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Abstract
Statistical atlases enable the individualization of atlas information for patient specific applications
such as surgical planning. In this paper, a statistical atlas comprising a point distribution model
defined on the vertices of a tetrahedral mesh is registered to a subject’s computed tomography
scan of the human pelvis. The approach consists of a volumetric deformable registration method
augmented to maintain the topology of the atlas mesh after deformation as well as incorporating
the dominant three-dimensional shape modes in the atlas. Experimental results demonstrate that
incorporation of the statistical shape atlas helps to stabilize the registration and improves
robustness and registration accuracy.
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1 Introduction
The creation and use of statistical atlases in scientific inquiry and medical applications has
increased dramatically in recent years [1–4]. Atlases have been commonly used to learn
about shape variation in anatomical structures and thereby contribute to the characterization
of longitudinal changes in disease, growth, or aging, as well as to characterize cross-
sectional differences between populations—e.g., normal versus diseased. They have also
been used to hold labels that are to be transferred to a patient’s image in order to inform a
diagnosis or plan therapy. In this case, the atlas statistics—e.g., shape and density variations
—may be of great use in accurately registering stored atlas information to the subject. In this
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paper, we use shape information contained within a three-dimensional (3D) statistical atlas
to inform the registration of the atlas to a subject.

Statistical models of shape have been most commonly constructed using point distribution
models (PDMs) to characterize the shape variations that are present in curves in 2D or
surfaces in 3D [5–7]. In such cases, variants of the active shape models are typically used to
register an atlas to a given subject [8]. In this work, we are concerned with a three-
dimensional statistical atlas of the human male pelvis, conceptually similar to that proposed
by Yao and Taylor [1] and also described in [9]. It comprises a tetrahedral mesh whose
vertex positions are described by a PDM and whose CT densities are characterized by the
coefficients of Bernstein polynomials. With the registration of many subjects, principal
component analysis (PCA) [6] can be computed on both shape and density variations, and
the dominant modes of variations can be learned and used.

The specific task being addressed in this paper is the segmentation of the pelvis from CT
data. While low level segmentation methods can be used, extraneous and highly variable
details within these images, including the presence of barium contrast in the bowel, the
presence of and the variable positions of the femurs, and the variation in CT table
positioning, can make this task difficult, ultimately requiring human monitoring and
intervention. High level segmentation, such as the “segmentation-by-registration” process
described herein, requires information that guides the process in order to make it robust to
these extraneous influences but should not be so constraining that detail is missed and
fidelity lost. In our approach, the use of an atlas helps to provide the required robustness to
extraneous features while the use of strong image features guarantees faithfulness to the
subject’s data.

The method presented in this paper, which we refer to as Mjolnir+, is an extension of the
volumetric deformable registration method called Mjolnir [10], which in turn was modeled
after the registration method HAMMER [11]. In particular, we augmented Mjolnir both to
incorporate the dominant 3D shape modes in the statistical atlas and to maintain the
topology of the atlas mesh after deformation. In extensive experiments, we demonstrate that
these extensions can significantly enhance algorithm robustness, yielding a pelvis
segmentation result that is consistently reliable and accurate in CT data having highly
variable characteristics and overall quality.

2 Statistical Atlas
We are concerned with a 3D statistical atlas of the human male pelvis comprising two
features: 1) a model tetrahedral mesh  having NV vertices and NT tetrahedra describing
the shape of the mesh, and 2) CT densities which give its likely appearance within a CT
image. These characteristics are illustrated in Fig. 1. For convenience in describing
statistical variation of shape, the positions of the mesh vertices are stacked in a vector 𝐦̅ ∈
ℝV, where V = 3NV. The actual 3D position of the i-th vertex is given by 𝐯 ̄i = (m ̄i, m ̄i+NV,
m ̄i+2NV) ∈ ℝ3, where m ̄i is the i-th element of 𝐦̅. The CT densities are defined on the model
tetrahedra by specifying coefficients of Bernstein polynomials on the barycentric grid
defined by the vertices, as described in [1]. In this version of the atlas, only shape is
characterized by statistical variation; the CT densities are assumed to be constant and
known.

The statistical atlas was constructed according to standard procedures in principal
component analysis (PCA) of shapes (see [6]) from 41 normal male pelvis CT scans. One
CT scan was randomly selected to serve as a template pelvis. The pelvic bone of this image
was manually segmented and a 3D tetrahedral mesh , comprising 26875 vertices and
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105767 tetrahedra, created from the segmentation using the method by Mohamed and
Davatzikos [12]. The remaining 40 CT scans were deformably registered to the template
pelvis using Mjolnir [10], modified to register pelvis CT images and augmented to deform
and preserve the topology of the template mesh (as described in Sections 5 and 6 below).
This procedure provided topologically correct mesh instances , i = 1, …, 40, for each
subject, thereby deriving 26875 corresponding landmarks between each scan and the
template pelvis (see details in [9]). After PCA analysis, the first M principal modes of
variation (where M = 15 in our experiments) were arranged in a V (= 3 × 26875) by M
matrix ΦM = [φ1 φ2 … φM], from which a shape instance can be generated according to

(1)

by choosing mode weights b ∈ ℝM [13]. During the execution of Mjolnir+, we iteratively
search for b that yields a shape instance from the atlas that best matches the actual subject
shape. The displacements m − 𝐦̅ defined on the model shape then provide guidance that
allows Mjolnir+ to robustly and accurately bring the atlas and subject into alignment (see
Section 4).

In order to analyze the size of the population and the number of principal modes needed to
extract stable statistics, we randomly selected n meshes, where n = 20, 30, …, 80, and
created statistical atlases using these datasets. This process was repeated 20 times for each
value of n. After registering the atlas to multiple leave-out subjects (yielding “true shapes”)
and estimating the given subjects using the atlas modes, we computed the vertex to vertex
correspondence error between the estimated shapes and the true shapes. We then computed
the average residual vertex correspondence error for each of the atlas sizes as a function of
number of modes. This analysis revealed that around 40 to 50 datasets are sufficient to
capture the shape variations of a healthy pelvis anatomy using 15 modes. Adding more
instances to the atlas database resulted in a very small improvement, less than 0.1mm, in
terms of residual errors (see details in Chintalapani et al. [9]).

3 Key Concepts
The 3D-3D deformable registration approach presented in this work, referred to as Mjolnir+,
is based on a method called Mjolnir (see [10,14] and [11]). In this section, we review the
key concepts that are largely in common between these methods and also highlight certain
differences that are used to take advantage of the presence of the statistical atlas in Mjolnir+.
For further details about those processing steps that are in common between these methods,
the reader is referred to [11] and [14]. A block diagram of Mjolnir+ is provided in Fig. 2.

Attribute Vectors
The goal of the registration algorithm is to spatially align atlas and subject images. In order
for this alignment to be accurate and anatomically correct one must identify correct
anatomical correspondence between the two images. Several geometric moment invariants
(GMIs) are computed at a small neighborhood around each voxel in both images. These
moments describe the intensity “shape” near each voxel. The CT intensity and the edge,
derived from the classification of the pelvis CT image into soft tissue, trabecular bone, or
cortical bone (see Section 6) are also used as features to be matched. All these pieces of
information about each voxel are organized into attribute vectors, one for each voxel. This
information will figure into the image similarity after registration. This procedure is done at
three resolutions of each CT image—coarse, medium, and fine—and the subsequent steps
are performed in sequence from coarse to fine.
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Driving Voxels
During the execution of Mjolnir+, a collection of driving voxels from both atlas and subject
are determined. These are distinctive voxels in one image—as determined by their attribute
vectors—that can be associated with similar points in the other image creating temporary
landmark pairs that “drive” the deformation of one image toward the other. Driving voxels
are “active” while all other voxels are “passive” because the displacement field at each
iteration is determined solely by the displacements that are estimated at driving voxels. In
Mjolnir, driving voxels are automatically selected in a hierarchical fashion, starting with a
small initial set of highly distinctive voxels in both the atlas and the subject images. In
Mjolnir+, the initial set of driving voxels comprises a small collection of highly distinctive
voxels residing on mesh vertices rounded to the nearest voxel; these voxels are mostly
located on high curvature points on the pelvic bone like the iliac crests (see Fig. 3).

In later iterations, Mjolnir+ augments the driving voxels in two ways. First, voxels in the
immediate 6-neighborhood of existing driving voxels are added; in this way, the registration
of edges and corners are made more precise over increasing neighborhoods around original
and added driving voxels. Second, new driving voxels from increasingly less distinctive
points on the mesh—i.e. voxel points near mesh vertices—are added; in this way, the
influence of the image attributes on and near the mesh continues to demonstrate high
influence on the registration process. Highly distinctive points within the subject image are
also selected as driving voxels. In this way, important points in the subject that should play a
major role in registration are also incorporated in the registration process. In each iteration,
the subject image is deformed relative to the atlas image, and new driving voxels are
identified in order to continue to bring the images into alignment. Various thresholds are
changed throughout the registration process such that all voxels in the atlas image —and
hence, all vertices rounded to the nearest voxel — eventually become driving voxels. For
computational savings, the driving voxels in the subject image are never augmented to
include more than just the original selection.

Correspondences
For each driving voxel in the subject and atlas images, a corresponding voxel in the other
image is found, creating a (temporary) landmark pair. This is performed by searching in the
opposite image for voxels with strongly similar attribute vectors. The search is performed in
a spherical neighborhood around each driving voxel. The radius of the neighborhood is large
in the beginning when the subject and atlas are far apart and gradually decreases to a singe
voxel as the image alignment converges.

Displacement Field
After searching and finding correspondences for all driving voxels, including those located
on vertices, displacement vectors pointing from the atlas to the subject are formed for each
driving voxel, forming a sparse displacement field uc(x) for each voxel position x in the
domain of the atlas. This field is then interpolated and smoothed throughout the entire image
domain in order to generate a dense displacement field, which yields a transformation that
can be used to align the two images by warping their coordinate systems. In Mjolnir+, we
regularize the displacement field uc using prior shape information from the statistical atlas
and then carry out interpolation and smoothing as in conventional Mjolnir while also
preserving mesh topology. This new process is described next.

Multi-resolution scheme
The algorithm is run at three different resolutions, i.e. low, medium, and high (see Fig. 2).
At low resolution, the images are downsampled by a factor four and the algorithm is run
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until convergence. Then the displacement field is upsampled, the subject image deformed
accordingly, and the algorithm is run again at a middle resolution. This procedure is
repeated once more at high resolution (i.e., the resolution of the input images).

4 Incorporating Statistical Shape Information
Mjolnir determines its correspondences based on the similarity of automatically selected
driving voxels where voxel similarity is based on locally derived image features. When a CT
image contains pelvic bone in the presence of non-pelvic features—e.g. femur—there is a
possibility that non-homologous landmarks will be paired. Our objective is to make the
registration more robust by incorporating the statistical shape modes from the atlas. This
will guide the volumetric 3D-3D registration process by providing it with information on
valid deformations within the atlas population, thereby preventing large, erroneous
displacements from occurring.

Given the sparse displacement field uc(x), we construct a V -dimensional vector dm
comprising the displacement vectors at voxel locations that coincide with model mesh
vertices. If not regularized in any way, then the present result posits that the vertices of the
model mesh should move to the positions defined by m = 𝐦̅+dm in the subject. In order to
regularize this displacement, we ask what shape in the statistical atlas is closest to this
motion? This question is answered by finding the mode weights b′ that solve Φb′ = dm in
the least squares sense, which is given by

(2)

since the shape modes are orthonormal. Some of these mode weights might be very large in
comparison to the expected level of variation in that mode, as determined by the PCA

analysis of shape [13]. We address this by limiting each element  to , where  is
the variance of mode i, yielding b ̃′. The regularized displacement vectors are therefore given
by

(3)

which represents a “valid” shape as far as the atlas is concerned.

The sparse displacement field uc(x) is then updated by combining dm with the regularized
displacements  as follows

(4)

where Sidm = (dm,i, dm,i+NV, dm,i+2NV) ∈ ℝ3 is the 3D displacement vector associated with
the i-th model vertex, i = 1, …, NV, and  is similarly defined. The parameter α in (4)
controls how strong the regularization should be. We set α = 1 early in the registration
process, when the subject and atlas are far apart, and linearly decrease it to 0 as the subject
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and atlas converge—i.e., α = 1 − τ, where τ = k/maxIter, k is the current iteration, and
maxIter is the maximum number of iterations.

During the early stages of the algorithm, most driving voxels come from the atlas mesh
vertices and the displacement field  is strongly determined by the first condition in (4).
Since α ≈ 1 at this stage, the atlas has a dominant influence on the computed deformation.
Later, as driving voxels are gradually extended to include all voxels, the influence of the
atlas becomes negligible, and local image features dominate the final registration result.

5 Preserving Mesh Topology
In order to determine a dense displacement field throughout the entire image domain, the
atlas-regularized sparse displacement field  must be interpolated. Mjolnir estimates a
dense field u(x) using the following partial differential equation (PDE) [14]

(5)

where ∇2 = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2 is the Laplacian operator, g is a scalar weight, and p is
a weight function (see [14] for specifics). This equation yields a smooth field in regions in
which no driving voxels exist and adheres to the displacements at the existing driving voxels
(modulated by the similarity of the underlying images at the regions matched by the driving
voxels). In Mjolnir+, we must consider the fact that the resultant field does not guarantee
that the tetrahedral mesh in the atlas will warp into a valid tetrahedral mesh in the subject.
For example, it is possible that tetrahedra could “flip” from positive volumes to negative
volumes, which cannot be allowed because this corresponds to an invalid atlas instance, i.e.,
an invalid object topology, as shown in Fig. 4(a).

In order to preserve the object topology, the sign of the volume of each tetrahedron in the
atlas mesh is monitored during the registration process. As shown in Fig. 2, after u(x) is
computed using (5), we visit each voxel position xl and look for mesh vertices residing in
the vicinity of xl. Such vertices will be affected by the displacement vector wl = u(xl) as
their displacements will be interpolated using wl. This is demonstrated in Fig. 5(a). We
compute the volumes of each tetrahedron whose vertex is in the vicinity of xl, as illustrated
in Fig. 5(b), and if any volume is less than 0.1 mm3 then the displacement is deemed to be
invalid. The displacement vector wl causing this problem is therefore reduced in length, as
shown in Fig. 4(b), until the volumes of all affected tetrahedra in the vicinity of the
displacement vector are greater than or equal to 0.1 mm3. This process is described in detail
in Algorithm 1 below.

Algorithm 1 (Topology Preservation)
Given the topologically correct displacement field uk−1 computed at the previous iteration of
Mjolnir+ and given the displacement field u computed using Eqn. (5), we compute the
topologically correct displacement field uk as follows:

1. Initialize the revised displacement field as ũ = uk−1.

2. Initialize the vector of revised vertex positions as ṽi = 𝐯 ̄i + uk−1(𝐯 ̄i), i = 1, …, Nv.

3. For each voxel position xl do the following:

a. Compute the current displacement contribution at xl as
. Update ũ(xl) = u(xl).
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b. Check if there is a mesh vertex 𝐯 ̄j in the vicinity of xl that will be affected
by this displacement vector, i.e., check if |𝐯 ̄j − xl| < 1 voxel.

c. Set iteration counter i = 0.

d. For each affected vertex 𝐯 ̄j, update its position in the mesh as ṽj = 𝐯 ̄j +
ũ(𝐯 ̄j).

e. For each affected tetrahedron—i.e. a tetrahedron that has 𝐯 ̄j as its vertex—
compute its volume (using the just updated vertex positions).

i. If the volumes are all greater than 0.1 mm3, go to step 3a and
look at the next voxel and corresponding displacement
vector.

ii. Else if the number of iterations i has reached 100, set ũ(xl) =
uk−1(xl). Update each affected vertex as ṽj = 𝐯 ̄j + ũ(𝐯 ̄j). Go
to step 3a and look at the next voxel and corresponding
displacement vector.

iii. Else for each tetrahedron with a negative volume, decrease
the displacement vector that caused the flip: .
Update . Increment i = i + 1 and go to
step 3d.

4. Check the topology of the revised mesh. If the topology is correct, set uk = ũ.
Otherwise, go to step 2 and iterate through the algorithm again until no more
tetrahedra with negative volumes exist.

Algorithm 1 is guaranteed to converge since in the limit, the displacement field goes all the
way back to the previous configuration—i.e., from the previous iteration—in which case
Algorithm 1 ends.

6 Input Data and Preprocessing
Mjolnir+ is specifically tuned for the registration of CT images of the human pelvis to a
statistical atlas comprising a tetrahedral mesh whose vertex positions are described by a
PDM, a CT image representation, and statistical modes of shape variation described by
displacement matrices. Very few (if any) modifications need to take place in order to utilize
the method to register other bony structures from CT images such as femur, as long as the
atlas data structure is as described above.

The foundation of the registration algorithm is the alignment of a CT image coming from a
patient to the density image of the atlas shown in Fig. 1(b). The atlas density image contains
information about the pelvic bone but not the soft tissue surrounding the pelvis, such as fat
or muscles. In order to make the patient CT image more comparable with the atlas density
image, a simple preprocessing step is performed on the patient CT data to “remove” the soft
tissue from the image, as demonstrated in Fig. 6.

Fig. 6(a) shows a patient CT image (bottom) and the corresponding intensity histogram
(top). We can select a typical soft tissue value (determined as the average intensity over a
selected soft tissue region) that works for all patient CT scans of the pelvis since CT
intensities are in general standardized in Hounsfield Units [15]. We fill the background and
all intensity values below this predefined threshold of the patient CT image with this value,
which suppresses all image features surrounding the bone, such as the boundary between
background and soft tissue, as well as small intensity variations in the soft tissue as shown in
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Fig. 6(b). The intensities of the image are then shifted such that the background becomes
zero [Fig. 6(c)] and finally normalized between 0 and 1 [Fig. 6(d)]. The atlas density image
is also normalized between 0 and 1.

The patient CT image and the atlas density image are then segmented using the fuzzy
segmentation method FANTASM [16] in order to identify the three tissue classes
corresponding to soft tissue (including background and bone marrow), trabecular bone, and
cortical bone (see Fig. 7). These classes, along with the CT intensity image, are the basis of
the feature extraction in the registration algorithm and should be associated with the
corresponding classes in the atlas after registration.

Finally, the subject is registered to the atlas with a 7 degrees of freedom (DOF) similarity
transformation (rigid registration + isotropic scaling) using the method by Jenkinson and
Smith called FLIRT [17]. This step guarantees that remaining shape variations between the
atlas and the patient data are due to the same type of population variations that are
represented by the shape statistics in the atlas. This is demonstrated in Fig. 8. The figure
shows the average of 10 subjects that have been co-registered using a 7 DOF similarity
transform. The 10 images were added both before and after the registration to show how
variations due to translation and scale have been removed across the subjects by the
similarity transform.

7 Results and Discussion
Mjolnir+ was evaluated on a CT dataset of 51 human male pelvises, 41 of which were used
to construct the statistical atlas and 10 that were held out to evaluate the performance of the
algorithm. Both visual and quantitative results are presented and compared with results
generated by Mjolnir.

7.1 Basic Performance
A simple demonstration of the benefits of Mjolnir+ and of its capability to align a tetrahedral
mesh is shown in Fig. 9. A total of 10 subject images were registered to the atlas using
Mjolnir+ and the average of the 10 registered images computed. The figure shows how the
deformable registration compares with the pelvis alignment using 7 DOF similarity
registration. The alignment of a tetrahedral mesh to a subject reveals the presence of both
surface points and volumetric points residing deep within the bone.

7.2 Automatic Segmentation
The pelvises within six (held-out) CT data sets were manually labeled, thereby providing
ground truth data for quantitative assessment of registration accuracy. Then, both Mjolnir
and Mjolnir+ were used to automatically identify those pelvises through registration. In our
evaluation study we measured the quality of overlap using the Dice coefficient defined as
[18]

(6)

where S1 and S2 are the two segmented regions and |S| denotes the number of voxels in S.
The Dice coefficient between each of the manually labeled pelvises—i.e., the ground truth—
and the automatically determined pelvises were computed; the results are shown in Fig. 10.
The average Dice coefficient is slightly higher when using the statistical atlas, however the
difference is very subtle and not statistically significant (p-value = 0.4). One reason for the
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small difference using this measure is that the Dice coefficient was computed over the entire
pelvis and the regions showing improvements are small compared to the total number of
voxels within the pelvic bone.

In order to investigate this further we constructed triangular surface meshes from the
segmented masks and computed the absolute vertex-to-surface error between the
automatically labeled pelvises and the manually labeled pelvises. The results are shown in
Table I. The mean and standard deviation (SD) of the error were both higher when using
Mjolnir (mean: 1.0044 voxels, SD: 0.1085 voxels) than when using Mjolnir+ (mean: 0.9472
voxels, SD: 0.0372 voxels), yielding a more consistent alignment when utilizing the
statistical information. Although the difference is not statistically significant (p-value = 0.3)
a trend of improvements is evident when looking at Table I. There are two main reasons for
these improvements. First, all of the images were acquired with barium in the bowel, which
causes extraneous large edges, undesired driving voxel matches, and undesired matches in
the absence of statistical information. Second, the subject scans contain femur in the images
while the atlas only contains information about the pelvic bone itself. This also causes
undesired matches in the absence of statistical information.

Specific examples of the behavior described above are demonstrated in Figs. 12–15. Fig. 12
demonstrates the challenge of accurately registering the acetabulum (the concave surface of
the pelvis where the head of the femur meets the pelvis and forms the hip joint, as shown in
Fig. 11) in raw subject scans with atlas data that only contains the pelvic bone and no femur.
Large errors are visible around the acetabulum when using Mjolnir [Column (a)] with mesh
topology preserved but no statistics. The algorithm tries to “squish” the femur to align with
the acetabulum. Mjolnir+ on the other hand, which incorporates prior shape information and
topology preservation into Mjolnir, substantially improves the registration/segmentation as
shown in Column (b) of the figure. Column (c) shows the atlas image for comparison. The
absence of the femur bone should be noted in the atlas image.

The second challenge when registering raw CT scans with atlas data is when the subject has
been administered contrast agents such as barium sulfate. Barium sulfate blocks the passage
of x-rays and yields a CT intensity similar to that of bone. This can cause confusion in
registration algorithms and limit achievable registration accuracy, as demonstrated in Fig.
13(a). Part of the ilium has been pulled in the direction toward the bowels. With such
dramatic differences between the subject scan and the atlas, statistical shape information
helps to stabilize the registration, as demonstrated in Fig. 13(b). The artifact caused by the
bowels disappears when using Mjolnir+.

Another example of how barium filled bowels can affect the registration results is
demonstrated in Fig. 14. It is not as obvious in these images that the bowels are causing the
large errors in the registration results because the bowels are not visible on the slices shown.
However, in order to demonstrate the effects of the bowels on the registration we manually
removed the bowels from the dataset (a time consuming and tedious procedure) and ran
Mjolnir again. The results are shown in Fig. 14(b). The effects of the bowels on the
registration have been eliminated by the manual cleaning of the data. Fig. 15 shows how the
same negative effects were avoided by using Mjolnir+ [see Column (b)].

7.3 Topology Preservation
We registered 10 pelvis subjects to an atlas CT image using Mjolnir and Mjolnir+. Mjolnir+
automatically generates a deformed mesh, providing mesh instances for each subject, while
Mjolnir generates 3D displacement fields but no mesh. For Mjolnir, we used these
displacement fields to deform the atlas mesh providing us with deformed mesh instances for
each of the 10 subjects. Then we computed the number of flipped tetrahedra in the deformed
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meshes from both algorithms. The deformed meshes from Mjolnir had on average 5076
flipped tetrahedra (out of a total of 105767 tetrahedra in the mesh) while Mjolnir+ preserved
the topology of the mesh for all subjects. Fig. 16(a) shows the location of the flipped
tetrahedra highlighted in blue for one of the ten subjects. Fig. 16(b) shows a volume render
of a topologically incorrect tetrahedral mesh. Note the holes in the very thin part of the
ilium, which could cause problems when, for example, using the mesh to develop statistical
models or render Digital Reconstruction Radiographs (DRRs). Finally, Fig. 16(c) shows a
volume render of a topologically correct tetrahedral mesh.

7.4 Runtime
Finally, we ran both Mjolnir and Mjolnir+ on the same computer (Fedora Core 8, eight
3.6GHz Pentium Xeon processors, 15.7GB RAM), processing images of size 256×256×128
voxels. Mjolnir finished in 53 minutes, Mjolnir with topology preservation (but no statistics)
finished in 90 minutes, and Mjolnir+ finished in 56 minutes. Mjolnir+ therefore improves
robustness and registration accuracy over that of Mjolnir without a significant change in
computation time.

8 Discussion
Several methods have been proposed in recent years that use prior shape information to
constrain registration. Xue et al. [19] proposed a method that uses Wavelet-PCA to estimate
the pdf of high-dimensional displacement fields from a training set to construct effective
statistical priors for constraining deformable registration algorithms. Given a dense input
displacement field, the field is iteratively projected onto subspaces of valid deformation
fields defined by the Wavelet-PCA (referred to as statistical model of deformations (SMD))
and a regularized displacement field is generated according to the priors. The registration
method then uses the shape priors to iteratively toggle between HAMMER [11] and the
SMD to yield more robust registration. Yao and Taylor [20] proposed a method that uses
statistical information to initialize a deformable registration process. The method is divided
into three stages: affine transformation, global deformation, and local deformation. The
result of each stage is used as an initialization for the next stage. The prior shape information
is only used in the global deformation stage, where the statistical mode parameters are
optimized to match the atlas with the anatomical structure in the images. Due to the limited
number of training models in the statistical atlas, the prior information in the atlas does not
include all the variability inherent in the anatomy. To compensate for this, the algorithm
completes with a local deformation step to build correspondences between vertices on the
atlas and local features in the image and adaptively warp the atlas. As the method uses the
prior knowledge only in the second stage to initialize the alignment for the deformable
registration stage this method poses the potential that the transformation locks onto incorrect
correspondences, caused for instance by the barium filled bowels, as the method drops the
statistical information when it enters the deformable registration part. The same thing could
occur in the method by Xue et al. because during the registration in HAMMER there is no
prior information used to guide the registration.

The major difference between these methods and Mjolnir+ is that Mjolnir+ incorporates the
statistical information into the registration process and uses the shape priors along with
landmark and feature matching simultaneously to determine the transformation. Mjolnir+
gradually shifts from emphasizing the prior atlas to emphasizing image features; in this way
the atlas provides guidance when it is most needed, and does not prevent a final result that
accurately matches the data. We note that the method proposed by Wang and Staib [21] also
uses prior shape information that is incorporated into a non-rigid registration framework.
However, their method was only implemented in 2D and the shape statistics only described
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boundary points; in contrast, Mjolnir+ is fully 3D and incorporates shape statistics on a
dense set of vertices deep within the object.

9 Conclusion
A 3D-3D deformable image registration algorithm that incorporates a statistical atlas
comprising a tetrahedral mesh and a point distribution model was presented. The method
enforces a valid topology of the deformed mesh and uses the dominant statistical modes of
the atlas to guide the deformable registration process. This integration of prior shape
information from the statistical modes into the 3D-3D registration provides constant
guidance from the atlas throughout the registration process. Experiments showing both
visually and quantitatively more robust segmentation with increased registration accuracy
were provided, demonstrating the benefits of the new method.
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Fig. 1.
(a) A 3D rendering of the tetrahedral mesh representation of the atlas. (b) A 2D slice from
the 3D density image.
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Fig. 2.
Flow chart of Mjolnir+ registration technique.
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Fig. 3.
The figure shows the ilium of the pelvic bone. Most of the primary driving voxels are
located on the iliac crests.
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Fig. 4.
(a) Invalid displacement of a vertex causes it to “punch” through the opposite face of the
tetrahedron. (b) A reduced displacement that maintains the topology of the tetrahedron after
deformation.
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Fig. 5.
(a) Affected vertices (black circles) when the displacement vector at the voxel marked with
a red dot is modified. (b) The volumes of the gray tetrahedra need to be checked to see if the
displacement at the red dot will affect their topology.
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Fig. 6.
Demonstration of the preprocessing step performed on the patient’s CT data to make it more
comparable with the atlas density image. The top row shows intensity histograms
corresponding to the figures in the bottom row. (a) Original image. (b) Intensities below
bone CT densities set to typical soft tissue values. (c) Intensities shifted such that the
background is set to zero. (d) Intensities normalized.
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Fig. 7.
Fuzzy segmentation of the CT image into (a) soft tissue (including background and bone
marrow), (b) trabecular bone, and (c) cortical bone.
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Fig. 8.
Overlay of 10 subjects (a) before registration (b) after registering them to the atlas using 7
DOF similarity registration (rigid + isotropic scaling).
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Fig. 9.
Average of 10 subjects (a) after 7 DOF registration (b) after 7 DOF registration followed by
deformable registration using shape statistics and topology preservation. (c) The deformable
registration result in (b) with the atlas mesh vertices superimposed, revealing the presence of
both surface points and volumetric points residing deep within the bone. Three different
slices of the 3D images are shown.
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Fig. 10.
The Dice coefficient between each of the manually labeled pelvises and the automatically
determined pelvises for the two different registration approaches (i.e., with and without prior
shape statistics).
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Fig. 11.
A cartoon drawing of a cross section through the femur and the acetabular bone of the
pelvis.
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Fig. 12.
2D slices from five different subjects are shown. The white contour is the same across each
row and represents the outline of the atlas. (a) Deformed subject image revealing large
registration/segmentation errors in the acetabulum when using Mjolnir (white arrows) (b)
Deformed subject image showing more accurate registration/segmentation when using
Mjolnir+. (c) Atlas density image derived from the Bernstein polynomials.

Ellingsen et al. Page 24

Comput Med Imaging Graph. Author manuscript; available in PMC 2010 November 23.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 13.
The challenge of registering scans of subject containing barium in the bowel with atlas data
that only contains the pelvic bone. The white contour is the same in all images and
represents the outline of the atlas. (a) Registration result using Mjolnir. A part of the ilium
bone has been pulled towards the bowel. (b) Registration result using Mjolnir+. (c) Atlas
density image derived from the Bernstein polynomials.
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Fig. 14.
The effects of barium filled bowels on the registration result can be eliminated by manually
removing the bowels from the images. 2D slices of the 3D image from two different
examples are shown. The white contour is the same across each row and represents the
outline of the atlas. (a) Registration of raw images (images contain bowels, however, bowels
not visible on this slice) using Mjolnir. (b) Registration of cleaned images (bowels manually
removed) using Mjolnir. (c) Atlas density image derived from the Bernstein polynomials.
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Fig. 15.
Demonstration of how Mjolnir+ can be used in the challenge of registering scans of subject
with barium in the bowel. 2D slices of the 3D image from two different examples are
shown. The white contour is the same across each row and represents the outline of the atlas.
(a) Registration of raw images (images containing bowels, however, bowels not visible on
this slice) using Mjolnir. (b) Registration of raw images using Mjolnir+. (c) Atlas density
image derived from the Bernstein polynomials.
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Fig. 16.
(a) Flipped tetrahedra highlighted in blue. (b) Volume render of a topologically incorrect
tetrahedral mesh. Note the holes in the very thin part of the ilium. (c) Volume render of a
topologically correct tetrahedral mesh.
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Table I

The absolute vertex-to-surface error (mean ± SD in voxels) between each of the manually labeled pelvises and
the automatically determined pelvises for the two different registration approaches (i.e. with and without prior
shape statistics).

Mjolnir Mjolnir+

Subject 1 0.9957 ± 1.8750 0.9620 ± 1.7659

Subject 2 0.9458 ± 1.4653 0.9052 ± 1.4082

Subject 3 0.9213 ± 1.6762 0.9207 ± 1.7052

Subject 4 1.0401 ± 1.6428 1.0050 ± 1.6557

Subject 5 1.2042 ± 1.8626 0.9243 ± 1.0239

Subject 6 0.9192 ± 0.9853 0.9660 ± 1.1384

Average 1.0044 ± 0.1085 0.9472 ± 0.0372
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