gene expression patterns (Fig. 4D).

The second type of diversity is measured across libraries to study

the gene expression diversity among libraries derived from different

individuals. To ask how similar two libraries, A and B, are we used the

Morisita-Horn (MH) similarity index CMH(A,B) (Wolda 1983) (see

Methods), and calculated their distance as D [ 1 � CMH (A, B). The

Morisita-Horn index has several advantages over other distance

metric measurements. First, MH index is not strongly influenced by

N and S, which is essential to ascertain that the difference of the

measurement is not due to differences in sequencing depths. Sec-

ond, compared with distance based on Pearson cross correlation,

MH index has no singularity for data with standard deviation

approaching zero.

We found that cancer samples are not only more diverse

within each individual (Simpson index), but are also more diverse

(MH index) across different individuals (Fig. 3C). This is not

Figure 1. SAGE-Seq tag alignment and sequencing error minimization. (A) Best tag is defined as the
tag next to the 39-most NlaIII site (CATG) to the poly(A) tail. (B) Tag alignment statistics of sample N1
according to the tag alignment pipeline in Supplemental Figure S3. Detailed mapping of other data sets
is shown in Supplemental spreadsheet 1. (C ) Presumed sequencing errors revealed during tag mapping.
All of the listed tags are best tags uniquely mapped to the same RefSeq gene ‘‘NM_001010.’’ (Not every
tag uniquely mapped to this gene at the same location is listed.) X-axis is the tag sequences listed in
descending order of tag count. The one-base difference in sequence most likely due to sequencing error
is marked in red. Sequencing error minimization step for this particular example is done in the following
way: sum up the count of all these tags and assign it to tag ‘‘CATGGCCGTGTCCGCCTGCTA’’ and
remove all the other tags.
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entirely surprising, since normal cells have a physiologic role that

is essentially the same in different individuals, whereas tumors are

genetically diverse and have no functional role in the body; thus,

there is no selection pressure to keep their phenotype within cer-

tain limits. The hierarchical clustering of the libraries based on the

MH index showed that cancer libraries are more different from

each other (larger distance across libraries), and they are also very

clearly separated from the normal libraries (Fig. 3D).

Data quality of SAGE-Seq compared with traditional SAGE

Following read alignment and sequencing error minimization, we

further evaluated the ability of SAGE-Seq to profile genome-wide

gene expression and compared it with traditional SAGE. With

deeper sequencing coverage, SAGE-Seq

gave much higher data correlation be-

tween different libraries within the same

group (Supplemental Fig. S4). In addition,

traditional SAGE can only detect genes

with proportions from 10�5 to 10�3,

whereas SAGE-Seq shows a much larger

dynamic range (defined as the detected

range of gene enrichment), covering about

five orders of magnitude from 10�7 to

10�2. For example, genes encoding for

transcription factors are often expressed at

intermediate or low levels, and SAGE-Seq

detected the expression of around 1300

transcription factors (out of 1658 total in

the human genome) in our samples. Most

of the transcription factors detected by

traditional SAGE are also detected by

SAGE-Seq, whereas 384 transcription fac-

tors are only detected by SAGE-Seq (Fig.

4A). We observed similar phenomena for

genes encoding for GPCRs and ABC-

transporters (Fig. 4B,C), which are known

to be differentially expressed between

normal and cancer cells and are expressed

at relatively low levels (Li et al. 2005; Dean

2009).

To determine how far the sequenced

SAGE-Seq libraries are from saturation, we

calculated the number of unique best-tag

genes (uniquely mapped best tags) detec-

ted in relation to the sequencing depth

of each library. The number of uniquely

mapped best tags is a good indicator of

the number of genes detected. Deeper se-

quencing is expected to detect more genes

until a plateau is reached when all of the

genes are detected. To overcome the lack of

data covering a broad range of sequencing

depth, we combined all cancer (or normal)

libraries and analytically calculated the

number of detected unique tag genes at

different sequencing depths to obtain the

saturation curve (solid lines in Fig. 4D; see

Methods for analytic calculation). For se-

quencing depths below 3 million reads,

the number of genes detected increases

dramatically with sequencing depth (fast-

growth region). The rate continues to grow at a slower rate (slow-

growth region) above 5 million reads, until it plateaus around 10

million reads for both normal and cancer samples (Fig. 4D). This

suggests that the ideal sequencing depth for SAGE-Seq should be

above 10 million reads, with a minimum desired sequence depth of 5

million per library. Sage-Seq data points (triangles) are all close to or in

the slow-growth region, where most of the transcriptome is se-

quenced. Traditional SAGE data points (circles) are still in the fast-

growth region, where more than half of the transcriptome is not

detected due to low-sequencing depth. Figure 4D also indicates

that more genes are expressed in cancer (red triangle) than in nor-

mal (black triangle) samples, which is consistent with our previous

finding that cancer samples have higher transcript diversity within

each library and across libraries.

Figure 2. Frequency plot of unique tag count and nonparametric empirical Bayes method. (A) Fre-
quency of unique tag counts in libraries N1 (black) and N5 (red). X-axis is the observed tag count and
y-axis is the frequency that shows the number of unique tags with a specific count. (B) Pie chart
depicting the distribution of unique tags in library N1: 62.6% of unique tags has tag count 1, 12.1%,
count 2, 5.5%, count 3, and 19.8% counts larger than 3. The outer plot shows the accumulative fraction
of unique tag counts. Although 62.6% unique tags have count 1, they only account for 3% of total tag
counts. (C ) Scatter plot of tag proportion. X-axis is the proportion of tags in pseudo library 1 obtained by
randomly sampling 10% of library N1. Y-axis is the average proportion of pseudo library 2 obtained by
randomly sampling 1% of library N1. The data points are obtained in the following way. For example,
find all of the tags in pseudo library 1 with proportion 1 3 10�6, then calculate the mean proportion of
these tags in pseudo library 2, which gives for example 1 3 10�5. This gives a data point at (1 3 10�6,
1 3 10�5). The dashed line is y = x. Black symbols indicate the proportion using the maximum likelihood
estimator, where overestimation in the low and intermediately expressed tags (<100/million) and un-
derestimation in the highly expressed tags (>100/million) are observed. Red symbols mark the pro-
portion calculated using nonparametric empirical Bayes method with improved, more comparable
corrected proportions between two libraries with different sequencing depth in both low and highly
abundant tags.

SAGE-Seq profiling of human breast tissue samples

Genome Research 1733
www.genome.org



Sampling noise and biological variability

To detect differentially expressed genes between two conditions, it is

important to know the sources of gene expression variability. A

major source of variability in SAGE-Seq or any techniques using

sequencing techniques is sampling variation; and most algorithms

analyzing traditional SAGE data tackled this using various ap-

proaches (Velculescu et al. 1995; Cai et al. 2004). Sequence-based

transcriptome profiling can be modeled as a binomial sampling

process with replacement that approximates a Poisson distribu-

tion, because using current technologies (Kharchenko et al. 2008),

sequenced transcripts are a tiny minority of the total amount of

cDNA loaded on the sequencers. If the same library is sequenced

multiple times, Poisson model dictates that the variance in tag

counts of a particular gene is equal to its abundance.

When examining the empirical variance of genes in the

normal libraries versus their respective normalized count (nor-

malized by NEB and scaled to the same sequencing depth of N = 1

million), the observed variance indeed depends on its gene ex-

pression level (count) (Fig. 5A; red dashed line with slope aobv » 2.0

in log-log plot). However, if we denoted variance-to-mean slope for

random binomial sampling as arbs, which is expected to be 1.0

according to Poisson distribution (rbs stands for random binomial

sampling, blue dashed line in Fig. 5A), we observed overdispersion

(aobv » 2arbs > arbs = 1), which means that the excess variability of

the observed data is significantly larger than the variability

expected in the random reference model (Poisson model in this

case). This suggests a nonlinear dependency of gene expression

variability on the mean expression level, which indicates that in

our data sets overdispersion could be the result of variation from

biological individuals in addition to the sampling variation (see

Methods). We also observed overdispersion among a subset of

housekeeping genes and subsets of uniquely mapped best tags

both in normal and cancer groups (data not shown).

Analysis of differentially expressed genes

One of the major applications of transcriptome profiling is the iden-

tification of genes differentially expressed between different samples.

After tag alignment and sequencing error minimization, our analysis

pipeline for the identification of differentially expressed genes (Fig.

5B) first applies the nonparametric empirical Bayes method as a nor-

malization step to reduce sampling bias and to bring different libraries

to the same sequencing depth (N = 1 million; Normalized sequencing

depth has no influences on differential genes, which is different from

sequencing depth of the library.). After normalization, tags with

counts $3 per million in #2 out of all the libraries were discarded.

This effectively removes a significant portion of noninformative tags,

which either contain outliers or have too low counts to detect dif-

ferential expression with statistical significance, and saves computa-

tional time and storage space during subsequent analysis.

The logarithmic transformation is then applied to obtain the

expression index and decouple the correlation between the observed

variance and the mean expression level of genes (Fig. 5A). Quanti-

tatively, the observed variance in our libraries is proportional to the

square of the expression level. According to the delta method in

statistics, the logarithmic transformation is the right trans-

formation to stabilize the variance (see Methods). An alternative

transformation is arcsinh, which is also a logarithm-like transfor-

mation, but with the advantage of no singularity at zero (Huber et al.

2002). Supplemental Figure S5 shows that after applying a loga-

rithmic transformation of base 2 on the normalized count, for in-

termediate and high abundance tags the variance of the expression

index is almost independent of its mean. Finally, the SAM (signifi-

cance analysis of microarray) algorithm is applied to the expression

indices in the two groups of samples to identify differentially

expressed genes (Fig. 5B; Tusher et al. 2001). We also tried the

standard t-test and found many false positives resulting from the

underestimated empirical standard deviation that gives rise to ex-

treme t values. SAM algorithm stabilizes variance to reduce false

positives. Other statistical tests could be used in this step instead of

using SAM, such as Robinson and Smyth’s moderated t-test or

Baggerly’s tw test (Baggerly et al. 2003, 2004; Lu et al. 2005; Robinson

and Smyth 2007). Another alternative for the analysis of differen-

tially expressed genes is to use overdispersed models such as over-

dispersed logistic regression or overdispersed log-linear model

(Baggerly et al. 2004; Lu et al. 2005). However, whether these model-

based methods can be scaled up to the deeper sequencing depths of

SAGE-Seq data needs to be verified through systematic analysis with

more data.

We compared the lists of differentially expressed genes be-

tween normal and cancer for both SAGE-Seq and traditional

SAGE. The expression (i.e., presence) of 10,052 and 4953 best-tag

genes is detected by SAGE-Seq and traditional SAGE, respectively

(Supplemental spreadsheet 2), with 99% (4904) overlap. We cal-

culated the false discovery rate (FDR) using the Q-value package of

Storey and Tibshirani (2003). Traditional SAGE does not sequence

deep enough to allow similar P-value or FDR cutoffs as SAGE-Seq.

SAGE-Seq identifies about 4000 differentially expressed best tag

genes at 1% FDR, whereas traditional SAGE detects less than 200

at 10% FDR (Fig. 5C). Deeper sequencing gives SAGE-Seq

Figure 3. Diversity of normal and cancer transcriptomes. (A) Simpson
index of diversity to measure within-library gene expression diversity. Li-
braries in the cancer group show higher within-library diversity compared
with the normal group. (B) Box plot depicting Simpson index of diversity
of normal and cancer samples. P = 0.07284 (Wilcoxon rank-sum test). (C )
Distance defined as ‘‘1 � Morisita-Horn similarity index’’ is used to mea-
sure gene expression diversity across libraries. Libraries in the normal
group are more similar to one another, whereas cancer libraries are more
diverse. (D) Hierarchical clustering using ‘‘distance’’ defined in C separates
normal and cancer libraries.
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increased statistical power to detect more differentially expressed

genes. To compare the two lists of differentially expressed genes,

we examined the rank order of genes based on their t-scores. The

top 10% of genes with the highest t-scores (495 genes for tradi-

tional SAGE and 1005 for SAGE-Seq) are used as differentially

expressed gene lists for comparison between these two methods.

SAGE-Seq detected all 26 genes known to be differentially

expressed between normal and breast cancer samples based on

prior studies, whereas traditional SAGE only identified four

(Supplemental Table S1).

Surprisingly, we only identified 54 genes when comparing the

overlap between the top 10% of genes identified as differentially

expressed by the two methods. Further analysis confirmed that the

top differentially expressed genes detected by traditional SAGE and

SAGE-Seq is quite different (Fig. 5D; black symbols). Many factors

could contribute to this discrepancy, such as differences in library

preparation protocols and samples. Beside these factors, we observed

that the top differentially expressed genes

detected by SAGE-Seq are often expressed

at moderate or low levels (;100/million;

see Supplemental Fig. S7), which tradi-

tional SAGE either completely fails to

detect or has too low (two or three) a tag

count to show differential expression

with statistical power. These differentially

expressed tags in SAGE-Seq are unlikely to

be from sequencing errors based on the tag

counts observed. These data imply that the

increased sequencing depth of SAGE-Seq

results in the detection of a different set of

differentially expressed genes. To demon-

strate this we resort to simulations, as the

use of defined cell populations with lim-

ited numbers of cells isolated from primary

breast tissues did not allow the generation

of both SAGE-seq and traditional-SAGE li-

braries from the same sample. We took the

14 SAGE-Seq libraries and sampled them

down (binomial sampling) to the se-

quencing-depth level of traditional SAGE

(;50,000). The top differentially expressed

genes of these simulated libraries also

show little overlap with the original SAGE-

Seq libraries (Fig. 5D, red symbols).

Pathways and networks differentially
activated between normal
and cancer samples

To determine what signaling pathways

are identified as differentially activated

by SAGE-Seq and traditional SAGE, we

applied a combination of gene ontology

and pathway analyses for the differen-

tially expressed gene sets using MetaCore

(Nikolsky et al. 2009). However, SAGE-Seq

identifies 3587 differentially expressed

genes at 1% FDR cut off, whereas the most

significantly differentially expressed gene

identified by traditional SAGE has an FDR

>9%. Thus, we decided to take the top

10% of differentially expressed genes

identified by traditional SAGE genes (493) and SAGE-Seq genes at

1% FDR (3587), since an FDR cutoff gives too few differentially

expressed genes in traditional SAGE (Supplemental spreadsheet 3).

MetaCore provides a P-value for each tested GO term or pathway

name. Using a P-value of 10�3 as the cutoff for significance, SAGE-

Seq identifies 99 pathways to be significant, whereas with tradi-

tional SAGE only 32 have an overlap of 19 (Fig. 5C; Supplemental

spreadsheet 4). The following pathways and GO processes are com-

monly enriched between SAGE-Seq and traditional SAGE: apoptosis,

cell adhesion, cytoskeleton remodeling, development, immune re-

sponse, G-protein signaling, signal transduction, and transcription.

These are all pathways known to be relevant to breast cancer, and in

each category SAGE-Seq identified the term with higher statistical

significance. The 80 additional significant GO categories identified

by SAGE-seq but not by traditional SAGE are all related to cancer,

generally or specifically to breast cancer, based on published litera-

ture, especially categories such as Apoptosis and survival, Cell cycle,

Figure 4. SAGE-Seq tag mapping and sequencing depths saturation curve. (A–C ) Differential cov-
erage of expression profiles in three selected gene families: transcription factors (A), GPCRs (B), and ABC
transporters (C ). Y-axis lists the genes and x-axis is the mean gene expression index (logarithm of the
normalized tag count). Red and blue colors mark traditional SAGE and SAGE-Seq, respectively. SAGE-
Seq detects many more genes in these gene families than traditional SAGE does. (D) Number of unique
best-tag genes (y-axis) in relation to sequencing depth (x-axis). The number of best-tag genes is the
number of unique genes mapped by best tags, counted as one if multiple tags are mapped to the best
tag of the same gene. Black and red colors indicate normal and cancer groups, respectively. Symbols
‘‘s’’ and ‘‘m’’ mark traditional SAGE and SAGE-Seq, respectively. Solid curves (saturation curves) are
from simulation by sampling the combination of all libraries in the normal (or cancer) group, which
depict the trend with increasing sequencing depth. Traditional SAGE identifies much fewer best-tag
genes than the SAGE-Seq. SAGE-Seq shows that cancer samples (red triangles) have a larger number of
unique best-tag genes than normal samples (black triangles). This difference is not detected by tradi-
tional SAGE (red circles vs. black circles).
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Androgen receptor signaling, TGFB signaling, NFKB signaling,

BRCA1-mediated DNA damage, p53 signaling pathway, De-

velopment and cell cycle regulation by ESR1 and ESR2 (estrogen re-

ceptor), G-protein signaling, and translation and transport pathways.

The genes in these pathways are typically expressed at low levels,

and this is consistent with Figure 4, B and C, showing many genes

in the GPCR- and ABC-transporter families as detected by SAGE-

Seq, but missed by traditional SAGE (Li et al. 2005; Dean 2009). It

is especially worth noting that the NFKB and TGFB pathways,

which appeared in multiple GO and pathway branches and are

known to be differentially regulated in breast cancer (Shipitsin

et al. 2007), are found to be significant in

SAGE-Seq, but insignificant in traditional

SAGE.

Discussion
In this study, we systematically evaluated

SAGE-Seq for transcriptome profiling

and its ability to identify differentially

expressed genes between normal and

neoplastic mammary epithelial cells. We

are the first to apply the NEB method

to normalize different high-throughput

SAGE-Seq libraries in order to correct the

sampling bias due to incomplete sam-

pling. NEB normalization can be applied

to other types of techniques based on

random sampling such as RNA-seq. We

designed a pipeline to align SAGE tags to

sense and antisense transcripts and mini-

mize sequencing error through tag align-

ment and proposed an approach to detect

differentially expressed genes by consid-

ering both sampling and biological vari-

ability. We compared SAGE-Seq and tra-

ditional SAGE to examine the effect of

sequencing depth on gene coverage and

differentially expressed gene detection.

Comparison of SAGE-Seq data between

normal and neoplastic mammary epi-

thelial cells revealed that breast cancers

have higher within- and across-library di-

versity than normal breast cells. SAGE-

Seq identifies 20 times more differentially

expressed genes at 10-fold more stringent

cutoff (1% FDR) than traditional SAGE

(10% FDR), and three times more path-

ways specifically activated in breast can-

cer, indicating its higher sensitivity and

specificity.

Identifying changes in gene ex-

pression associated with physiologic

processes is a central issue in biology, es-

pecially in the study of human diseases

(Zhu et al. 2008). Commonly used meth-

ods include EST sequencing, cDNA micro-

array hybridization, subtractive cloning,

differential display, and serial analysis

of gene expression (traditional SAGE)

(Adams et al. 1991; Schena et al. 1995;

Velculescu et al. 1995). Compared with

array-based hybridization methods, SAGE-Seq has many advan-

tages. First, SAGE-Seq has higher sensitivity, which allows the de-

tection of less-abundant genes with high-confidence levels. Sec-

ond, SAGE-Seq is less subject to technical artifacts such as probe

effects and hybridization bias (Yang and Speed 2002). Third, SAGE-

Seq does not require the a priori knowledge of transcripts to be

analyzed; thus, it allows a global analysis of transcriptome present

in the cells.

Overdispersion of expression levels of highly expressed genes

was observed in microarray data, and as a result, analyses were often

conducted at the log intensity level (Irizarry et al. 2003). However,

Figure 5. Differentially expressed genes and their variance. (A) Mean-to-variance plot for the seven
normal libraries after removing the noise and normalization. Red dashed line is the best linear fit in log-
log plot. The slope gives the exponent aobv » 1.9 Blue dashed line is the mean-to-variance line in-
troduced by sampling. (B) Pipeline for the identification of differentially expressed genes: (1) Se-
quencing error minimization: After tag alignment, tags that are mapped to the same genes at the same
locations are combined together; (2) NEB is used to normalize different libraries with different se-
quencing depth; (3) filtering to remove tags with counts $3 per million in less than two libraries fol-
lowed by log2 transformation; (4) SAM is used for the detection of differentially expressed genes. (C )
Detected differentially expressed genes (top) and activated pathways (bottom) in SAGE-Seq and tradi-
tional SAGE. SAGE-Seq identifies approximately 4000 differential genes at 1% FDR, while traditional
SAGE identifies <200 at a much looser cut off (10% FDR). At P = 0.001, SAGE-Seq identifies 99 pathways
significantly activated in breast cancer, while traditional SAGE only shows 32. The 80 pathways only
identified by SAGE-Seq and missed by traditional SAGE are all breast cancer-related pathways. (D) The
overlap ratio (defined as the number of overlapping genes divided by the gene number in traditional
SAGE in the top x percent differentially expressed genes, where x changes between 0 and 1. The black
symbols depict actual data (SAGE-Seq vs. traditional SAGE). It indicates that there is little overlap in the
top differentially expressed genes list between SAGE-Seq and traditional SAGE. The red symbols in-
dicate simulation (SAGE-Seq vs. sampled down SAGE-Seq). Sampled down SAGE-Seq means to bi-
nomially sample 50 k tags from each SAGE-Seq library; 50,000 is a typical sequencing depth for
traditional SAGE. Simulation confirms the same conclusion as that drawn from the actual data: SAGE-
Seq gives a different top differentially expressed gene list compared with traditional SAGE. Deeper
sequencing reveals that traditional SAGE identifies different sets of top differentially expressed genes
than that of SAGE-Seq, confirming our conclusion that traditional SAGE lacks sufficient sequencing
depth.
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most people attribute the overdispersion to probe hybridization and

scanning biases inherent to the microarray platform. We quantita-

tively identified the relationship between biological variability and

mean expression level. The SAGE-Seq data presented here not only

show that the Poisson distribution used in many SAGE analysis al-

gorithms is insufficient to capture the biological variance, but also

indicate that abundant genes have higher variability among bi-

ological samples (Fig. 5A). This suggests that cells tolerate variations

in the levels of highly expressed genes much better. These findings

also imply that efforts on disease marker and drug target discovery

might be more fruitful if focused on intermediate or low-abundance

transcripts, as these show less variation among samples within the

same tissue type, and differences in their expression might play

a more important role in the disease process.

SAGE-Seq with deeper sequencing depth is able to detect many

more significant differentially expressed transcripts than traditional

SAGE with higher significance. The top differentially expressed

genes identified by SAGE-Seq are not the most abundant genes, but

rather expressed at intermediate or low levels (;100/million). For

traditional SAGE, which is sequenced at 20 times less depth, these

tags will be at the borderline of being detected. Thus, traditional

SAGE has no power to differentiate these genes between different

conditions. At the same time, these less-abundant genes often are

transcription factors and receptors that play important roles of cell

regulations, and in tumorigenesis (Fig. 4A–C). Thus, even small

changes in the expression of these genes might have pronounced

effects on the whole cellular environment. It seems that less-abun-

dant genes also have less variability (Fig. 5A), which enables them to

be detected as top differentially expressed genes despite the fact that

the absolute change in their expression levels is not the largest. Thus,

high-throughput sequencing technologies provide the opportunity

to unveil subtle changes in gene expression in more detail and with

improved statistical power.

In summary, we show here that SAGE-Seq is a powerful and

cost-effective method for the gene expression profiling of small

numbers of cells isolated from primary human tissue samples, and

we present data analysis tools that enable researchers to decipher

the physiological meaning of the immense SAGE-Seq data sets.

Methods

SAGE-Seq library construction
We posted our detailed protocol for SAGE-Seq library generation at
http://research4.dfci.harvard.edu/polyaklab/protocols_linkpage.
php.

All of the SAGE and SAGE-Seq libraries in this study were
generated from immunomagnetic bead-purified cells freshly iso-
lated from human breast tissue samples; thus, the cell numbers are
estimates based on the microscopic examination of the number of
captured cells in 10 uL of volume, and they are in the 50,000–
100,000 cell range. However, based on FACS analyses and sorting
of the same cell type we know their approximate abundance in
the tissue sample. All of the cells are directly lysed and processed
for poly(A) RNA selection, followed by library preparation. The
amount of poly(A) RNA is either measured by Nanodrop or by
SYBR green II, but if the number of cells is very limited, we just go
straight to library preparation. Based on the estimate that one cell
contains 10 pg of total RNA, 100,000 cells have ;100 ng of total
RNA and ;1–10 ng of poly(A) RNA (depending on cell type, tu-
mor cells in general have higher RNA content/cell). In addition,
10% of the poly(A) RNA is saved for semiquantitative RT-PCR
testing of cell purity prior to proceeding with SAGE-Seq sample

preparation, and this also gives an estimate of the transcribable
mRNA present.

Sequencing error minimization

At 0.1% error rate per base, the population of tags with no error is
(1 – 0.1%)17 = 0.9831353, and the population of tags with one error
is 17 3 0.001 3 (1 � 0.001)16 = 0.01673003. Thus, the population
of tags with error in at least two bases is: 1 � 0.9831353 �
0.01673003 = 0.0001346471.

Simpson index of diversity

Simpson’s measure of diversity (Simpson 1949) (SID) is defined as:

SIS = � ln D = � ln +
niðni � 1Þ
NðN � 1Þ ;

where ni is the count of the ith tag and N is the total number of tag
count. SID = 1 indicates that one tag dominates all of the tag counts
of the system, which means that there is no diversity (highest
dominance). The larger the value of SID is, the higher diversity is
(less dominance). SID is not strongly influenced by the sequencing
depth, which is confirmed by simulation.

Morisita-Horn similarity index

Morisita-Horn similarity index, CMH(A,B), between two libraries, A
and B, is defined as:

CMHðA;BÞ[
2+ piðAÞpiðBÞ

+½ p2
i ðAÞ + p2

i ðBÞ�
;

where pi(A) and pi(B) are the proportion of gene (or tag) i for library
A and B, respectively. MH similarity index is independent of the
sequencing depth N.

Sampling variance and biological variance

The high-throughput sequencing technology is modeled as a bi-
nomial sampling procedure with replacement. Mixing with the
biological variability from different samples, another layer of var-
iability is introduced due to sampling. Define pn, the proportion of
tag with count n as, p = n/N, where N is the total number of tag
count. From our hierarchical model, the mean proportion p of
a gene is an unbiased estimator of the true abundance of genes.
However, s2(xi), the observed variance of scaled count xi of gene i is
an addition of the true biological variance from individuals and the
sampling variance (Supplemental material for analytical proof),

s2ðxÞ = Npt ð1� pt Þ+ NðN � 1Þs2
t :

Normalization using nonparametric empirical Bayes correction

We implement the empirical Bayes using simple Good-Turing es-
timator (SGT) (Gale and Sampson 1995). Assume the total number
of all unique tags in the mRNA is s, and pi is the true proportion of
tag i, which is what we want to estimate from data. Empirical Bayes
estimation of an observed tag count r is:

r� = ðr + 1Þnr + 1=nr ;

where nr is the number of tags with count r. Thus, the expected total
chance of all tags that are each represented r times (r $ 1) is: (r + 1) nr

+ 1/N, where N is the sequencing depth (N = n1 + 2n2 + 3n3 +. . .).
Therefore, the expected total chance of all tags represented in the
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sample is: (2n2 + 3n3 +. . .)/N = 1 � n1/N. In SGT, the proportion of
undetected tags, P0 is estimated as

P0 = n1=N;

where n1 represents the number (frequency) of unique tags with
count one. The corrected total tag count after SGT, N*, is N* = Snr r*.
The empirical Bayes estimator for proportion of a gene with count
r, pr*, is renormalized by N* as

p�r = ð1� P0Þn�=N�:

Variance of Good-Turing estimator for unseen tags

The variance of P0 can be calculated in the following: Var(P0) =

Var(n1)/N2. n1 = Si Npi (1- pi)
N � 1 under the assumption of binomial

sampling approximation. Introducing a new random number xi : xi =

1 if the ith tag is sequenced with only one tag at sequencing depth N
and xi = 0 otherwise. Then:

E n2
1

� �
= E +

i

xi

 !2
2
4

3
5= E +

i;j

xi xj

 !
= +

i

E x2
i

� �
+ +

i 6¼j

E xi xj

� �

= +
i

Npi 1� pi

� �N�1
+ +

m6¼n

Npm 1� pm

� �N�1
Npn 1� pnð ÞN�1;

and

E n1ð Þ2 = +
i

E xið Þ
" #2

= +
i

Npi 1� pi

� �N�1

" #2

= +
i;j

Npi 1� pi

� �N�1
Npj 1� pj

� �N�1

= +
i

N2p2
i 1� pi

� �2 N�1ð Þ
+ +

m6¼n

Npm 1� pm

� �N�1
Npn 1� pnð ÞN�1:

Thus,

Var P0ð Þ= Var n1ð Þ=N2

= +
i

Npi 1� pi

� �N�1 �+
i

N2p2
i 1� pi

� �2 N�1ð Þ
" #

=N2

=
P0

N
�+

i

p2
i 1� pi

� �2 N�1ð Þ
;

which gives:

Var P0ð Þ<
P0

N
:

This indicates that the Good-Turing estimator for unseen tags is
a stable estimator, which is shown in Supplemental Figure S2.

Saturation curve calculation

We define the total number of all unique tags in the mRNA as s and
pi as the true proportion of tag i. pi is estimated from the data. Thus,
the mean of unseen tags according to binomial sampling is:

n0 Nð Þ= +
i

C0
Np0

i 1� pi

� �N
= +

i

1� pi

� �N
;

where the summation is overall the possible unique best tags and N
is the sequencing depth. Thus, the number of detected unique best
tag genes is the total number of unique best tag genes minus n0 (N)
as shown in Figure 4D.

Variance stabilization

For the variance to mean relationship observed in our data, the
correct transformation to stabilize variance is logarithm trans-

formation based on the delta method. We provide the proof as
follows. Suppose a random variable x follows a distribution with
mean m and variance s2. Consider a transformation g (x). The
Taylor expansion of g (x) around m up to the first order is g(x) » g (m)
+ (x� m) g9(m). Thus, the transformed variable g (x) has approximate
mean g (m) and approximate variance Var[g(x)] » s2[ g9(m)]2. In our
data, m and s2 satisfies the observed dependency s2 ; m2, yielding
Var[g(x)] » m2[g9(m)]2. Assuming the transformation g stabilizes the
variance, Var[g(x)] is a constant independent of m, and thus g9(m) =

c/m, where c is a constant. Integrating with respect to m gives that
the form of the stabilization transformation g should be:g (x) = log x.

Databases used

The transcription-factor gene list for humans is obtained from
NCBI (http://www.ncbi.nlm.nih.gov). Go to Entrez Gene and
search for human transcription factor. After filtering out non-
human genes, 1658 human genes encoding for transcription fac-
tors are in this list. The seven normal and seven cancer raw SAGE-
Seq data have been deposited in GEO (accession no. GSE24491).

Network and pathway analysis using METACORE

Network and pathway analysis using METACORE was performed
essentially as previously described (Nikolsky et al. 2008). Specific
details are in the Supplemental Methods.

Acknowledgments
We thank Andrea Richardson (Brigham and Women’s Hospital) for
her help with the acquisition of breast tumor samples; Haiyan
Huang, Li Cai, Molin Wang, and David Harrington for valuable
discussions; Love Nickerson for English proofreading. This work
was supported by the Friends of Dana-Farber Women’s Cancer
Program (X.S.L.), NIH R01 1HG004069 (X.S.L.), NCI P50 CA89393
CA and R01 CA116235-04S1 (K.P.), the AVON Foundation (K.P.),
Terri Brodeur Breast Cancer Research Foundation (S.C.), and the
Susan G. Komen Foundation PDF0707996 (M.S., R.M.).

Author contributions: Z.W. did the computational analysis.
Z.W., X.S.L., and K.P. designed the study and wrote the manuscript.
Z.W., X.S.L., C.M., A.S., and J.L. developed the analytical method-
ology. S.C., M.S., R.M., M.B., and T.N. carried out experiments and
analyzed data. S.S. provided normal tissue samples for the study.

References

Adams MD, Kelley JM, Gocayne JD, Dubnick M, Polymeropoulos MH, Xiao
H, Merril CR, Wu A, Olde B, Moreno RF, et al. 1991. Complementary
DNA sequencing: Expressed sequence tags and human genome project.
Science 252: 1651–1656.

Baggerly KA, Deng L, Morris JS, Aldaz CM. 2003. Differential expression in
SAGE: Accounting for normal between-library variation. Bioinformatics
19: 1477–1483

Baggerly KA, Deng L, Morris JS, Aldaz CM. 2004. Overdispersed logistic
regression for SAGE: Modelling multiple groups and covariates. BMC
Bioinformatics 5: 144. doi: 10.1186/1471-2105-5-144.

Bloushtain-Qimron N, Yao J, Snyder EL, Shipitsin M, Campbell LL, Mani SA,
Hu M, Chen H, Ustyansky V, Antosiewicz JE, et al. 2008. Cell type-
specific DNA methylation patterns in the human breast. Proc Natl Acad
Sci 105: 14076–14081.

Cai L, Huang H, Blackshaw S, Liu JS, Cepko C, Wong WH. 2004. Clustering
analysis of SAGE data using a Poisson approach. Genome Biol 5: R51. doi:
10.1186/gb-2004-5-7-51.

Dean M. 2009. ABC transporters, drug resistance, and cancer stem cells.
J Mammary Gland Biol Neoplasia 14: 3–9.

Fisher RA. 1922. On the mathematical foundations of theoretical statistics.
Philos Trans R Soc Lond 222: 309–368.

Gale WA, Sampson G. 1995. Good-Turing frequency estimation without
tears. J Quant Ling 2: 217–237.

Wu et al.

1738 Genome Research
www.genome.org



Good IJ. 1953. The population frequencies of species and the estimation of
population parameters. Biometrika 40: 237–264.

He Y, Vogelstein B, Velculescu VE, Papadopoulos N, Kinzler KW. 2008. The
antisense transcriptomes of human cells. Science 322: 1855–1857.
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