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Efficient sequencing of animal and plant genomes by next-generation technology should allow many neglected organisms
of biological and medical importance to be better understood. As a test case, we have assembled a draft genome of
Caenorhabditis sp. 3 PS1010 through a combination of direct sequencing and scaffolding with RNA-seq. We first sequenced
genomic DNA and mixed-stage cDNA using paired 75-nt reads from an Illumina GAII. A set of 230 million genomic reads
yielded an 80-Mb assembly, with a supercontig N50 of 5.0 kb, covering 90% of 429 kb from previously published
genomic contigs. Mixed-stage poly(A)+ cDNA gave 47.3 million mappable 75-mers (including 5.1 million spliced reads),
which separately assembled into 17.8 Mb of cDNA, with an N50 of 1.06 kb. By further scaffolding our genomic super-
contigs with cDNA, we increased their N50 to 9.4 kb, nearly double the average gene size in C. elegans. We predicted 22,851
protein-coding genes, and detected expression in 78% of them. Multigenome alignment and data filtering identified 2672
DNA elements conserved between PS1010 and C. elegans that are likely to encode regulatory sequences or previously
unknown ncRNAs. Genomic and cDNA sequencing followed by joint assembly is a rapid and useful strategy for biological
analysis.

[Supplemental material is available online at http://www.genome.org. The sequence data from this study have been
submitted to GenBank (http://www.ncbi.nlm.nih.gov/Genbank/) under accession no. AEHI01000000 and to the NCBI
Sequence Read Archive (http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi) under accession no. SRA023844.]

Sanger sequencing of eukaryotic genomes and transcriptomes has

enabled large-scale gene discovery and evolutionary comparisons,

but has also been a laborious process requiring multiple centers,

millions of dollars, and years per genome. The human genome

draft sequence was at first so fragmented that mRNAs and expressed

sequence tags (ESTs) were used to scaffold it (Kent and Haussler

2001); three more years were needed to drive the human genome

sequence to its near-finished state (International Human Genome

Sequencing Consortium 2004). The search for variation in the

human genome led to new DNA sequencing methods, producing

short reads at much lower cost that can be aligned to a reference

genome (Bentley et al. 2008). To allow de novo genome assembly

from these short reads, programs that use de Bruijn graphs rather

than classic overlapping have been developed and applied to mi-

crobial genomes (Zerbino and Birney 2008; Chaisson et al. 2009).

Similarly, a transcriptome can be assembled into expressed se-

quence tags either by mapping reads onto a genome sequence or

by de novo assembly (Haas and Zody 2010).

There are many organisms that have been studied by, at most,

a small cohort of researchers, which are unlikely ever to be se-

quenced by a genome center, but which, nevertheless, could be

useful to biology and medicine if their genome could be charac-

terized. For instance, there are between 40,000 and 10 million

nematode species (Blaxter 1998), many of which are important

parasites and pests. As an instance of their possible analysis, we

have generated a draft genome and transcriptome of the nematode

Caenorhabditis sp. 3 PS1010 (NCBI taxonomy ID 96668; hence-

forth, ‘‘PS1010’’). PS1010 is a nematode in the same genus as C.

elegans, but is more distantly related to C. elegans and C. briggsae

than they are to each other (Fig. 1; Kiontke and Fitch 2005; K

Kiontke, pers. comm.). DNA sequence divergence between PS1010

and C. elegans is comparable to that between mammals and birds

(Kiontke and Fitch 2005). Nevertheless, PS1010 still has identifi-

able, highly conserved noncoding DNA elements in common with

C. elegans (Kuntz et al. 2008). We have sequenced the genome and

transcriptome of PS1010 using Illumina paired and unpaired 75-nt

reads, used Velvet (Zerbino and Birney 2008) to assemble super-

contigs from both cDNA and genomic DNA, and then assembled

both sequence sets into a gene-centric draft genome assembly of

79.8 Mb (Fig. 2). This approach both improved the assembly and

produced better gene models over the entire expression range of

the transcriptome. Our assembly has a supercontig N50 of 9.4 kb,

nearly twice the average gene lengths of C. elegans and C. briggsae

(Stein et al. 2003); it encodes a full Caenorhabditis proteome, and

2672 highly conserved DNA elements that may be regulatory.

Results

Sequencing of the genome and RNA-seq-mediated scaffolding

We sequenced and assembled 200-bp fragment libraries at 100-fold

nominal combined coverage (assuming a 100-Mb genome like

C. elegans) to get an initial assembly of 79.8 Mb. This assembly’s

supercontig N50 improved from 1.5 kb to 5.0 kb with the addition

of 375- and 450-bp fragment libraries, each having 35-fold cover-

age, for a final nominal coverage of 170-fold; however, coverage

dropped significantly in regions of very low and very high GC

content. These numbers do not include 497 supercontigs, totaling

4.6 Mb with an N50 of 64.7 kb and with $90% identity to genome
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sequences of Escherichia coli (PS1010’s laboratory food source);

10% of the raw reads mapped to E. coli sequences.

We also sequenced the mixed-stage larval transcriptome of

PS1010 to a depth of 53.2 million 2 3 75 nt reads. Using pair-mates

that mapped to different Velvet genomic supercontigs, we per-

formed RNA-seq-mediated DNA scaffolding with the RNAPATH

module in ERANGE 3.2 (Mortazavi et al. 2008) and generated a

79.8-Mb draft genome of PS1010 (Table 1); 15,450 Velvet super-

contigs were placed into 4072 RNAPATH supercontigs.

To test the completeness of our assembly, we mapped its

supercontigs onto 429 kb of PS1010 sequences already in GenBank,

including 417 kb of pilot genome sequence (Kuntz et al. 2008).

A total of 576 supercontigs generated by Velvet covered 90.7% of

the previously known 429 kb. In contrast, the RNAPATH-based

assembly covered the same sequence with only 402 supercontigs

(Fig. 3). RNAPATH excluded 138 supercontigs that had more than

50% overlap with 81 PS1010 genomic repeats that amounted to

an additional 1.1% of pilot sequence (or equivalently 10% of the

gap sequence) along with 1% of standalone intronic supercontigs

from the cDNA-mediated scaffolds (Fig. 3). The rest of the missing

pilot sequence are in regions of low coverage with very low or very

high GC content. Supercontigs composed of intergenic DNA or

genes lacking RNA-seq data were left untouched. While still frag-

mented, this assembly is sufficient to analyze genes and should

also contain a substantial fraction of noncoding elements con-

served between PS1010 and C. elegans.

Assembly of the transcriptome and gene annotation

To optimize our parameters for assembling PS1010 RNA-seq data

into cDNA supercontigs, we first tested our parameters on a staged

C. elegans L3 2 3 75 RNA-seq data set for which the correct outputs

of assembly would be largely known. We found that Velvet typi-

cally made better assemblies of cDNA from moderately expressed

genes than from strongly expressed ones. We thus assembled cDNA

from such high-expression genes from a small subset of RNA-seq

reads (one million), while doing a separate assembly with all of

the reads for low-abundance cDNA and merging the resulting

supercontigs by concatenating the FASTA sequences. Using this

two-tiered strategy on our PS1010 RNA-seq data, we assembled

17.8 Mb of cDNA into 27,923 supercontigs with an N50 of 1.06 kb,

99% of which mapped back onto the genome. In contrast to ge-

nomic DNA, less than 0.02% of the RNA-seq reads mapped to

E. coli. Velvet cDNA supercontigs were used as EST hints for the

AUGUSTUS genefinder run with Caenorhabditis settings (Stanke

et al. 2008) to predict 22,851 genes encoding 28,978 proteins.

These gene models were used to evaluate expression levels with

ERANGE (Supplemental Fig. S1); 63.2% of 161,032 predicted exons

in 78.1% of the genes showed expression over 1 RPKM (read per

kilobase per million reads) in our PS1010 RNA-seq data, corre-

sponding to $6 reads for the median PS1010 exon length of 143.

Figure 1. Phylogenetic relationship of Caenorhabditis sp. 3 PS1010 to
representative Caenorhabditis species and other nematode species dis-
cussed in this work, as determined by Kiontke et al. (2007), Meldal et al.
(2007), and K Kiontke (pers. comm.). PS1010 is an outgroup to previously
sequenced Caenorhabditis species, all of which closely resemble C. elegans,
and most of which are formally considered part of an Elegans species
group (Sudhaus and Kiontke 1996; Kiontke et al. 2007). PS1010 itself falls
into a newly characterized Drosophilae species group, whose members
substantially differ from Elegans species in morphology and mating be-
havior (K Kiontke, pers. comm.). However, PS1010 is still more closely
related to C. elegans than non-Caenorhabditis nematodes such as Pris-
tionchus, Meloidogyne, and Brugia, and hence, is more likely to show
noncoding sequence conservation with C. elegans and C. briggsae. Phy-
logram not drawn to scale.

Figure 2. Sequencing strategy. (A) Genomic reads are assembled using the Velvet short read assembler and then filtered for high similarity to E. coli.
RNA-seq paired reads are mapped using a combination of Bowtie and BLAT onto this preliminary genomic assembly. The RNA-seq reads are then imported
into ERANGE, where those reads with ends on separate supercontigs serve as input to the RNAPATH module. This process can be repeated with trimmed
reads to increase mappable reads, if necessary. (B) Paired RNA reads (each pair represented by a blue and an orange triangle connected by a green line),
where each read end maps to a separate genomic supercontig, can be used to scaffold (i.e., to join, order, and orient) those genomic supercontigs based
on the two read ends pointing toward each other.
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To characterize the completeness and content of PS1010’s

predicted genes, we used OrthoMCL (Li et al. 2003) and HMMER/

PFAM-A (Finn et al. 2008; http://hmmer.janelia.org) to identify

orthology groups and protein domains from PS1010, C. elegans,

C. briggsae, Pristionchus pacificus (Dieterich et al. 2008), Meloidogyne

hapla (Opperman et al. 2008), M. incognita (Abad et al. 2008), and

Brugia malayi (Ghedin et al. 2007). All three Caenorhabditis pro-

teomes had comparable similarity to those of the other nematodes

(Fig. 4). A total of 5623 PS1010 genes (25% of 22,851) showed strict

orthology (1:1 gene ratios in an orthology group) with C. elegans

genes; this is ;70% as many gene pairs as had strict orthology

between C. briggsae and C. elegans. 11,633 (51%) displayed ho-

mology with at least one gene in another nematode genome;

11,630 (51%) encoded at least one of 3466 PFAM-A domains; 45

PFAM-A domains, encoded by 69 PS1010 genes, were found both

in PS1010 and at least one non-Caenorhabditis nematode, yet were

missing from both C. elegans and C. briggsae, suggesting that they

have been specifically lost from the Elegans group (Supplemental

Table S1). Two of these domains, encoded by one PS1010 gene

apiece, are found in all four non-Caenorhabditis nematodes that we

searched. Conversely, 85 PFAM-A domains were found in all

nematode genomes except for PS1010 (Supplemental Table S2); at

least some of these domains might exist within genes present in

PS1010, but are missing from our assembly. (By comparison, 19

and 30 PFAM-A domains were found in all nematode genomes

except for C. elegans and C. briggsae, respectively.) Some PFAM-A

domains are represented in PS1010 by up to 370 genes, indicating

that our genome assembly successfully captured extensively paral-

ogous gene sets: for instance, 602 genes in PS1010 encode possible

serpentine receptors, and 54 genes encode major sperm proteins

(Supplemental Table S3). The number of predicted receptors is close

to that for P. pacificus (613), though half that for C. elegans (1411) and

C. briggsae (1120).

Identifying conserved noncoding elements

To identify noncoding sequences in the C. elegans genome that are

highly conserved between C. elegans and PS1010, including ones

likely to be regulatory, we used TBA/MULTIZ (Blanchette et al.

2004) to align PS1010 to the C. elegans and C. briggsae genomes

and scanned the alignments with phastCons (Siepel et al. 2005)

for three-species conservation. A total of 6.21% of the C. elegans

genome showed conservation in 95,712 elements with an average

size of 65 bp; 97.2% of these elements overlapped with repetitive

DNA, known protein-coding or ncRNA exons, or alternative exon

predictions (in some cases generated by us from ESTs and RNA-seq

data; Supplemental Table S4). For example, the unc-2 gene had 53

unfiltered phastCons elements, but only three passed all of our

filters, one of which marked a potential new promoter (Fig. 5A).

Overlaps were conservatively defined as any match of $1 nt. We

found 2672 filtered elements in all, compris-

ing 0.08% of the C. elegans genome, rang-

ing from 7 to 160 bp in size, with an average

of 29 bp; 9.5% of these elements are $50 bp

long (Supplemental Fig. S2). Two elements

fall into a lin-39 enhancer conserved be-

tween C. elegans and PS1010 (Kuntz et al.

2008). In C. elegans, these elements dispro-

portionately reside near genes annotated

with 28 Gene Ontology (GO) terms (Sup-

plemental Table S5). The most significantly

enriched terms relate to reproduction, growth,

and embryonic development.

One possible explanation of our persistent residue of longer

elements might be that they overlap highly conserved noncoding

RNA genes whose expression is rare enough to have eluded an-

notation. To test this idea, we checked our elements for overlaps

with 3672 putative ncRNAs predicted in C. elegans by Missal et al.

(2006) with RNAz, of which 1290 remained completely novel by

January 2010 (i.e., they still did not overlap annotated protein- or

nonprotein-coding exons in WormBase WS210). A total of 128 of

our elements (4.8%) indeed overlapped RNAz predictions, and 72

elements (2.7%) had $80% overlap with the novel RNAz subset;

the latter set of elements ranged in size from 10 to 120 nt, with

a mean of 35 nt (Supplemental Table S4; Supplemental Fig. S2).

However, 95% of our elements had no overlap with RNAz pre-

dictions, and this nonoverlapping majority ranged from 7 to 160

nt in size with a mean of 29 nt. This observation suggests that the

filtered elements may identify novel, highly conserved ncRNAs,

but that such cryptic ncRNAs do not currently account for either

the bulk of elements or even most of the larger ones.

If these elements are genuinely regulatory, they should share

recurrent motifs that at least partially match known regulatory

sequences. We detected 22 motifs in 1193 elements with MEME

(Bailey and Elkan 1994) and FIMO (Bailey et al. 2009). We then

compared them with published motifs with TOMTOM (Gupta

et al. 2007), finding significant similarities to motifs from C. elegans

and the general literature (Table 2; Supplemental Table S6). Our

Table 1. Assembly statistics

Assembly
Total
(Mb)

No. of
supercontigs
($100 bp)

Largest
supercontig

(kb)
N50
(kb)

No. of genes
predicted

Genomic Velvet 79.8a 44,965 45.7 5.1 27,741
Genomic Velvet+RNAPATH 79.8a 33,587 96.3 9.4 22,851
RNA-seq Velvet 17.8 27,923 14.5 1.1 —

aAn additional 4.6 Mb of Velvet supercontigs were filtered out because of their high similarity to
E. coli.

Figure 3. An example of Velvet supercontigs (blue) and RNAPATH
supercontigs (red) on 20 kb of Sanger-sequenced PS1010 fosmids
(Kuntz et al. 2008) along with the ERANGE mapped coverage of the
transcriptome reads (red), Velvet assembly of transcriptome (green),
AUGUSTUS gene predictions on the original Velvet assembly and
AUGUSTUS with Velvet-computed cDNA sequences assisted predictions
on the final cDNA-scaffolded assembly. cDNA-mediated scaffolding
combined with a genefinder improves the accuracy of gene models by
allowing genes fragmented between genomic supercontigs to be on the
same scaffold (broken line box). Summary statistics on the right are for the
entire Sanger-sequenced 429 kb of sequence (corresponding to ;0.5% of
the genome).

Mortazavi et al.

1742 Genome Research
www.genome.org



most statistically significant predicted motif was equivalent to

a slr-2/jmjc-1-dependent stress-response motif conserved between

ecdysozoa and deuterostomes (Fig. 5B; Kirienko and Fay 2010).

Other predicted motifs matched a miRNA promoter-associated

motif (Ohler et al. 2004), the core promoter SP1 site (Li et al. 2004),

muscle-specific motifs 1–4 of Zhao et al. (2007), early and late

PHA-4 binding sites (Gaudet et al. 2004), the M-2 pharyngeal

muscle motif (Ao et al. 2004), and the E2F binding site (van den

Heuvel and Dyson, 2008). Subsets of those elements with matches

to muscle-specific motifs were disproportionately found near genes

annotated with GO terms for locomotion, body morphogenesis,

and nematode larval development. The unc-2 element in Figure 5A

contains a match to the E2B-like motif 2-30, which is also asso-

ciated with locomotion; unc-2 itself encodes a voltage-gated cal-

cium channel a1 subunit required for normal movement (Mathews

et al. 2003). Other predicted motifs were of comparable statistical

significance, but did not match sites with known functions. Four

of them matched previous predictions by Beer and Tavazoie (2004),

indicating that at least some of these novel motifs are likely to be

real, uncharacterized regulatory sites conserved between PS1010

and C. elegans (Table 2; Fig. 5C).

Discussion
We have carried out next-generation sequencing and analysis of

the nematode Caenorhabditis sp. 3 PS1010, identifying approxi-

mately 18,000 expressed protein-coding genes in ;90% of its ge-

nome, along with approximately 2700 noncoding DNA elements

highly conserved between PS1010 and C. elegans. PS1010 is a

member of the Caenorhabditis genus, but is not part of the Elegans

group (Kiontke and Fitch 2005), which includes C. briggsae, three

other recently sequenced nematodes (C. remanei, C. brenneri, and

C. japonica), and an increasing number of unnamed elegans-like

species. Instead, PS1010 belongs to a newly defined Drosophilae

group within Caenorhabditis (Fig. 1; K Kiontke, pers. comm.).

PS1010s conservation of genes and noncoding DNA therefore

defines traits likely to be strongly required throughout the Cae-

norhabditis genus, despite overt differences in morphology and

behavior between Elegans and Drosophilae group species (Sudhaus

and Kiontke 1996; K Kiontke, pers. comm.) and despite sequence

divergence comparable to that between humans and birds (Kiontke

and Fitch 2005). In particular, the 2672 candidate DNA elements

that passed our extensive filters probably encode either highly

conserved regulatory elements or cryptic exons missed in the

extensive annotation of C. elegans. While elements have an aver-

age size of 66 bp before being filtered with known exons, filtered

elements average 29 bp in size (Supplemental Table S4). In addi-

tion, recurrent motifs found within the filtered elements include

matches to several published regulatory motifs, and two elements

mapped into a lin-39 enhancer previously shown to be conserved

between C. elegans and PS1010 (Kuntz et al. 2008). These results

are consistent with the hypothesis that many filtered elements

are regulatory. Kuntz et al. (2008) found three other lin-39 en-

hancers conserved in PS1010 that our elements did not detect; we

suspect that this arises from a limited ability of our gene–centric

assembly to be aligned by TBA/MULTIZ in regions far from exons.

This, in turn, suggests that a better PS1010 genome assembly

might reveal significantly more than 2700 noncoding DNA ele-

ments to be conserved between C. elegans and PS1010.

One goal of our work was to devise an analytical tool kit for

animal or plant genomes 70–300 Mb in size, usable by a small re-

search group, with (in our case) a particular focus on nematode

species. PS1010 was a good test case for this, because we had pre-

viously Sanger-sequenced fosmids representing roughly 0.5% of

its genome (Kuntz et al. 2008) and, therefore, we could assess the

quality of our genomic data through several rounds of sequencing

and assembly. We were able to produce a genome assembly, which,

though unsuitable for analyses of long-range regulation or multi-

gene synteny, does support analyses of gene function, orthology,

and short-range gene regulation. We also found that the PS1010

Figure 4. The pattern of pairwise strict orthologies between the three
Caenorhabditis species and the non-Caenorhabditis nematodes P. pacificus
and M. hapla matches their known phylogeny. In particular, the numbers
of strict orthologs between PS1010 and each of the outgroup species are
comparable to those seen between C. elegans and C. briggsae and the
same outgroups, suggesting that our protein-coding gene set is largely
complete.

Figure 5. Conserved noncoding elements. (A) A highly conserved noncoding element (red star) in an intron of unc-2, as identified by phastCons and
passing all of our filters, is a possible promoter element. Conserved PS1010 elements are typically subsets of the conserved elements shared between
Elegans group genomes. (B) The most statistically significant predicted motif from the highly conserved noncoding elements (motif 1-1) (Table 2) is
equivalent to the slr-2/jmjc-1-responsive motif of Kirienko and Fay (2010). (C ) A functionally uncharacterized motif (1-8) closely resembles motif 4 of Beer
and Tavazoie (2004).
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genome and transcriptome could be determined effectively with

a single round of sequencing (e.g., one run of an Illumina flow

cell). This finding opens the prospect of a wider survey of the

nematode phylum at a reasonable cost.

Can this approach be extended to the vast number of un-

characterized nematodes, most of which probably cannot be cul-

tured in the laboratory? Setting aside the daunting issue of chro-

mosome diminution in some nematode clades such as Ascaris

(Müller and Tobler 2000), this will depend on whether PS1010 is

representative of other nematode genomes in its polymorphism

and repeat structure. We did not inbreed PS1010 before sequenc-

ing, as was necessary for species such as C. brenneri (Barrière et al.

2009). However, PS1010 was isolated from a small sample of

Caenorhabditis sp. 3 worms and underwent years of continuous

culture before being frozen (K Kiontke, pers. comm.). Thus, PS1010

had probably already undergone a bottleneck that lowered its

polymorphism and facilitated assembly. For new species that are

difficult or impossible to inbreed, DNA from a single worm would

allow reconstructing (at worst) two haplotypes at the cost of deeper

sequencing. Moreover, current short-read assemblers are designed

to deal with error-prone reads and so should tolerate higher levels

of polymorphism than their predecessors.

When sequencing DNA from one or a few worms of an un-

culturable species, constructing jumping libraries from paired ends

of larger genomic fragments with specified lengths will probably

not be an option for scaffolding genome assemblies. In this case,

transcriptomes could be a useful alternative for local scaffolding

of genomes: RNA, after being reverse-transcribed, can be amplified

from small samples in the same way as genomic DNA. Moreover,

such RNA-seq samples would be from whole organisms, and so

would be likely to express large fractions of all genes at some level.

While cDNA-scaffolded assemblies will not match the quality of

assemblies based on jumping libraries and run the risk of excluding

intronic fragments, their scaffolding will improve as the depth and

variety of RNA-seq samples from different developmental stages

are added. Such assemblies will be best for genes most strongly

expressed in biologically important life stages (e.g., infectious

larvae). This is similar to the analysis of a cancer transcriptome in

the context of its matching cancer genome. Both features could

help decipher genomes replete with intronic and intergenic re-

peats, such as those of the nematode Panagrellus redivivus (de

Chastonay et al. 1990) and of some plants. Velvet-assembled RNA-

seq data makes gene predictions more reliable, and our overall

strategy makes it feasible for individual laboratories to sequence the

genomes of multicellular eukaryotes. cDNA-scaffolded assembly

should thus enable draft genomes of many neglected organisms.

Methods

Worm culture
The strain PS1010 was obtained from the Caenorhabditis Genetics
Center. These worms did not thrive on normal C. elegans growth
media. We thus grew PS1010 on nutrient agar (Difco) supple-
mented with 0.1% v/v cholesterol and incubated with E. coli
HB101 as food. Worms were grown to high density on five to ten

Table 2. Motifs predicted in highly conserved noncoding DNA elements

Motif Description
Size
(nt)

Consensus
sequence E-value

GO term (P-value
<1 3 10�6)

1-1 slr-2/jmjc-1 11 STCTGCGTCTC 3.4 3 10�140

1-2 Novel 15 MGTGGSSRGASCCWA 6.0 3 10�131

1-3 Novel 11 GTGGCCTAGAA 3.1 3 10�129

1-4 Novel 14 GCAARYGCGCTCYA 8.7 3 10�135

1-5 Muscle 3 15 SMGMSMCSMSMCMSC 1.5 3 10�54 Nematode larval development
(GO:0002119; 1.31 3 10�7)

1-6 Muscle 1 15 GASRRAGASASRSAG 4.6 3 10�59 Locomotion (GO:0040011; 2.23 3 10�7);
body morphogenesis (GO:0010171;
4.93 3 10�7)

1-8 Uncharacterized: previously found
by Beer and Tavazoie (2004) as
highly significant motif (4th out of 375)

11 ACGACACTCCG 6.6 3 10�48

1-9 miRNA 59 flank/Sp1 8 CYCCGCCC 7.2 3 10�42

1-10 Novel 10 CTACAGTAAY 1.6 3 10�34

1-11 Resembles early pha-4/Muscle 4 15 RYGTSWBKGTGTKTG 2.4 3 10�31

1-14 Muscle 2 15 AGRAGAWGAARAMGA 4.4 3 10�30 Locomotion (GO:0040011; 5.41 3 10�7)
1-15 Uncharacterized: previously

found by Beer and Tavazoie (2004);
also has possible mammalian
homolog (PF0082.1; Xie et al. 2005)

11 TGCGCCTTTAA 1.9 3 10�26

1-17 Novel 15 GTCCKAGAGGASTAC 1.8 3 10�17

1-18 Novel 11 GGTTCGAHYCC 7.4 3 10�14

1-19 Uncharacterized: previously found
in most significant 10%
of Beer and Tavazoie (2004) motifs

13 TCGYKKCRAGACC 4.9 3 10�10

1-20 Novel 15 WTTACWGTTTCAAAA 4.9 3 10�11

2-18 Uncharacterized: motif 140 of
Beer and Tavazoie (2004)

15 BCYCGTAAATCSACA 3.5 3 10�16

2-22 Novel 15 GACMCCCAWMWYGMC 9.4 3 10�11

2-24 Novel 18 CRKTKRATRCTCASSSAM 3.8 3 10�11 Nematode larval development
(GO:0002119; 4.53 3 10�7)

2-26 Novel 18 ATYWKAWTTGACGMGCAA 8.2 3 10�6

2-27 Novel 11 RRCTSAAAATB 3.5 3 10�25

2-30 E2F 8 SGCGCSRA 1.9 3 10�2 Locomotion (GO:0040011; 4.2 3 10�7)
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10-cm plates, collected with M9 buffer, cleaned of bacteria by su-
crose centrifugation (Lewis and Fleming 1995), and bleached be-
fore growing cultures for DNA or RNA harvests.

Isolation of DNA and RNA

Recently bleached cultures of PS1010 were expanded on five to ten
10-cm nutrient agar/HB101 plates to starvation. After starving
worms for 1–2 d to rid them of E. coli, they were collected with
M9, sucrose-centrifuged, and snap-frozen with liquid nitrogen in
;100-mL aliquots before storing at �80°C. Worms were thawed
and refrozen three times to promote cuticle breakage before ex-
tracting either genomic DNA or bulk RNA. Genomic DNA was
extracted by two rounds of proteinase K digestion and phenol-
chloroform extraction, with an intermediate step of RNase A di-
gestion in TE; bulk RNA was extracted with the Qiagen RNeasy
mini kit.

Genome and transcriptome sequencing

Genomic DNA libraries were built using Illumina’s standard
paired-end protocol (Bentley et al. 2008). Four libraries were built
using different size cuts ranging from 200- to 450-bp fragments
and were sequenced as 75-mers (Supplemental Table S7). The 200-
nt fragment RNA library was built largely as described (Mortazavi
et al. 2008) with an added 12 rounds of column filtration fol-
lowing the last PCR steps and was sequenced as paired 75-mers.
All libraries were sequenced on the Illumina Genome Analyzer II
following the manufacturer’s recommendations. Genome and
RNA-seq reads were submitted to the Sequence Read Archive un-
der accession number SRA023844.

Genome and cDNA assembly using Velvet

Raw reads were first mapped using Bowtie 0.12.1 (Langmead et al.
2009) onto the existing 439 kb of PS1010 sequence in GenBank
to determine optimal insert sizes for paired mates using ERANGE
3.2 (Mortazavi et al. 2008). Raw reads were assembled with Velvet
v.0.7.56 (Zerbino and Birney 2008) using k = 47 nt, expected cov-
erage of 200, minimum coverage of four, minimum pair count
of two, supercontigs $100 nt, and specified insert sizes for the
two longest fragment libraries, where the settings were optimized
for the highest N50. Supercontigs showing $90% matches to any
E. coli assembly in GenBank with BLAT (Kent 2002) were filtered
out. The remaining supercontigs were used for the transcriptome-
mediated scaffolding of the genome (Fig. 2). Ungapped tran-
scriptome mate-ends were mapped with Bowtie 0.12.1 using the
settings ‘‘-v 2 -e 240 -k 11 -m 10 --strata --best’’, allowing matches
of $70/75. Reads that did not map with Bowtie were then mapped
at 70/75 using BLAT, filtered with pslReps, and imported as 3.6
million splice reads (with at least 6 nt on the short end of the splice)
with ERANGE. We mapped RNA-seq reads first with Bowtie onto
the cDNA-scaffolded genomic assembly; ERANGE extracted 43.7
million uniquely mappable reads and 0.6 million multireads from
the Bowtie mappings. The remaining reads did not map primarily
because of poor sequence quality.

RNA-seq reads were assembled into cDNA with Velvet using
a two-tiered strategy. One million paired reads were used to as-
semble cDNA from highly expressed genes with the settings
‘‘-exp_cov 100 -ins_length 200 -cov_cutoff 4. -min_contig_lgth 100’’. In
parallel, all of the reads were used to assemble cDNA from mod-
erately expressed genes with the settings ‘‘-exp_cov 1000 -ins_length
200 -cov_cutoff 4. -min_contig_lgth 100’’. The resulting cDNA super-
contigs were collectively mapped to the genome with BLAT and
used as hints to the AUGUSTUS 2.3 genefinder (Stanke et al. 2008).

Transcriptome scaffolding of the genome using RNAPATH

The mapped RNA-seq reads were imported into ERANGE sqlite
datasets, and paired-mates with both uniquely mappable (ungap-
ped or spliced) ends on different supercontigs were exported out
for the genomic scaffolding by the new RNAPATH module within
ERANGE 3.2; while we could have exported these reads instead to
a general scaffolding program such as Bambus (Pop et al. 2004), we
opted to have the code more tightly integrated within ERANGE.
The read-mates were used to build an edge-weighted adjacency
matrix of the supercontigs; only the top two edges per supercon-
tigs with weights greater than two were kept. Scaffolding pro-
ceeded by starting at leaves and following the highest-weighted
edges, reverse-complementing supercontigs as necessary to keep
read-mates oriented toward each other; supercontigs and edges
that were included in a scaffold could not be reused in any sub-
sequent scaffold. We repeated the scaffolding a second time to
obtain the final assembly, which is available in GenBank (ac-
cession no. AEHI01000000) and WormBase.

Annotating genomic DNA and protein-coding genes

AUGUSTUS was run on the PS1010 Velvet+RNAPATH assembly
with C. elegans parameters. We also ran AUGUSTUS on the C. ele-
gans genome using either de novo parameters, or the following
data sources for hints: ;355,000 C. elegans ESTs from GenBank;
public RNA-seq data from GenBank; or our own Velvet-assembled
cDNA supercontigs, from our own C. elegans RNA-seq data.

To calculate RPKM expression levels on a per-exon and per-
gene basis with ERANGE using the AUGUSTUS gene models, RNA
reads were mapped onto the Velvet+RNAPATH assembly. Bowtie
and BLAT were run at the same settings used for genomic assembly,
but using the first 50 bp of each read and allowing up to five
mismatches.

To find repetitive elements in our genome assembly, we ran
RepeatModeler, which itself runs both RECON (Bao and Eddy
2002) and RepeatScout (Price et al. 2005) before merging their
predictions. We identified 422 repetitive elements in the PS1010
genome, which we mapped to 429 kb of Sanger-sequenced PS1010
genomic DNA with BLAT.

Protein sequence analyses were done on the PS1010 pre-
dicted proteome itself, the WormBase WS210 predicted proteomes
of C. elegans, C. briggsae, and P. pacificus, the WormBase WS207
predicted proteome of M. hapla, the predicted proteome of M. in-
cognita from http://www.inra.fr/meloidogyne_incognita/genomic_
resources/downloads, and a hybrid predicted proteome for B.
malayi from both WormBase WS209, and our own de novo
AUGUSTUS predictions using B. malayi parameters. We deter-
mined orthologies with OrthoMCL 1.3 (Li et al. 2003), run with
standard settings. Since OrthoMCL outputs are protein based
(overcounting genes with multiple products), groups were mapped
from proteins to genes with Perl, and ‘‘orthology groups’’ with one
gene were discarded. Genes were considered to belong to strict
orthology groups if there was no more than one gene from each
species in that group (i.e., 1:1, 1:1:1, etc.). Less stringently, a
PS1010 gene was considered to have homology of some sort if
it fell into any orthology group that had non-PS1010 genes as
members. Protein domains with an E-value of #10�6 were found
in all seven proteomes with hmmscan from HMMER 3.0b3 (http://
hmmer.janelia.org) and release 24.0 of PFAM-A (Finn et al. 2008).

Conserved genomic DNA elements and motifs

The PS1010 draft assembly was aligned to the genomes of C. elegans
and C. briggsae with TBA/MULTIZ (Blanchette et al. 2004) at
BLASTZ settings T = 0, W = 8, K = 2200 and then analyzed for
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conservation using phastCons (Siepel et al. 2005) with standard
settings. We trained phastCons on alignments of C. elegans chro-
mosome IV, and then used it with otherwise standard settings to
generate a list of elements in the C. elegans genome conserved
in both C. briggsae and PS1010. We required that they be at least
10 nt long, with 80% overlap in all three genomes, and that they
not overlap any of the following datasets in C. elegans: complex
or simple repetitive elements; known exons from protein-coding
or noncoding RNA (ncRNA) genes annotated in WormBase WS210;
BLASTN hits (E # 10�3) against C. elegans ncRNA sequences
from WS210; alternative exon predictions by genefinders, such
as mGene; which are provided in WormBase as supplementary
data rather than official gene models (Schweikert et al. 2009);
and our own exon predictions with AUGUSTUS. Statistically
overrepresented GO terms of neighboring C. elegans genes were
found with the Cistematic module of ERANGE (Mortazavi et al.
2006).

We extracted motifs of 6–18 nt in size from the filtered ele-
ments with MEME (-minw 6 -maxw 18) (Bailey and Elkan 1994),
allowing any number of motifs per sequence (-mod anr), setting
a minimum significance of P # 0.05, allowing up to 50 instances
of a motif (-nmotifs 50), and using a Markov-1 background di-
nucleotide frequency model that we generated from 47.7 MB of
filtered C. elegans genome sequence. This consisted of sequence
from which we had first removed repeats and exons (known or
predicted), and then had removed any sequence fragments under
30 nt. We compared motifs with TOMTOM (Gupta et al. 2007)
using Euclidean distances to measure their similarity, Q-values
(Storey and Tibshirani 2003) to define highly significant matches,
and P-values to qualify weak ones. Previously published motifs
were extracted from JASPAR (Portales-Casamar et al. 2010), Dro-
sophila Flyreg v2 (http://www.danielpollard.com/bergman2004_
matrices.html; Bergman et al. 2005), TRANSFAC (Matys et al. 2006)
via the TOMTOM Web portal (Bailey et al. 2009), and WormBase
(Harris et al. 2010). To find subsets of conserved DNA elements
containing instances of particular motifs, we ran FIMO with de-
fault parameters (Bailey et al. 2009); these subsets were, in turn,
scanned for overrepresented GO terms in neighboring genes with
ERANGE/Cistematic.

More details of some procedures above are given in the Sup-
plemental Methods.
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