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LONGEVITY and preservation of high levels of 
function with relative lack of disability are complex 

heritable traits and careful endophenotype development is 
necessary to maximize the ability to detect meaningful �
genetic signals (1,2). Endophenotypes comprising linear 
combinations of correlated physiologic measures may (a) 
better characterize exceptional survival than single measure 
traits and (b) improve detection of genes associated with 
high physical and cognitive function. Furthermore, such en-
dophenotypes may be more useful measures of long life for 
other areas of clinical epidemiology aiming to identify non-
genetic biomarkers or risk factors (3). The goal of this study 
is to develop heritable endophenotypes in the Long Life 
Family Study, a National Institute on Aging sponsored 

multicentered study of highly functional adults older than 
90 years, their siblings, and their offspring.

Methods
The Long Life Family Study is a family-based cohort 

study designed to characterize exceptional health well be-
yond what is expected in the general population. Families 
were recruited by four collection sites across the United 
States and Denmark. Family eligibility and ascertainment 
has been previously described (4,5). At the time of analysis, 
480 families, consisting of 3,224 participants (1,228 sib-
lings and 1,996 offspring) from all sites were collected. 
Spousal controls of the offspring generation were not used 
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Table 1.  PCA Results for Five Most Dominant Components

Domain

PC1 PC2 PC3 PC4 PC5

Eigenvalue (% variance explained)

4.01 (14.3) 3.33 (11.9) 2.50 (8.9) 2.31 (8.3) 1.73 (6.2)

Cognition
  Animal recall 0.17 −0.07 0.56 −0.09 0.08
  Vegetable recall −0.14 −0.12 0.60 −0.09 0.07
  Digit forward 0.06 0.04 0.46 −0.04 −0.20
  Digit backward 0.04 0.03 0.56 −0.01 −0.14
  Immediate memory 0.00 0.01 0.78 0.06 0.05
  Delayed memory 0.01 −0.01 0.78 0.03 0.08
Cardiovascular
  Presence of hypertension −0.09 0.11 −0.07 0.79 −0.06
  Systolic BP −0.06 0.05 −0.06 0.86 0.08
  Diastolic BP 0.14 −0.01 0.00 0.81 0.13
  Pulse pressure −0.17 0.08 0.03 0.17 0.20
  Total cholesterol −0.09 −0.14 −0.04 0.12 0.93
  HDL cholesterol −0.29 −0.56 0.10 0.06 0.15
  LDL cholesterol 0.02 −0.07 −0.07 0.10 0.91
  Triglycerides 0.05 0.52 −0.08 0.06 0.41
Metabolic
  Presence of diabetes −0.17 0.59 0.02 −0.04 −0.04
  Estimated BMI 0.20 0.66 0.00 0.20 −0.04
  Creatinine 0.35 0.21 −0.16 −0.04 −0.05
  Glucose −0.07 0.67 −0.01 0.02 0.05
  Glycosylated hemoglobin −0.19 0.68 0.03 −0.06 −0.02
  Waist circumference 0.17 0.68 −0.08 0.14 −0.02
Physical activity
  Average grip strength 0.88 0.14 −0.02 0.09 −0.09
  Maximum grip strength 0.88 0.14 −0.02 0.09 −0.09
  Gait speed 0.42 −0.20 0.31 −0.03 0.10
  Total physical activity 0.42 −0.15 0.31 0.01 0.14
Pulmonary
  Presence of lung disease −0.15 0.10 −0.02 0.07 −0.11
  FEV1 0.85 0.00 0.08 −0.09 0.05
  FEV6 0.86 −0.02 0.07 −0.06 0.00
  FEV1/FEV6 ratio 0.10 0.07 0.05 −0.14 0.19

Note: Loading variables per PC are presented for each variable. Values in bold indicate the strongest correlations to that particular PC. BMI = body mass 
index; BP = blood pressure; FEV = forced expiratory volume; HDL = high-density lipoprotein; LDL = low-density lipoprotein; PCs = principal components.

to estimate principal components (PCs) but were included 
in heritability estimates.

For endophenotype development, 28 measures were �
chosen based on availability across collection sites and on �
hypothesized physiologic significance to exceptional survival. 
Measures included (a) cognitive function: immediate memory, 
delayed memory, category fluency, and digit substitution �
forward and backward (6,7); (2) cardiovascular health: �
presence of hypertension, total cholesterol (milligrams per 
deciliter), high-density lipoprotein cholesterol (milligrams 
per deciliter), low-density lipoprotein cholesterol (milligrams 
per deciliter), triglycerides (milligrams per deciliter), systolic 
blood pressure (millimeter of mercury), diastolic blood pres-
sure (millimeter of mercury), and pulse pressure (millimeter 
of mercury); (c) metabolic health: presence of diabetes, blood 
glucose (milligrams per deciliter), glycosylated hemoglobin, 
creatinine, body mass index (kg/m2), and waist circumfer-
ence; (d) pulmonary health: presence of lung disease, forced 
expiratory volumes (FEV1 and FEV6, milliliters), and FEV1/

FEV6 ratio; and (e) physical functioning: average and maxi-
mal grip strength (kilograms), walking speed (meter per �
second), and total physical activity (8). Variables were contin-
uous and transformed to be normally distributed when 
necessary. Each variable was adjusted for family generation, 
which aimed to adjust for the large differences in means and 
standard deviations between generations, yet retain covaria-
tion among variables.

PCs analysis was used to develop endophenotypes of 
exceptional longevity (9). Simple random sampling of one 
person per family was repeated 1,000 times, and a matrix of 
the average correlations across iterations was used to per-
form factor analysis with principle component factor 
extraction and varimax rotation (10). The number of dominant 
PCs was assessed via (a) biologic relevance, (b) percent 
variance explained, and (c) scree plot evaluation. Biplots 
were plotted to assess orthogonality. Diagnostic regression 
analyses were used to assess if variable missingness accounted 
for any significant component loadings.
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For subsequent heritability estimation, five component 
scores were calculated per individual to correspond to each 
observed dominant PC by standardizing each person’s gen-
eration-adjusted predictor values and multiplying them by 
the corresponding eigenvector for each PC.

Heritability scores were then estimated using the ASSOC 
program in the S.A.G.E. (Statistical Analysis in Genetic 
Epidemiology, version 5.4.1) statistical package, which cal-
culates the amount of variance due to additive genetic �
effects divided by the total trait variance. Heritability analy-
ses were adjusted for age, gender, and recruitment site (11).

Results
Eigenvalues and eigenvectors for the five most dominant 

components are shown in Table 1. Combinations of measures 
across physiologic domains characterized the most signifi-
cant PCs. However, as the percent variance decreased, PCs 
were more likely to be characterized by a single physiologic 
domain. The most dominant PC consisted of measures �
of pulmonary, physical function, and metabolic health �
accounting for 14.3% of the variability in the data set. The 
second component included metabolic and cardiovascular 
measures and accounted for 11.9% of variability. The third 
component was defined solely by cognitive measures and 
accounted for 8.9% of variability. The fourth component �
included cardiovascular, specifically blood pressure–related 
measures, accounting for 8.3% of the variability. Lastly, the 
fifth component included cardiovascular (lipid-related) 
measures and accounted for 6.2% of the variance. Missingness 

for any particular predictor did not seem to significantly �
affect loadings.

Heritability estimates for 28 individual predictor variables 
and for the five dominant PC-derived endophenotypes �
exhibited wide variability (Figure 1). High-density lipoprotein 
cholesterol, grip strength, FEV1, and waist circumference 
exhibited the highest heritabilities (h2 ≥ 0.40). Overall, 
individual variables that loaded into any particular PC �
demonstrated wide ranges of heritabilities; despite these 
ranges, four of the five derived PCs showed modestly high 
heritability compared with its components. For example, the 
seven variables that loaded into PC1 had heritabilities rang-
ing from 0.01 to 0.44. Construction of an endophenotype 
(PC1) to characterize these variables resulted in a heritability 
estimate 2

PC1( )h  of 0.39. Likewise, PC2 was estimated to have 
a heritability of 0.27, yet was characterized by variables with 
heritabilities ranging from 0.19 to 0.45. Heritability esti-
mates for PC3 and PC4 were higher than any single loading 
variable, possibly due to the fact that loading variables for 
these PCs had more narrow ranges of heritability ( 2

PC3h  = 
0.36 with single variable 2

Sh  ranging 0.22–0.33 and 
2
PC4 0.25=h  with single variable 2

Sh  ranging 0.17–0.22, re-
spectively). Although loadings were strong for PC5, this 
component demonstrated low heritability 2

PC5( 0.16)=h .

Discussion
The most dominant PC, made up of pulmonary physical 

function measures, accounted for 14.3% of the variance and 
was moderately heritable (h2 = 0.39). Physical function and 
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Figure 1.  Heritability estimates for individual variables and for five principal components analysis–derived endophenotypes. Diamonds represent heritability es-
timates for individual trait variables, whereas squares represent heritability estimates for the five most dominant endophenotypes. BMI = body mass index; BP = blood 
pressure; FEV = forced expiratory volume; HDL = high-density lipoprotein; LDL = low-density lipoprotein.
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pulmonary health are highly associated at older ages, possibly 
due to a significant decline in skeletal muscle strength (12). 
Physically active older adults have reportedly better overall 
and cardiovascular-related survival compared with sedentary 
counterparts (13). Respiratory muscle strength has been 
associated with reduced walking capacity, whereas active 
older adults have been shown to have greater diaphragm 
thickness and greater maximal inspiratory and expiratory 
pressures, suggesting that genes that help maintain muscle 
function later in life may influence both traits (14–16). Physi-
cal function and pulmonary health may also be associated via 
shared pathways of chronic inflammation (17–19).

The second most dominant PC, characterized by metabolic 
and cholesterol-related traits, accounted for 11.9% of the var-
iance and had modest heritability (h2 = 0.25). Heritable met-
abolic phenotypes such as low insulin resistance, absence of 
obesity, and hyperglycemia have previously been associated 
with longevity, suggesting that they play an important role in 
the reduction of overall disease burden (20–22).

PC3 was related to global cognition, accounting for 8.9% 
of the underlying variance with heritability of 0.36. Reports 
have estimated that 50%–60% of the variance in cognitive 
function can be accounted for by genetic differences 
(23,24). Apolipoprotein E and cholesterol ester transfer pro-
tein have been proposed as candidate genes consistently as-
sociated with both longevity and memory function (25,26).

Lastly, PC4 was mainly characterized by blood pressure 
measures, accounting for 8.3% of the variance with an esti-
mated heritability of 0.25. A study of cardiovascular-related 
risk factors estimated a derived “blood pressure” factors to 
have heritabilities ranging 0.15–0.27, similar to our esti-
mates (27). Gene variants related to blood pressure regula-
tion, including some in the angiotensin-converting enzyme 
gene, have emerged as potentially valuable candidates that 
may influence aging processes (28,29). Genome-wide as-
sociation studies of blood pressure have identified addi-
tional candidate genes that may influence hypertension.

The ability to maintain health and functional status well 
into older ages is most likely related to interconnected 
biologic mechanisms that preserve functionality across 
domains. Findings from these analyses have broader impli-
cations. Endophenotypes developed in this study show that 
combined measures of pulmonary and physical function 
and of metabolic and Cardiovascular function are important 
for functional longevity. This preliminary finding may be an 
indication of pleiotropic effects of combined genotypes 
among disparate biologic pathways. Validation of these 
PC-derived endophenotypes to other populations would 
help further clarify their utility for genetic association 
analysis of long and healthy life.
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