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The purpose of this study was to investigate the  oncolytic 
potential of the recombinant, granulocyte macrophage 
colony-stimulating factor (GM-CSF)-expressing vaccinia 
virus (VV) JX-594 in experimental malignant glioma 
(MGs) in vitro and in immunocompetent rodent  models. 
We have found that JX-594 killed all MG cell lines tested 
in vitro. Intratumoral (i.t.) administration of JX-594 
 significantly inhibited tumor growth and prolonged sur-
vival in rats-bearing RG2 intracranial (i.c.) tumors and 
mice-bearing GL261 brain tumors. Combination  therapy 
with JX-594 and rapamycin significantly increased 
viral replication and further prolonged survival in both 
immuno competent i.c. MG models with several animals 
considered “cured” (three out of seven rats >120 days, 
terminated experiment). JX-594 infected and killed brain 
tumor- initiating cells (BTICs) from patient samples grown 
ex vivo, and did so more efficiently than other oncolytic 
viruses MYXV, Reovirus type-3, and VSVΔM51. Additional 
safety/toxicity studies in nontumor-bearing rodents 
treated with a supratherapeutic dose of JX-594 demon-
strated GM-CSF-dependent inflammation and necrosis. 
These results suggest that i.c. administered JX-594 trig-
gers a predictable GM-CSF-mediated inflammation in 
murine models. Before proceeding to clinical trials, JX-594 
should be evaluated in the brains of nonhuman primates 
and optimized for the viral doses, delivery routes as well 
as the combination agents (e.g., mTOR  inhibitors).
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IntroductIon
Malignant glioma (MGs) are the most common primary intrac-
ranial (i.c.) malignancy, with survival times remaining relatively 

static over the past few decades. Oncolytic viruses (OVs) show 
promising treatment efficacy in models of MGs, with several OVs 
being tested in preclinical models of MGs1–6 and some evaluated 
in early clinical trials.7–14 These trials found that OV therapy is safe 
with no reachable maximum tolerated dose; however, only a few 
patients responded. Hence, more effective OVs must be found for 
the treatment of MGs.

Vaccinia virus (VV) is a double-stranded, enveloped, lytic 
DNA virus with a large capacity for foreign DNA. It has several 
advantages over other OVs, as it is easy to manipulate genetically, 
replication and spread are rapid, it is motile (actin tail-dependent), 
it does not integrate into host DNA, and it is safe in animal models 
and primates.15,16 There is extensive clinical experience with VV as 
a vaccine for smallpox. Several poxvirus-based cancer vaccination 
trials are also underway.17,18

Several strains of attenuated, replicating VVs have shown 
efficacy in preclinical MG models19,20 and other cancers.21–25 To 
address potential safety concerns of a replicating VV, a mutant 
“double-deleted” thymidine kinase (TK) deficient and vaccinia 
growth factor deficient version of the WR (Western Reserve) 
strain (vvDD) was created to enhance its safety. vvDD selectively 
targets several tumor types in murine models without significant 
toxicity.26 It is also nontoxic when administered intravenously in 
nonhuman primates27 and in rodent MG models20 suggesting a 
potential for systemic administration.

JX-594 is a targeted and transgene-armed oncolytic poxvirus 
modified by insertion of human granulocyte macrophage colo-
ny-stimulating factor (GM-CSF) and disruption of TK by inser-
tion of LacZ genes into the viral TK gene.22 JX-594m expresses 
murine rather than human GM-CSF, and is used in rodent  models 
because rodents do not respond to human GM-CSF. These VVs 
are designed to selectively replicate in cancer cells with cell-
cycle abnormalities and epidermal growth factor receptor-ras 
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pathway activation.22 JX-594 has efficacy in preclinical liver cancer 
models,28 and a phase I trial of intratumoral (i.t.) JX-594 in liver 
cancer found significant antitumor effects with viral replication 
and expression of the therapeutic transgene GM-CSF.29

The objectives of this study were to investigate the efficacy 
and safety/toxicity of JX-594 and JX-594m administered i.t. 
in immuno competent rodent MGs and human brain tumor-
 initiating cells (BTICs).

results
JX-594 and JX-594m productively infects and kills all 
tested glioma cell lines in vitro
Five MG cell lines (GL261, F98, RG2, U87, and U118) all were 
permissive to infection and killed as demonstrated by cyto-
pathic effect and MTT assay 72 hours after infection with 
JX-594/JX-594m (Figure 1a–c). NIH3T3 was poorly permissive 
(Figure 1a–c). Compared to other OVs (MYXV, VSVΔM51, and 
Reovirus type-3), we found JX-594/JX-594m had greater efficacy 

and a broader spectrum of activity; cell lines resistant to reovirus 
(U118), VSV∆M51, and MYXV (GL261) were susceptible to JX-594/
JX-594m (Supplementary Figure S1). To determine whether 
viral infection occurred, viral titers were obtained after infection 
(Figure 1d). All cell lines were permissive, to different degrees 
with much higher titers than the NIH3T3 (Figure 1d). Longer 
time points (5 days) found all the cells dead after infection [multi-
plicity of infection (MOI) = 10] and we did not detect any live cells 
on the plates (Supplementary Figure S2).

efficacy of JX-594 and JX-594m when administered 
i.t. in immunocompetent racine and murine models 
of glioma
RG2-bearing rats were treated i.t. with multiple doses of JX-594 
or JX-594m (at days 1 and 4). Treatment with virus prolonged 
survival (median survival 16 days for phosphate-buffered saline 
(PBS) control, 26 days for JX-594 and 27 days for JX-594m); 
some rats treated with JX-594 (one rat survived for 35 days) or 
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Figure 1 JX-594 and JX-594m infect and kills human and murine brain tumor cells in vitro. (a) CPE of MGs cells. Cells were plated at confluency 
and the next day infected with JX-594/JX-594m at an MOI of 10. Microscopy was performed 72 hours after viral infection (original magnification × 
100). (b,c) MTT assay of MG cells compared to NIH3T3 controls 72 hours after (b) JX-594 and (c) JX-594m. (d) Viral titers were obtained in MGs 
and NIH3T3 cell lines after JX-594 infection. Viral titers were determined using a standard plaque titration assay on U2OS cells. Values represent mean 
PFUs ± SD from triplicate wells. *P < 0.05; **P < 0.01; ***P < 0.001 as analyzed by two-way ANOVA. ANOVA, analysis of variance; CPE, cytopathic 
effect; MG, malignant glioma; MOI, multiplicity of infection; p.i., postinfection.
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JX-594m (two rats survived for 36 and 41 days,  respectively) 
were “long-term” survivors (Figure 2a, long-rank test, P < 
0.0001 PBS and JX-594 or JX-594m). Survival with JX-594 or 
JX-594m were not significantly different (log-rank test, P = 
0.3288).

We next imaged a surrogate for tumor size in vivo using bio-
luminescence image (BLI) of RG2-Fluc tumors. BLI of control 
 animals (n = 8) increased by day 4 after tumor implantation 
(8.12 × 103) and peaked on day 14 (4.06 × 106) (Figure 2b,c); 
JX-594- (n = 8) and JX-594m- (n = 8) treated rats had a BLI that 
slowly increased between day 4 (8.64 × 103, 8.12 × 103) and day 14 
(1.35 × 105, 4.70 × 105), and still did not reach a peak level (control 
animals) by day 18 (2.47 × 106 and 1.43 × 106, termination of the 
experiment) (Figure 2c).

To determine whether JX-594/JX-594m i.t. prolongs survival 
in immuncompetent mice bearing a MG resistant to other OVs 
(resistant to MYXV, VSVΔM51, and reovirus in vitro), we treated 
mice on days 1, 4, and 10 after GL261 tumor inoculation and 
found survival was significantly prolonged(Figure 2d, long-rank 
test, P < 0.0001, PBS and JX-594 or JX-594m). Two out of eight 
mice (25%) treated with JX-594m were considered “long-term” 
survivors (>40 days). Interestingly, both JX-594 and JX-594m 
displayed similar survival patterns, despite the long-term sur-
vivors, suggesting that the addition of the GM-CSF cytokine 

in this model may not be necessary for survival benefit in this 
model.

combination therapy with rapamycin promotes 
JX-594-mediated oncolysis in vitro and enhanced 
virus replication in vivo
To determine whether combination therapy with rapamycin pro-
motes JX-594 oncolysis in vitro, we assessed cell viability with or 
without pretreatment with rapamycin. Combination treatment 
resulted in greater cell killing than either treatment alone in both 
RG2 and GL261 glioma lines (Figure 3a,b).

We next determined whether rapamycin enhanced viral repli-
cation in vivo using BLI in the RG2 rat model. In the first 5 days, 
BLI virus imaging (yellow: virus image) was similar (JX-594Fluc, 
7.76–8.05; JX-594 + Rap, 7.69–8.0) (Figure 3c, bottom). After 
5 days, BLI declined for the JX-594Fluc-treated rats (8.05–5.63) but 
not for combination treated rats (8.0–7.53) (Figure 3c, bottom). 
Nine days after treatment, BLI virus image was almost undetect-
able in the JX-Fluc alone group when compared to the combi-
nation group (Figure 3c, top). We repeated this experiment and 
found similar results (Supplementary Figure S3a) and nontumor-
bearing rats had virus replication that was much lower and shorter 
than tumor-bearing mice (Supplementary Figure S3a). We found 
similar results in mice with GL261 tumors (Figure 3d).
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Figure 2 i.t. administration of JX-594/JX-594m inhibited tumor growth and prolonged survival of immunocompetent animals-bearing 
 intracranial glioma. (a) Kaplan–Meier survival of rats harboring intracranial RG2 tumor treated with PBS (n = 8) or i.t. administration of JX-594 (n = 
7, 5 × 107 PFUs /rat) or i.t. administration of JX-594m (n = 8, 5 × 107/rat, at days 1 and 4). Arrows indicates virus administration. (b) Representative 
BLI obtained at days 4, 11, and 14 after tumor implantation of RG2-Fluc and treatment with JX-594, JX-594m, or PBS. (c) Quantification of the 
BLI. (d) Kaplan–Meier survival curves of C57/BL6 mice harboring GL261 tumor treated with control (PBS, n = 7), JX-594 (n = 7, 1 × 107 PFU/rat for 
three times, at days 1, 4, and 10) or JX-594m (n = 8). Arrows indicate the day of virus administration. BLI, bioluminescence image; i.t., intracranial; 
PBS, phosphate-buffered saline; PFU, plaque-forming unit; p.i., postinfection.
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efficacy of JX-594 and JX-594m administered i.t. 
combined with rapamycin in immunocompetent 
racine or murine animal models of glioma
To determine whether combination therapy prolonged survival, 
we treated RG2-bearing rats with i.t. JX-594 combined with intra-
peritoneal (i.p.) rapamycin, with the treatment schedule described 
in methods. Treatment with JX-594 alone (Figure 4a, mean = 30.6 
days, log-rank test, P = 0.0029) or rapamycin alone (mean = 38.5 
days, P = 0.0069) significantly prolonged survival (control mean = 
19.2 days). Rats treated with combination therapy had a marked 
increase in survival (mean = 55.3 days) compared to JX-594 alone 
(P = 0.0008), rapamycin alone (log-rank test, P = 0.0011) or PBS 
(Figure 4a; P = 0.0003, combination group compared to PBS).

We then repeated this combination experiment using an 
“advanced” RG2 model to mimic the clinical situation. We treated 
rats with JX-594m alone (mean = 36.1 days, log-rank test, P = 
0.0003) or rapamycin alone (mean = 32.9 days, log-rank test, 
P = 0.0007), which prolonged survival (Figure 4b, control mean = 
18.2 days). JX-594m + rapamycin further prolonged survival and 
was superior to either treatment alone (three out of seven rats were 
long-term survivors; JX-594m: log-rank test, P = 0.0248; rapamy-
cin: log-rank test, P = 0.0003) (Figure 4b). We repeated this exper-
iment and found similar results (Supplementary Figure S3b).

We then preformed these experiments in the Gl261-bearing 
mice and we found for the early time (started on day 2 after tumor 
implantation) treated model JX-594 alone (Figure 4c, log-rank 
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Figure 3 combination therapy with rapamycin promotes oncolysis in vitro and enhanced viral replication in vivo. (a,b) Viability of rodents 
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test, P = 0.0025) significantly prolonged survival, a trend for 
rapamycin alone (log-rank test, P = 0.0551) to prolong survival, 
and combination treatment further prolonged survival [compared 
to JX-594 alone (log-rank test, P = 0.0191), rapamycin alone (log-
rank test, P = 0.0018)] or PBS (Figure 4c; log-rank test, P < 0.0003, 
combination group compared to PBS). But for the “advanced” 
GL261 model, JX-594 alone, none of the treatments prolonged 
survival (Figure 4d; log-rank test, P = 0.1524).

safety profile of the i.c. administration of 
JX-594 and JX-594m in nontumor-bearing 
immunocompetent rodents
Nontumor-bearing rats were injected directly into normal 
brain with a supratherapeutic dose [4 × 108 plaque-forming 
unit (PFU)/ kg, about 6–7 × 107 PFU/rat] of JX-594 or JX-594m. 
i.c. administration of JX-594 was well tolerated; rats exhib-
ited a slight weight loss for 7 days and subsequently recovered 
(Supplementary Figure S4a). Animals appeared normal and none 
died (Figure 5a). In contrast, JX-594m was not well tolerated. The 
rats exhibited poorer grooming and were less active 3–5 days after 
i.c. administration. One rat could not ambulate normally and 
was sacrificed at day 5 (Figure 5a). Surviving animals (treated 
with either virus) then gradually gained weight (Supplementary 
Figure S4a) and appeared healthy; all animals were sacrificed 
at 40 days. Largely because of the death of the single rat treated 
with JX-594m, we repeated the above rat experiments twice (n = 
12/group, n = 5/group) using the same doses/schedule of each 

virus and followed the animals for 60 and 40 days (Figure 5b, 
Supplementary Figure S4b). When we repeated the experiments 
all the JX-594/JX-594m-treated rats had similar transient weight 
loss (Supplementary Figure S4b) but remained healthy and none 
died (Figure 5b, Supplementary Figure S4b). C57BL/6 mice 
 tolerated i.c. administration of JX-594/JX-594m well, had tran-
sient weight loss (Supplementary Figure S4d), but appeared well 
and none died (Figure 5c).

neuropathological changes following the i.c. 
administration of JX-594 and JX-594m in nontumor-
bearing immunocompetent rodents
Histological examination of the racine brains at 3 days following 
administration of JX-594 showed focal striatal and cerebral corti-
cal necrosis with moderate meningoencephalitis (data not shown). 
The findings were similar 7 days postinfection but the density 
of inflammatory infiltrates and extent of necrosis was increased 
(Figure 5d, top). Pathologic changes were largely  limited to the 
injected hemisphere. At 40 days after JX-594 administration a 
small area of chronic inflammation (along the needle track), resid-
ual focal cortical and striatal necrosis and areas of  calcification 
were detected (Figure 5d, bottom). Most brains also had mild 
dilation of the ventricles.

In contrast, rats injected with JX-594m had a severe necrotiz-
ing meningoencephalitis at 3 days characterized by larger areas 
of focal full thickness cortical necrosis, striatal necrosis and more 
extensive meningeal inflammation (Figure 5d). Inflammatory 
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changes were found in the meninges and superficial cortex of the 
contralateral hemisphere as well as the hemisphere of injection 
(Figure 5d). At 40 days postinfection, rats had a more extensive 
residual cortical or striatal tissue loss (Figure 5d) and most had 
some nonobstructive hydrocephalus.

The inflammatory infiltrates at days 3 and 7 (as detected by 
in situ hybridization) with both JX-594 and JX-594m consisted 
of neutrophils (data not show), CD68+ macrophages, acti-
vated microglia (Supplementary Figure S5a) and CD8+ T cells 
(Supplementary Figure S5b). There was no significant infiltration 
of CD4+ T cells immunohistochemically (data not shown). Rare 
CD20+ B cells were found (data not shown). At 40 days, scattered 
macrophages, activated microglia, and CD8+ T cells persisted 
(data not show). No CD4+ T cells or CD20 B+ cells were found 
(data not shown). In order to determine a correlation between 
the area of inflammation and the site of virus injection, immuno-
histochemical analysis detecting virus proteins was performed. 
Evaluation of viral distribution within the brain by immuno-
histochemical analysis at 3 and 7 days after viral administration 

showed that focal positivity for viral antigens was limited to areas 
of the most severe inflammation in the leptomeninges and stria-
tum along the site of the viral injection (Figure 5d, right column); 
no residual virus was detected at 40 days. There was no evidence 
of an extensive viral dissemination or of a demyelinating process. 
Control brains showed only a localized reactive glial scar and scat-
tered hemosiderin-laden macrophages with little or no granulo-
cytic or lymphocytic infiltration.

BtIcs are susceptible to JX-594 infection  
and killing ex vivo
Five established BTICs were tested for susceptibility to JX-594GFP 
using the cell viability, self-renewal, expression of viral gene 
[green fluorescent protein (GFP)], and the viral  replication 
assay. Cell viability assays showed all BTICs were killed by 
JX-594GFP (Figure 6a), which was confirmed by self-renewal 
assays (Figure 6b). All BTICs, but not NIH3T3, were permis-
sive to infection as measured by GFP expression and cytopathic 
effect (Figure 6c). Finally, viral titers (Figure 6d) showed a minor 
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productive infection occurred in most BTICs, save BT025. In all 
cases, viral titers were less than what was seen in the U87 cell line 
which is the most susceptible MG cell line to OVs in our hands.

dIscussIon
We found that VV JX-594/JX-594m, engineered to express 
GM-CSF, infects and kills MGs in vitro and in vivo. In vitro, 
JX-594/JX-594m infected all MG cell lines tested (including ones 
resistant to other OVs) and our panel of BTICs (a.k.a. brain tumor 
stem cells). In vivo, JX-594/JX-594m prolonged survival in two 
immunocompetent rodent MG models and this was significantly 
enhanced by rapamycin. JX-594 administered at a supratherapeu-
tic dose into normal brain of nontumor-bearing rodents resulted 
in inflammation and necrosis limited to the injected hemisphere. 
In contrast, JX-594-expressing GM-CSF which is active in rodents 
(JX-594m) caused a more diffuse and bilateral inflammatory 
response. This finding suggests that the enhanced inflammatory 
response may be a result of GM-CSF expression rather than being 
a direct result of virus replication; however, there was no differ-
ence in survival outcome of JX-594 or JX-594m, suggesting that 
GM-CSF does not change VV OV efficacy.

The consideration of JX-594 for evaluation in a clinical trial 
with MGs is not straightforward because its promising character-
istics must be balanced by its toxicities in rodent models. There 
are many reasons to consider this as an attractive OV in MGs. 
First, there is a long history of safety with VV as 100s of millions 
have been vaccinated with it. Second, it shows significant  activity 
and little toxicity in patients with liver cancer.29 Third, compared 
to other OVs we have used, JX-594 has greater efficacy and a 
broader spectrum of activity. For example, in immunocompe-
tent animal models, it infects/kills GL261 that is resistant to other 
OVs and persists seven times longer than other OVs (reovirus 
and MYXV persist for 48 (ref. 30) and 24 hours31); this may allow 
 several rounds of lytic infection in patients. Fourth, similar to the 
VV with deletions in vaccinia growth factor and TK,20 survival 
was much more prolonged with JX-594 when combined with 
rapamycin, some rats were long-term survivors. This marks the 
first time we have seen using OVs in combination with rapamycin 
or cyclophosphamide.20,31,32 Fifth, it’s oncolytic effect has not been 
shown to be dependent on specific cellular receptors or genetic 
alterations within tumor cells, giving it potentially broad appli-
cability. Finally, JX-594 is able to stop proliferation and possibly 
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kill BTICs, and in some instances replicate to similar levels seen 
in U87 (the most susceptible MG cell line we have tested). Hence, 
JX-594 may overcome treatment resistance in BTICs to chemo-
therapy/radiotherapy,33,34 given resistance is based on these per-
sisting cell types. Others have found that OVs are able to infect 
and kill BTICs.35,36

The promising antitumoral activity of JX-594 versus MGs 
observed in rodent models provide rationale for clinical testing 
of JX-594 in patients with advanced MGs. However, injection of 
a supratherapeutic dose of JX-594 into the normal rodent brain 
was associated with diffuse inflammation. Therefore, care must be 
taken to avoid inadvertent injection of JX-594 into adjacent normal 
brain tissue and subsequent inflammation. Furthermore, careful 
dose-escalation should be undertaken in this patient population. 
Indeed, JX-594 infection of tumors has resulted in acute necrosis 
and edema formation in patients with extracranial tumors, which 
may be deleterious in patients with cranial tumors. However, as 
many MG patients are treated with corticosteroids, inflammation 
and edema formation may be mitigated.

In spite of these promising characteristics, its toxicity in 
nontumor-bearing rodents needs to be considered carefully. 
Both JX-594 and JX-594m produced marked inflammation and 
focal tissue necrosis. Logically, these changes are more severe 
with JX-594m than JX-594, and were more severe and diffuse 
than other OVs3,5,20,30,31,37–41 (except for i.c. VSV∆M51 which causes 
a severe/fatal meningoencephalitis6). Would these inflammatory 
changes be harmful or beneficial to MG patients? MG patients 
with inflammation42 or i.c. infections have longer survival, and 
are sometimes even cured.43,44 OVs tested in clinical trials pro-
duce only microscopic inflammatory responses/necrosis but their 
clinical results are also disappointing.7–14 Responses are uncom-
mon, short lived and only one or two patients in each trial have 
very long survivals, or rarely, an absence of tumor at autopsy.11–13 
The oncological  aphorism that effective therapy always has some 
toxicity might also apply to OVs. The direct test of the signifi-
cance of JX-594-induced inflammation in MGs awaits testing in 
nonhuman primates and ultimately in patients. The finding that 
oncolysis of JX-594 was enhanced with the addition of rapamy-
cin suggests that rapamycin (or another rapalogue) might be used 
in the clinic but would first require a detailed evaluation of the 
potential toxicities of the combination therapy.

There are several limitations of our study. First, experiments 
were biased to produce an efficacy because most animals were 
treated only 1 day after tumor inoculation but most patients pres-
ent with large, established tumors. Second, since a dose–response 
effect for the toxicity of JX-594 was not evaluated, instead using 
the highest dose we can prepared was used for administration in 
the brain. Lower doses may retain efficacy without toxicity. The 
relevant next step is to determine toxicology in nonhuman pri-
mates to find a phase I dosing regimen. Third, since the precise 
mechanism that rapamycin uses to enhance oncolysis in vivo is 
unknown, improved results are possible with the use of other rap-
alogues or selective mTORC inhibitors.

MaterIals and Methods
Cell lines. Murine NIH3T3 fibroblasts and racine GBM cell lines RG2, F98, 
and human U87, U118 are from the American Type Culture Collection 

(Manassas, VA). GL261 was provided by Dr Luc Vallieres, Laval University, 
Montreal, QC, Canada. The firefly luciferase gene plasmid (pGL3 enhancer 
vector: Promega, Madison, WI) was cotransfected into RG2 cells (RG2-
Fluc, ref. 45). All cells were grown as described previously20,30 and routinely 
test myoplasma before use them.

Viruses and replication assay. The recombinant VV JX-594 clone#1 
(20080624KH) and JX-594m GM-CSF (20080624KH) are from the 
Ottawa Hospital Research Institute (Dr John C. Bell). JX-594 was modified 
by insertion of human GM-CSF and LacZ genes into the viral TK region, 
whereas JX-594m contains murine GM-CSF. JX-594GFP expresses EGFP. 
JX-594Fluc expresses firefly luciferase. All viruses were propagated and 
 tittered on UO2S cells.22

For in vitro viral replication assays, cells were infected with JX-594 at 
an MOI of 0.1, after 24, 48, 72, and 96 hours incubating, cells lysates with 
medium underwent three cycles of freeze/thawing, then serial dilutions of 
supernatants/lysates were tittered.22

Cell viability and cytopathic effect assays. Cells were infected with 
JX-594/JX-594m (MOI = 0, 1, and 10) then incubated at 37 °C. Cell viabil-
ity was measured 72 or 120 hours postinfection by MTT.5,20,30 We com-
pared the results with MYXV (Dr Grant McFadden, University of Florida, 
Gainesville, FL), VSV∆M51 (Dr John C. Bell, Ottawa, ON, Canada) and 
Reovirus type-3 (Dr Peter Forsyth, Calgary, AB, Canada). For combina-
tion therapy with rapamycin (LC Laboratories, Toronto, Ontario, Canada, 
20 nmol/l–1 µmol/l) was added 2 hours before viral treatment. In vitro 
cytopathic effect were visualized/photographed with a Zeiss inverted 
microscope (Axiovert 200M) and a Carl Zeiss camera (AxioCam MRc).

Immunohistochemistry. Paraffin-embedded sections were deparaffinized 
and rehydrated, blocked, and incubated with primary antibody. Antibodies 
used were the murine monoclonal VV antibody (1:1500; Abcam, Cambridge, 
MA), mouse anti-rat CD68 (1:500; Serotec, Raleigh, NC), CD8 and CD4 
(1:300; Serotec); CD20 (1:300; Secotec) used overnight at 4 °C. Biotinylated 
donkey anti-mouse immunoglobulin G or anti-rabbit immunoglobulin G 
(1:2,000; Vector Laboratories, Burlington, Ontario, Canada) was used as 
the secondary antibody. Sections were incubated with avidin conjugated 
to horseradish peroxidase (Vectastain ABC immunohisto chemistry kit; 
Vector Laboratories), and staining was visualized by the addition of 3,3´-
diaminodbenzidine  substrate with hematoxylin counterstaining.

Efficacy studies of orthotopic glioma models in immunocompetent hosts. 
To investigate efficacy, female Fischer 344 rats or C57/BL6 mice were inoc-
ulated with 1 × 104 RG2 (or GL261) cells under anesthesia as described 
previously.5,30 Animals were treated with JX-594/JX-594m (5 × 107 PFU/
rat, 1 × 107 PFU/mouse) i.t. 1, 4, and 10 days (GL261) after tumor implan-
tation; control animals were treated with PBS, animals were followed daily 
for survival. The times of i.t. inoculation were selected to favor efficacy 
when the tumors were expected to be both established and very small.

In vivo monitoring tumor growth/inhibition using BLI. RG2-Fluc-
bearing rats [5 days after tumor implantation (2 × 104/rat)] were treated 
with i.t. JX-594 or JX-594m (5 × 107 PFU/rat) as a single dose. On days 4, 
11, 14, 16, and 18 days after tumor implantation they were imaged with the 
Xenogen IVIS 200 System (Xenogen, Alameda, CA) to record BLI emit-
ted from tumors. Data were analyzed based on total photon flux emission 
(photons/second) in the region of interest.46

Combination therapy with rapamycin. RG2 or GL261 cells were treated ± 
rapamycin (20 nmol/l or 1 µmol/l) 2 hours before infection, then infected 
with JX-594 (MOI = 0.1) and MTT performed after 24 or 72 hours incu-
bation. For viral replication in vivo, RG2- or GL261-bearing animals 
were treated with JX-594Fluc alone (i.t. 5 × 106 PFU/animal at day 8 after 
tumor implantation) or JX-594Fluc + rapamycin. Rapamycin at a dose of 
5 mg/ kg/rat (2.5 mg/kg/mouse) was given i.p. every day for 10 days started 
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same day with virus. Every other day after virus administration, animals 
were imaged using Xenogen IVIS 200 System (Xenogen).

To evaluate the in vivo effects of combination therapy i.c. animals 
were divided into the following four groups (n = 4–7 animals), 2 days 
after tumor implantation: (i) PBS control, (ii) rapamycin alone (i.p. 
administration: rapamycin 5 mg/kg/every other day for 3 weeks), (iii) JX-
594 [1 × 107 PFU/rat (5 × 106 PFU/mouse), administered at days 2 and 8] 
alone, and (iv) JX-594 + rapamycin.

To determine the effects on an “advanced” or “late-stage” tumor model 
RG2- (or GL261) bearing animals were divided into four groups (n = 6–7 
animals), 8 days after tumor implantation: (i) PBS control, (ii) rapamycin 
alone [i.p. administration: rapamycin 5 mg/kg/day for 4 weeks (2.5 mg/ kg/
mouse), starting at day 8], (iii) JX-594m [1 × 107 PFU/rat (JX-594, 5 × 
106 PFU/mouse), administered at days 8, 13, and 18] alone, and (iv) JX-
594m (JX-594) + rapamycin.

Safety/toxicity of i.c. administration of JX-594/JX-594m in nontumor-
bearing normal F344 rats or C57/BL6 mice. Fischer 344 rats or C57/
BL6 mice were injected i.c. with JX-594 and JX-594m (4 × 108 PFU/kg, 
about 6–7 × 107 PFU/rat) or PBS (in 5–10 µl of volume) under anesthe-
sia (80 mg/ kg ketamine and 8 mg/kg xylazine i.p.).5,30 Animals were fol-
lowed for 40 (rats) or 60 (mice) days. Animals losing ≥20% body weight 
or developing other unaccepted symptoms were sacrificed (Animal Care 
Guidelines). To evaluate the histology and viral distribution experiments, 
animals were sacrificed at 3, 7, and 40 days after viral administration. 
Because one rat died after i.c. administration the toxicity experiments were 
performed three times.

Oncolytic effect of JX-594GFP against BTICs ex vivo. All BTICs provided 
by Dr Samuel Weiss and Dr Gregory Cairncross lab (University of Calgary, 
Calgary, AB, Canada). We cultured BTICs as described previously47,48 and 
placed BT012, BT025, BT042, BT048, and BT053 in 96-well plates at 2 × 
104 cells/well in 100 µl serum free medium, then infected with JX-594GFP 
(MOI = 10). Cell viability was measured 5 days postinfection using Alamar 
Blue assay. The permissive U87 was used as positive controls.

To evaluate self-renewal capability, we performed the secondary 
neurosphere formation assay 5 days after viral infection (MOI = 3). Then 
live/viable cells were resuspended in fresh BTIC medium and seeded 
into 96-well plates at 100 cells/well. Ten days later, the number of wells 
containing neurospheres was recorded.

To assess viral replication, we used viral gene expression and viral 
titers. BTICs were seeded at 2 × 104 cells/well in 24-well plates infected 
with JX-594GFP (MOI = 0.1). The plates were then subjected to three 
rounds of freezing/thawing to titer virus. Viral titers were determined and 
repeated thrice.

Statistics. Statistical Analysis Software (SAS Institute) and GraphPad 
Prism (version 4; GraphPad Software, La Jolla, CA) were used for statisti-
cal analyses. Survival curves were generated by the Kaplan–Meier method. 
The multiple group average data were analyzed with the two-way analysis 
of variance. All reported P values were two-sided and were considered to 
be statistically significant at P < 0.05.

suPPleMentarY MaterIal
Figure S1. JX-594 and JX-594m infects and kills glioma cell lines that 
are resistant to other oncolytic viruses in vitro.
Figure S2. Five days MTT, CPE, and crystal violet staining results after 
JX-594 and JX-594m-infected glioma cell lines.
Figure S3. Combination therapy with rapamycin enhanced 
JX-594Fluc replication and JX-594m combined rapamycin treatment 
further prolonged survival in rat RG2 model.
Figure S4. More data about JX-594 and JX-594m safety/toxicity 
 studies in immunocompetent animals.
Figure S5. Representative CD68/CD8 infiltration in the brain after 
JX-594/JX-594m intracranial administration.
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