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Abstract

Oxidized glutathione (GSSG) is commonly viewed as a byproduct of GSH metabolism. The 

pathophysiological significance of GSSG per se remains poorly understood. Adopting a 

microinjection approach to isolate GSSG elevation within the cell, this work identifies that GSSG 

can trigger neural HT4 cell death via a 12-lipoxygenase (12-Lox) dependent mechanism. In vivo, 

stereotaxic injection of GSSG into the brain caused lesion in wild-type but less so in 12-Lox 

knockout mice. Microinjection of graded amounts identified 0.5mM as the lethal [GSSG]i in 

resting cells. Interestingly, this threshold was shifted to the left by 20-fold (0.025 mM) in GSH-

deficient cells. This is important because tissue GSH lowering is commonly noted in the context 

of several diseases as well as in aging. Inhibition of GSSG reductase by BCNU is known to result 

in GSSG accumulation and caused cell death in a 12-Lox sensitive manner. GSSG S-

glutathionylated purified 12-Lox as well as in a model of glutamate-induced HT4 cell death in 

vitro where V5-tagged 12-Lox was expressed in cells. Countering glutamate-induced 12-Lox S-

glutathionylation by glutaredoxin-1 overexpression protected against cell death. Strategies 

directed at improving or arresting cellular GSSG clearance may be effective in minimizing 

oxidative stress related tissue injury or potentiating the killing of tumor cells, respectively.

Introduction

Free glutathione, a tripeptide with the sequence γ-Glu-Cys-Gly, exists either in a reduced 

form with a free thiol group (GSH) or in an oxidized form with a disulfide between two 

identical molecules (GSSG). GSH is a ubiquitous low molecular weight intracellular thiol 

present in all aerobic cells in millimolar concentrations. The sulfhydryl (-SH) group supports 

the reducing properties of GSH by way of a thiol-exchange system (-SH to -S-S-), making 

GSH one of the most abundant and powerful intracellular antioxidants. Besides scavenging 

free radicals and reactive oxygen species, GSH detoxifies tissues by conjugating with 

various electrophiles including xenobiotics. In addition, GSH serves as a major reservoir of 

cysteine for cellular protein synthesis.
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Under basal conditions, GSSG represents 1% of the total GSH in the cell (1). Under 

conditions of oxidant insult, GSH is rapidly oxidized to GSSG. Thus, an elevated 

GSSG/GSH ratio is often used as a marker for oxidative stress (2). Cellular GSSG may be 

recycled to GSH in the presence of reductases such as NADPH-dependent GSSG reductase. 

Excessive GSSG, as generated during sudden oxidant insult, is pumped out of the cell by a 

ATP-dependent process underscoring the urgent need of the cell to protect itself from a 

GSSG surge (3, 4). In most studies, GSSG is dealt with as a byproduct of GSH metabolism. 

Because cellular GSH concentration is expected to be in the range of 1–5 mM, millimolar 

concentrations of GSSG are expected in cells under conditions of oxidant insult. However, 

knowledge about the potential biological significance of GSSG per se is limited. While 

excessive oxidant insult causes necrotic cell death, a more moderate challenge triggers 

secondary responses in the cell that culminate in cell death. Elevation in cellular GSSG 

levels represents one such rapid cellular response to moderate oxidant insult. In this study, 

we sought to examine whether elevated cellular GSSG levels may directly influence cell 

death. Addressing this question would require that cellular GSSG elevation be isolated from 

all other biological causative factors. Thus, we adopted the microinjection approach (5) to 

raise cellular GSSG or GSH as control to investigate the significance of GSSG on cell death. 

To test the significance of our findings in vitro, GSSG was stereotaxically injected to the 

brain in vivo and MRI was performed to quantify tissue lesion.

Results

Increased extracellular glutamate depletes intracellular GSH (5, 6). To test the significance 

of this loss of cellular GSH during glutamate-induced loss of HT4 cell viability, GSH was 

replenished in glutamate-treated cells by microinjection. Previously we have reported that 

4h of glutamate treatment markedly depletes the cellular GSH pool (6, 7). Thus, 4h 

glutamate treatment was performed in these experiments. After 4h of treatment, glutamate 

was withdrawn and cell were microinjected with GSH. Because the antioxidant properties of 

GSH were being tested, GSSG was selected as control. GSH microinjection did not 

significantly rescue cells from glutamate-induced death. This observation was consistent 

with our previous indirect observation that glutathione depletion is not critically important in 

causing cell death because we were previously able to afford complete protection by the α-

tocotrienol form of natural vitamin E under conditions where glutamate-induced glutathione 

loss remained unaffected (6). Of striking interest, however, was the observation that the 

control cells microinjected with GSSG were all lost to death. GSSG microinjection proved 

to be potently cytotoxic (Fig. 1). This serendipitous observation led us to examine the 

threshold of intracellular GSSG concentration ([GSSG]i) that triggers cell death of HT4 

neural cells. Based on atomic force microscopy measurements, we determined that the mean 

HT4 cell volume is in the order of 1 pl (not shown). Microinjection of graded amounts of 

GSSG was performed to identify the threshold concentration of GSSG that trigger cell 

death. It was noted that injection of 500 attomoles of GSSG which is equivalent to 0.5 mM 

of [GSSG]i was the threshold at which GSSG caused death of HT4 cell under standard 

culture conditions (Fig. 2A). Under conditions of glutamate challenge or other insult leading 

to cell death, cellular GSH levels are known to sharply fall (6). Therefore, we chose to lower 

GSH levels in cells by arresting GSH synthesis using BSO. BSO sharply increased GSSG 
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levels (Fig. 2C) and depleted cellular GSH pool by 80% (Fig. 2D) similar to the magnitude 

noted during glutamate challenge (6). Under such GSH-depleted conditions, HT4 cells were 

noted to become more sensitive to GSSG-induced cell death. In such GSH-deficient cells, 

the threshold for GSSG-induced lethality was lowered by twenty-fold such that 

microinjection of 25 attomoles (corresponding to 0.025 mM) of GSSG caused cytotoxicity 

(Fig. 2B–D). These observations underscore the heightened significance of GSSG as an 

inducer of cell death under conditions of GSH depletion.

Characterization of GSSG-induced death of HT4 neural cells was started by testing the 

involvement of mitochondrial dysfunction as is commonly associated with cell death. 

Cytosolic injection of GSSG was observed to selectively compromise mitochondrial 

membrane potential while not affecting plasma membrane potential (Fig. 3). Previously, we 

had reported that GSH-depletion in glutamate-challenged HT4 neural cells leads to the 

activation of 12-lipoxygenase which is central in executing glutamate-induced neural cell 

death. Inhibitors of 12-lipoxygenase, including BL-15 and α-tocotrienol, prevent glutamate-

induced HT4 cell death (5, 6). We therefore sought to examine whether GSSG-induced 

death of HT4 neural cells is mediated by 12-lipoxygenae. Both inhibitors of 12-

lipoxygenase, BL-15 as well as α-tocotrienol, significantly protected against GSSG-induced 

loss of cell viability suggesting the involvement of 12-lipoxygenase in this death pathway 

(Fig. 4). Next, we utilized the advantages of the microinjection approach to test the 

significance of 12-lipoxygenase and its substrate arachidonic acid in the death of GSH-

deficient HT4 cells. While depletion of cellular GSH reserves by arresting GSH synthesis 

using BSO does not cause cell death, such GSH-deficient cells are known to be highly 

sensitive to extracellular arachidonic acid treatment (5). Consistently, in this study we 

observed that microinjection of small amounts of free arachidonic acid to GSH-deficient 

HT4 cells caused cell death (Fig. 5). Both BL-15 as well as α-tocotrienol protected against 

such death suggesting the involvement of 12-lipoxygenase in intracellular free arachidonic 

acid induced cell death. Supporting this conclusion is our observation that direct 

administration of active 12-lipoxygenase into GSH-deficient cells causes cell death in a 

BL-15 and α-tocotrienol sensitive manner (Fig. 5). Next, we sought to test whether 

endogenous GSSG may kill cells by a 12-lipoxygenase dependent mechanism. BCNU, a 

well-characterized GSSG reductase inhibitor, was chosen as a pharmacological tool to 

increase cellular GSSG:GSH ratio (8, 9). Indeed, BCNU-induced elevation of cellular GSSG 

caused cell death. BCNU-induced cell death was significantly lowered by BL-15 as well as 

α-tocotrienol suggesting the involvement of 12-lipoxygenase (Fig. 6A–F). Inhibition of 

GSSG efflux by MK-571, an inhibitor for multidrug resistance protein-1 (MRP1)(10, 11), 

significantly increased loss of HT4 viability (Fig. 6G).

Consistent observations indicating that GSSG may induce cell death by a 12-lipoxygenase 

dependent mechanism led us to investigate the relationship between GSSG and 12-

lipoxygenase. Using a standard assay to measure 12-lipoxygenase activity it was noted that 

the presence of GSSG in the reaction mixture significantly increases the catalytic function of 

12-lipoxygenase (Fig. 7A). GSSG was noted to cause marked S-glutathionylation of proteins 

in HT4 cells (Fig. 7B). Control cells did show baseline glutathionylation levels (Fig. S1) but 

they are not noticed in Fig. 7B because film exposure time was minimized to obtain a good 

resolution blot of the GSSG treated cells. Signal detected as protein glutathionylation by 
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immunoblots was reversed under reducing conditions demonstrating specificity of the 

antibody used (Fig. S1). To determine whether 12-lipoxygenase is subject to GSSG-induced 

S-glutathionylation HT4 cells were transfected with vectors expressing V5-tagged 12-

lipoxygenase. Cell lysates from such cells, containing V5-tagged 12-lipoxygenase, were 

incubated with GSSG. Interestingly, the formation of GSS-12-lipoxygenase was noted (Fig. 

7C). Thus, G S S G is capable of S-glutathionylating 12-lipoxygenase. These findings were 

consistent with our observation that GSSG is able to S-glutathionylate pure 12-lipoxygenase 

obtained commercially (Fig. 7D).

Glutaredoxin 1(GRx1) is the most specific and efficient deglutathionylating enzyme in the 

cytoplasm of mammalian cells (12). To test the overall significance of S-glutathionylation 

on glutamate-induced cell death, HT4 cells were infected with an adenoviral vector 

expressing GRx1. The gene delivery process was successful in markedly increasing cellular 

GRx1 expression (Fig. 8A–C). Globally, GRx1 overexpression lowered the empirical 

abundance of S-glutathionylated proteins in the cell indicating elevated catalytic function of 

GRx1 in the cells (Fig. 8D). Overexpression of GRx1 significantly protected HT4 neural 

cells against glutamate challenge. These findings suggest the involvement of S-

glutathionylation reactions in glutamate-induced cell death (Fig. 8E). To expand on the 

mechanism by which GRx1 may have protected the cells against glutamate-insult, S-

glutathionylation of V5-tagged 12-lipoxygenase was examined in HT4 cells. Glutamate 

increased 12-lipoxygenase glutanthionylation which was prevented in GRx1 over-

expressing cells (Fig. 8F). These findings were consistent with results from studies 

employing the microinjection approach demonstrating that cytosolic delivery GRx1 

significantly rescued HT4 neural cells against GSSG or arachidonic acid-induced 

cytotoxicity (Fig. 9). These observations collectively support the notion that glutamate 

induces S-glutathionylation of 12-lipoxygenase in HT4 neural cells. GRx1 protected against 

glutamate-induced 12-lipoxygenase glutathionylation as well as cell death.

The estimated concentration of GSH in the brain is 1.9 ± 0.37 mM (13). Consistent with the 

literature (14), resting GSH levels in the mouse brain tissue was noted to be 2.8 μmol per 

gram wet weight (not shown). Acute ischemic stroke, as illustrated in Fig. 10A–B, resulted 

in over 7-fold increase in GSSG levels of the affected brain (Fig. 10C). We have previously 

reported that 12-lipoxygenase deficient mice are protected against brain injury caused by 

acute ischemic stroke (5). To test whether GSSG is indeed capable of causing brain lesion in 

vivo, GSSG was directly stereotaxically injected into the cortex. Evidence of clear infarction 

was noted (Fig. 10D). 12-Lipoxygenase deficient mice were significantly protected against 

GSSG-induced lesion of the cortex in vivo (Fig. 10E–F). These results indicate that under 

specific conditions GSSG may cause brain lesion in vivo via a 12-lipoxygenase dependent 

pathway.

Discussion

In mammals, the intracellular synthesis of glutathione and its utilization is described by the 

γ-glutamyl cycle, a concept that was put forth almost four decades ago (15). Reduced 

glutathione represents the centerpiece of the γ-glutamyl cycle, involved in several 

fundamental biological functions, including free radical scavenging, detoxification of 

Park et al. Page 4

Cell Death Differ. Author manuscript; available in PMC 2010 November 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



xenobiotics and carcinogens, redox reactions, biosynthesis of DNA, proteins and 

leukotrienes, as well as neurotransmission. While GSH may form numerous adducts in the 

human body (16), the most abundant GSH derivative is represented by GSSG. Oxidation of 

intracellular GSH by oxidants such as hydrogen peroxide and organic peroxides generally 

leads to the formation of GSSG. GSH can be further oxidized to the sulfenic, sulfinic, and 

sulfonic acid derivatives via successive two-electron oxidations of the thiol group.

GSSG is mostly viewed as a byproduct of GSH generated following reaction of GSH with 

an oxidizing species. As a result, GSSG/GSH ratio in the tissue emerged as a frequently 

used biochemical measure of oxidative stress (17). Advances in the concept of redox 

signaling, and redefining of oxidative stress in that light (18), has led to rethinking of the 

significance of GSSG in the cell (19). It is now widely acknowledged that changes in the 

cellular reduced/oxidized glutathione ratio trigger signal transduction mechanisms 

influencing cell survival. GSSG is capable of causing protein S-glutathionylation or 

reversible formation of protein mixed disulfides (protein-SSG). Post-translational reversible 

S-glutathionylation is known to regulate signal transduction as well as activities of several 

redox sensitive thiol-proteins (12).

Studies with exogenous non-permeable GSSG have demonstrated that extracellular GSSG 

may trigger apoptosis by a redox-mediated p38 mitogen-activated protein kinase pathway 

(20). While this addresses the significance of extracellular GSSG, the specific properties of 

intracellular GSSG remain under veil. GSH is oxidized to GSSG within the cell and pumped 

to the extracellular compartment (3, 4). Intracellular compartment being the primary site of 

GSSG generation, the significance of this disulfide within the cell becomes an important 

issue to address. Studies examining the significance of intracellular GSSG are complicated 

by the lack of a specific approach that would only elevate intracellular GSSG levels. For 

example, exposure of cells to pathogen related chemicals or to direct oxidant insult does 

elevate cellular GSSG but activates numerous other aspects of cell signaling (21). While the 

study of GSSG driven reactions in a cell-free system is relatively straightforward in 

approach, the in vivo significance of such findings remains questionable (22). This work 

presents first evidence from the use of a microinjection approach to study the significance of 

GSSG within the cell. Previously, we have utilized this approach to differentially study the 

cytosolic and nuclear compartments of HT4 cells as well as of primary cortical neurons (5). 

The approach is powerful in instantly and selectively introducing agents into specific 

compartments of the cell. Results of this study provide the first evidence demonstrating that 

the specific elevation of GSSG within the cell may cause cell death. Our observation 

demonstrating loss of mitochondrial membrane potential without affecting cell membrane 

integrity argues in favor of an apoptotic fate. Disorders of the central nervous system are 

frequently associated with concomitant glutathione depletion and oxidation (23, 24). Our 

observation that cells with compromised GSH levels are substantially more sensitive to 

GSSG-induced death leads to the notion that GSSG may play a role in cell death under 

conditions of disease and aging. We note that in GSH-sufficient cells (experimental) 0.5 mM 

GSSG is lethal. In GSH-deficient cells, a condition that mimics oxidative stress situation, 

the threshold of lethality sharply goes down by 20 fold to 0.025 mM GSSG. Our estimates 

show that in HT4 neural cells, total GSH content is in the range of 13 mM (not shown). This 
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is consistent with the literature reporting that under basal conditions, cellular GSH levels is 

in the tune of 10 mM (25, 26). In response to oxidant insult, GSSG levels sharply go up and 

may represent up to 50% of the total GSH in the cell (11, 27). Oxidative stress depletes 

cellular reducing equivalents such NADPH (28) compromising GSSG reductase function.

Glutamate toxicity is a major contributor to pathological cell death within the nervous 

system and is known to be mediated by reactive oxygen species and GSH loss (29, 30). 

Glutamate-induced death of neural cells is known to be associated with GSH loss and 

oxidation (6, 7). Our previous studies have identified 12-lipoxygenase as a key mediator of 

glutamate-induced neural cell death (5). We and others have reported that 12-lipoxygenase 

deficient mice are protected against stroke dependent injury to the brain (5, 31). GSH 

depletion causes neural degeneration by activating the 12-Lox pathway (32–34). 

Observations in this study suggest a direct influence of GSSG on 12-lipoxygenase 

activation. Arachidonic acid is converted into several more polar products in addition to 12-

l-hydroperoxyeicosa-5,8,10,14-tetraenoic acid (12-HPETE) and 12-

lhydroxyeicosa-5,8,10,14-tetraenoic acid (12-HETE) by 12-lipoxygenase. Previously it has 

been demonstrated that the presence of 0.5–1.5 mM GSH in the reaction mixture prevents 

the formation of the more polar products and produces 12-HETE as the only metabolite 

from arachidonic acid by the 12-lipoxygenase pathway. It was therefore concluded that 12-

HPETE peroxidase in the 12-lipoxygenase pathway is a GSH-dependent peroxidase and the 

more polar products might be formed from the nonenzymatic breakdown of the primary 12-

lipoxygenase product of 12-HPETE, owing to insufficient capability of the subsequent 

peroxidase system to completely reduce 12-HPETE to 12-HETE (35). In a cell system, 

disulfides are known to be able to act as biological oxidants that oxidize the zinc-thiolate 

clusters in metallothionein with concomitant zinc release (36). Intracellular zinc release is 

known to cause 12-lipoxygenase activation and neurotoxicity (37). Studies with BSO-treated 

GSH-deficient cells highlighted the significance of microinjected free arachidonic acid in 

neurotoxicity. These observations are consistent with the literature reporting a central role of 

the free arachidonic acid mobilizing enzyme phospholipase A2 in neurotoxicity (38).

S-Glutathionylated proteins (PSSG) can result from thiol/disulfide exchange between 

protein thiols (PSH) and GSSG (2). Protein S-glutathionylation, the reversible binding of 

glutathione to low-pKa cysteinyl residues in PSH, is involved in the redox regulation of 

protein function. Several enzymes are known to undergo this post translational modification. 

Importantly, whether glutathionylation inhibits or augments protein function may vary 

depending on the individual case. For example, glutathionylation inhibits 

phosphofructokinase (39), NFκB (40), glyceraldehydes-3-phosphate dehydrogenase (41), 

protein kinase C-α (42), creatine kinase (18), as well as actin (33). In contrast, 

glutathionylation-dependent gain of protein function has been reported for microsomal 

glutathione S-transferase (43), HIV-1 protease-Cys67 (44), and matrix metalloproteinases 

(45). Furthermore, specific electron transport proteins of the mitochondria are sensitive to S-

glutathionylation (28, 46). Consistently, we noted that GSSG induced cell death was 

associated with loss of mitochondrial membrane potential. The presence of multiple cysteine 

residues in 12-lipoxygenase makes it susceptible to S-glutathionylation. Results of this study 

provide first evidence demonstrating that 12-lipoxygenase may be glutathionylated in 

glutamate challenged neural cells. The finding that both glutaredoxin-1 expression as well as 
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delivery may protect cells against glutamate-induced neurotoxicity suggests that glutamate-

induced glutathionylation is implicated in the cell death pathway. GSSG is a functionally 

active byproduct of GSH metabolism that, under appropriate conditions, may trigger cell 

death. S-glutathionylation seems to be a mechanism that favors 12-lipoxygenase but not the 

classical caspase-3 dependent (47) death pathway.

The GSSG reductase inhibitor BCNU, clinically known as carmustine, is a proven 

chemotherapeutic agent (48). Cytotoxicity is a widely recognized side-effect of BCNU (49). 

Because BCNU treatment is associated with GSSG accumulation in cells (50), the 

significance of GSSG in BCNU-induced cytotoxicity is of interest. Observations of this 

study support that both GSSG as well as BCNU-induced cell death follow the same 12-

lipoxygenase dependent path suggesting the possibility that BCNU may cause cell death via 

GSSG. Affirmation of this hypothesis would warrant examining the significance of pro-

GSSG strategies for cancer therapy. Major forms of cancer therapy including radiation 

therapy as well as chemotherapy rely on oxygen-centered free radicals for their action. Thus, 

these interventions cause overt oxidative insult associated with elevated levels of cellular 

and tissue GSSG (51, 52). GSSG generated within the cell is pumped out of the cell perhaps 

to avert cytotoxicity caused by GSSG accumulation. Approaches to selectively block the 

GSSG efflux mechanisms in cancer cells might be useful for cancer therapy. Findings of this 

study support that BSO sensitizes cells to GSSG-induced death. Indeed, BSO has been 

founds to be an useful adjunct for both radiation (53) as well as chemotherapy (54). Also, 

inhibition of GSSG efflux by inhibition of MRP1 enhanced BCNU-induced cytoxicity 

suggesting that GSSG extrusion play a role in neural sensitivity to GSSG.

Three-fourth of all stroke in humans occur in distributions of the middle cerebral artery (55). 

Therefore, MCAO represents a common approach to study stroke in small as well as large 

animals (5, 56). Using a MCAO approach we were able to obtain just over 16% infarction of 

the ipsilateral hemisphere as assessed by MRI. Stroke caused 8-fold increased in GSSG 

levels in the affected brain tissue. This is consistent with the known incidence of oxidative 

stress in the stroke affected brain (57). Our observation that the stereotaxic injection of 

GSSG to the brain may cause lesion by a 12-lipoxygenase sensitive mechanism leads to 

question the significance of GSSG in numerous brain pathologies commonly associated with 

elevated levels of GSSG in the brain (58, 59).

Taken together, this work presents first evidence demonstrating that intracellular GSSG may 

trigger cell death. GSSG cytotoxicity is substantially enhanced under conditions of 

compromised cellular GSH levels as observed during a wide variety of disease conditions as 

well as aging (59, 60). BSO-assisted glutathione lowering approaches are known to be 

effective to facilitate both chemo- as well as radiation- therapies. Furthermore, BCNU-

dependent arrest of GSSG reductase activity leads to elevation of cellular GSSG and has 

chemotherapeutic functions. Findings of this study lead to question the significance of 

GSSG in such processes. From the standpoint of novel therapeutic approaches, strategies 

directed at improving or arresting cellular GSSG clearance may be effective in minimizing 

oxidative stress related tissue injury or potentiating the killing of tumor cells, respectively.
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Materials and Methods

Materials

The following materials were obtained from the source indicated. Ascorbic acid, arachidonic 

acid, L-glutamic acid monosodium salt, dimethyl sulfoxide, oxidized L-glutathione, reduced 

L-glutathione, 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU), L-buthionine-[S,R]-

sulfoximine (Sigma); α-tocotrienol (90%, Carotech Inc.); 12-lipoxygenase from porcine 

leukocytes, MK-571, 5,6,7-trihydroxyflavone (BL-15; baicalein; Biomol Research 

Laboratories); tetramethylrhodamine methyl ester (TMRM), Qdot® 605 ITK™ streptavidin 

conjugate kit 2μM solution, dextran alexa fluor® 488, anti-V5 antibody, calcein 

acetoxymethyl ester, PLUS™ Reagent, lipofectamine™ LTX Reagent (Invitrogen); 12-

lipoxygenase (murine leukocyte) polyclonal antiserum (Cayman chemical); anti-glutathione 

monoclonal antibody (ViroGen Corporation); V5 antibody affinity purified agarose 

immobilized conjugate (Bethyl Laboratories); goat anti-mouse glutaredoxin 1/GLRX1 

antibody (R&D systems, Inc); glutaredoxin 1, glutaredoxin 1 antibody (Abcam); membrane 

potential assay kit (Molecular Devices Corp.).

For cell culture, Dulbecco's modified Eagle medium, fetal calf serum, and penicillin and 

streptomycin were purchased from Invitrogen Corporation, Carlsbad, CA. Culture dishes 

were obtained from Nunc, Denmark.

Cell culture

Mouse hippocampal HT4 neural cells were grown in Dulbecco's modified Eagle's medium 

supplemented with 10% fetal calf serum, 100 units/ml penicillin, and 100 μg/ml 

streptomycin at 37°C in humidified atmosphere of 95% air and 5% CO2 as described 

previously (5–7). Glutamate treatment. Immediately before experiments, the culture 

medium was replaced with fresh medium supplemented with serum and antibiotics. 

Glutamate (10mM) was added to the medium as an aqueous solution. No change in the 

medium pH was observed in response to the addition of glutamate (5, 6). L-Buthionine-

sulfoximine(BSO) treatment. Before experiments, the culture medium was replaced as 

described above, and freshly prepared BSO (50μM) in sterile PBS was added to the medium 

as described in relevant legends. 1,3-Bis(2-chloroethyl)-1-nitrosourea(BCNU) treatment. 

Before experiment, the culture medium was replaced as described above, and BCNU 

(50μM) prepared in ethanol was added to the medium. Respective controls were treated with 

an equal volume of ethanol. α-Tocotrienol (TCT) and 5,6,7,-trihydroxyflavone (BL-15) 

treatment. A stock solution of TCT was prepared in ethanol, and BL-15 was prepared in 

dimethyl sulfoxide (DMSO). Before experiments, culture medium was replaced with fresh 

medium supplemented with serum and antibiotics, and TCT (1μM) or BL-15 (2.5μM) was 

added to the culture dishes as described in relevant legends.

Microinjection

The mouse hippocampal HT4 cells (0.1 × 106 / plate) were grown on 35mm plates 24h 

before microinjection. As previously described (5), microinjection was performed using a 

micromanipulator Femtojet B 5247 and Injectman NI 2 (Eppendorf, Hamburg, Germany) 

with 80 hPa of pressure and 0.2 s duration. The compensation pressure during injection was 

Park et al. Page 8

Cell Death Differ. Author manuscript; available in PMC 2010 November 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



40 hPa. The glass micropipettes were made from GD-1 glass capillaries (Narishige, Japan) 

by using a Narishige PC-10 Puller with heater set at 52.7°C. Cells were injected with GSSG, 

GSH, sham (PBS) or reagents described in the relevant legends, and live and dead cells were 

counted at 24h after microinjection. Stock solutions of GSSG and GSH were freshly 

prepared in sterile PBS, and co-injected with QDot streptavidin conjugate with the emission 

maximum near 605nm (Invitrogen). QDot streptavidin conjugate was used as a fluorescent 

marker to localize the injection site. Microinjection is likely to result in higher localized 

concentration of GSSG and GSH compared to the concentration estimated based on overall 

cell volume. The use of burst of pressure (80 hPa over 0.2s) during microinjection, however, 

helps distribute the injected substance in the cytosol as visualized by the cytosolic 

distribution of Qdot following microinjection. Digital images were collected using a 

specialized phase contrast as well as a fluorescent Zeiss Axiovert 200M microscope suited 

for imaging cells grown in routine culture plates. The sample stage was maintained at 37°C, 

and the sample gas environment was maintained exactly as in the culture incubator.

Reduced (GSH) and oxidized (GSSG) glutathione assay

GSH and GSSG were detected simultaneously in HT4 cells and mice brain tissues using an 

HPLC coulometric electrode array detector (CoulArray Detector, model 5600 with 12 

channels; ESA Inc., Chelmsford, MA, USA) as described in our laboratory previously (5, 

61). The CoulArray detector employs multiple channels set at specific redox potentials. Data 

were collected using channels set at 600, 700, and 800mV. The samples were snap-frozen 

and stored in liquid nitrogen until HPLC assay. Sample preparation, composition of the 

mobile phase, and specification of the column used were as previously reported (6, 61).

Measurement of mitochondrial membrane potential (Δψ)

Mitochondrial membrane Δψ was measured using the fluorescent lipophilic cationic dye 

tetramethylrhodamine methyl ester (TMRM), which accumulates within mitochondria in a 

potential dependent manner (62). Following 24h of seeding, HT4 cells were injected with 

500 attomole GSSG or sham (PBS). Dextran alexa fluor 488 was co-injected, and used as a 

fluorescent marker. After 2h incubation, cells were resuspended in Hanks' balanced salt 

solution and stained with 8nM TMRM and 0.5 μl/ml plasma membrane potential indicator 

(PMPI) for 30 min at 37°C in the dark. The cells were washed with PBS, and digital images 

of stained live cells were collected using a Zeiss Axiovert 200M microscope (5, 63, 64).

Cell viability

The viability of cells in culture was assessed by measuring leakage of lactate dehydrogenase 

(LDH) from cells into media 24h following glutamate treatment using an in vitro toxicology 

assay kit from Sigma Chemical Co. (St. Louis, MO, USA). The protocol has been described 

in detail in a previous report (65). In brief, LDH leakage was determined using the following 

equation : % total LDH leaked = (LDH activity in the cell culture medium / total LDH 

activity) × 100 (5). Total LDH activity represents the sum of LDH activities in the cell 

monolayer, detached cells, and the cell culture medium. Survival of HT4 cells was also 

quantified by using a calcein acetoxymethyl ester (AM) assay (10, 66, 67). Briefly, HT4 

cells (40,000/well) were seeded in 12-well plates. After 2h of incubation, cells were treated 
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with either 2.5 μM BL-15 or 1μM TCT. After 6h incubation, cells were treated with 50μM 

BCNU. Following 12h incubation, media was removed from each well, and 5μM calcein 

AM in sterile PBS was added. After incubation at 37°C for 1h, fluorescence was measured 

by using the fluorescence multiwell plate reader Cyto Fluor™ II (PerSeptive Biosystems) 

with the excitation wavelength at 485nm and the emission wavelength of 530nm.

Determination of 12-lipoxygenase activity

The in vitro activity of 12-Lox was assayed using a standard spectrophotometric method 

measuring the increase in the formation of conjugated dienes from the substrate arachidonic 

acid as described (68), with minor modifications as specified below. To ensure greater 

solubility of arachidonic acid and to minimize the use of ethanol in the assay medium, the 

potassium salt of arachidonic acid was freshly prepared by mixing arachidonic acid with 

0.1M KOH (1:1). The final assay mixture (total volume of 1ml) contained 10 μmol/L of 

arachidonic acid (10 μl from 1mmol/L stock) and 2 units of 12-Lox (porcine leukocyte 

enzyme) in 100 mmol/L Tris-HCl buffer (pH 7.4). The mixture was then gently mixed, 

reaction was started by adding the enzyme, and absorbance of the reaction mixture was 

measured at 234 nm (as an index of formation of conjugated dienes) using a Shimadzu 

model UV-2401PC spectrophotometer. The activity of 12-Lox was calculated from the 

absorbance values as n mole/min using the ε of 2.52 × 104 mol/L−1 and normalized as % 

control (5).

12-Lipoxygenase overexpression

This procedure was performed as described previously (5). Following 24h of seeding (0.5 × 

106 / well), HT4 cells were transfected with plasmid pcDNA3.1 + 12-Lox (ResGen; 

Invitrogen) or empty pcDNA 3.1 containing V5 epitope tag using Lipofectamine™ LTX 

Reagent (Invitrogen). Cells were maintained in regular culture conditions for 48h to allow 

for protein expression, and cells or cell lysates were treated as described in the respective 

figure legends.

Immunoprecipitation and immunoblots

HT4 cells (0.5 × 106 / well) were seeded in 6-well plates for immunoprecipitation as 

previously described (5). Cells were transfected with pcDNA3.1 + 12-Lox or empty pcDNA 

3.1 containing V5 epitope tag as described above. During harvest, the cells were washed 

with ice-cold phosphate-buffered saline (pH 7.4) and lysed with 0.2ml lysis buffer (Cell 

signaling Technology, Inc). Protein concentration was determined using the BCA protein 

assay kit (Pierce Biotechnology). Cells were treated as described in the respective figure 

legends, and then cell lysates (500μg) were incubated with 20μl immunoprecipitating 

antibody overnight at 4°C (V5 antibody affinity purified agarose immobilized conjugate, 

Bethyl Laboratories, Inc). Immunoprecipitated complexes were washed four times with lysis 

buffer (centrifugation at 1000 × g at 4°C for 5 minutes), and boiled for 30 min under non-

reducing conditions. Next, equal volumes of samples were loaded onto SDS-PAGE gel and 

probed with anti-V5 antibody (1: 5000 dilution, Invitrogen).
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GSSG-induced glutathionylation

HT4 cell lysates (20μg) or 12-lipoxygenase from porcine leukocytes (30μg) were incubated 

with 10mM GSSG or the same volume of PBS at 37°C. After 1h incubation, samples were 

either processed for immunoprecipitation or subjected to SDS-PAGE under non-reducing 

conditions. Samples were quickly centrifuged, resuspended with sample buffer lacking thiol 

reductant, and boiled for 30min. After quick centrifugation, samples were loaded to 10% 

SDS-PAGE, and transferred to PVDF. After transfer, membranes were blocked using 10% 

nonfat milk overnight at 4 °C, and incubated with anti-glutathione monoclonal antibody 

(1:500 dilution, ViroGen Corporation), or anti-12-lipoxygenase polyclonal antibody (1:1000 

dilution, Cayman chemical) for 2.5h. Membranes were washed three times. Next, blots were 

incubated with secondary antibody (1: 2000 dilution, Amersham anti-mouse IgG horseradish 

peroxidase linked whole antibody, GE Healthcare), or (1: 3000 dilution, Amersham anti-

rabbit IgG horseradish peroxidase linked whole antibody, GE Healthcare) for 1 h, and 

visualized by enhanced chemiluminescence Western blotting detection reagent (GE 

Healthcare).

Adenoviral expression of glutaredoxin 1

The mouse hippocampal HT4 cells (0.5 × 106 / well) were grown on 6-well plates for 24 h, 

and infected with specific multiplicities of infection (m.o.i. 100, 200, 500, 1000, and 2000) 

of adenoviral vector containing the GRx1 cDNA construct (Ad-GRx1, a gift from Dr. J.J. 

Mieyal, Case Western Reserve University, Cleveland, OH, U.S.A.) or ad-LacZ (control) in 

750 μl of serum-free DMEM for 4h. Cells were cultured for 72h in Dulbecco's modified 

Eagle's medium supplemented with 10% fetal calf serum, 100 units/ml penicillin, and 100 

μg/ml streptomycin. Transfected cells or cell lysates were treated as described in relevant 

figure legends. After protein extraction, protein concentrations were determined using BCA 

protein reagents. Samples (30μg / lane) were separated on 12% SDS-PAGE and probed with 

anti-glutaredoxin 1 (1:1000 dilution, R&D systems, Inc). To evaluate the loading efficiency, 

membranes were re-probed with anti-GAPDH.

Immunocytochemistry

HT4 cells (0.5 × 106 / well) were seeded in 35mm plates for 24h, and transfected with ad-

GRx1 as described above. Cells were washed with PBS three times and then fixed in 10% 

buffered formalin for 20 min. Next, the cells were washed three times with PBS followed by 

permeabilization using 0.1% Triton X-100/PBS for 15 min. The cells were washed three 

times with PBS and incubated with 10% goat serum (Vector Laboratories) for 1h at room 

temperature. Cells were then incubated with glutaredoxin-1 antibody (1:100, in 10% goat 

serum) overnight at 4°C. After incubation with primary antibody, cells were washed with 

PBS three times and incubated with an Alexa-flour rabbit (green) for 1h at room 

temperature. After three washes with PBS and incubation with 4',6'-diamino-2-phenylindole 

(1:10,000) for 2 min, cells were washed with PBS and mounted in gelmount (aqueous 

mount, Vector Laboratories) for microscopic imaging as described previously (5).
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Stereotaxic injection

12-Lox knockout (B6.129S2-Alox15tm/Fun) and corresponding background C57BL6/J mice 

were obtained from Jackson Laboratory. Young (8 to 10 week of age; 24–27g) male mice 

were anesthetized with isoflurane in oxygen-enriched air delivered through a facemask. The 

mouse was secured by ear bars, the skull was exposed, and injected with 5μl of GSSG stock 

(100 mM) in sterile PBS into the cortex using a Hamilton RN syringe with a stainless steel 

needle (Hamilton Company, Reno, Nevada). The location of injection site (coordinates: 

−0.5mm anterior, 3.5mm lateral, and 1.0mm ventral to bregma) was measured by 

Benchmark™ Stereotaxic Digital (myNeurolab.com, St.Louis, MO). To minimize pressure-

induced damage, GSSG was injected at a rate of 0.2 μl/min. All animal protocols were 

approved by the Institutional Laboratory Animal Care and Use Committee (ILACUC) of the 

Ohio State University, Columbus, Ohio.

Mouse stroke model

Transient focal cerebral ischemia was induced in mice described above by middle cerebral 

artery (MCA) occlusion. Occlusion of the right middle cerebral artery was achieved by 

using the intraluminal filament insertion technique as previously described (5, 69, 70). 

Briefly, a 6-0 nylon monofilament was inserted into the internal carotid artery, via the 

external carotid artery. Then the filament tip was positioned for occlusion at a distance of 

6mm beyond the internal carotid artery-pterygopalatine artery bifurcation. We observed that 

this approach results in a 60% to 70% drop in cerebral blood flow as measured by laser 

Doppler (DRT4, Moor Instruments). Once the filament was secured, the incision was 

sutured and the animal was allowed to recover from anesthesia in its home cage. After 90 

min of occlusion, the animal was briefly re-anesthetized, and reperfusion was initiated via 

withdrawal of the filament. This surgical protocol typically results in a core infarct limited to 

the parietal cerebral cortex and caudate putamen of the right hemisphere. After 24h of 

reperfusion, a T2-weighted image was taken to measure infarct volume, and left and right 

hemispheres were collected in liquid nitrogen for GSH and GSSG measurements.

Magnetic resonance imaging (MRI)

T2-weighted imaging was performed on stereotaxically-injected as well as stroke-affected 

mice. Imaging experiments were carried out in an 11.7T (500 MHz) MR system comprised 

of a vertical bore magnet (Bruker Biospin, Ettlingen, Germany) as described previously by 

our group (71). High-resolution magnetic resonance imaging was performed on mice brain. 

Mice were anesthetized by inhaled isoflurane via a nose cone. The mouse under MR scan 

was placed in a MR compatible animal holder with the proper respiratory sensor unit. The 

mouse was held with tape during contingent supply of a mixture of carboxin (95% air and 

5% carbon dioxide) and isoflurane through tubing. A 30 mm birdcage coil was used which 

surrounds the mouse brain. The animal was then placed inside the radio frequency coil 

(resonator) and finally the whole arrangement was placed inside the vertical magnet. A spin 

echo (SE) sequence was used to acquire T2-weighted MR images from the mouse head on 

the 11.7-T MRI system. A spin echo technique with rapid acquisition with relaxation 

enhancement (RARE) sequence providing 8 echo train length (ETL) was used with the 

following parameters: field of view (FOV) = 30×30 mm, acquisition matrix 256×256, 
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repetition time (TR) = 3000 ms, echo time (TE) = 30 ms, flip angle (FA) = 180 degrees, 

images in acquisition = 15, resolution = 8.533 pixels/mm, and number of averages 4. Shim 

currents were initialized by manual adjustments on all linear and higher order field 

inhomogeneities. After several localizer scans were completed, a T2-weighted spin echo 

RARE sequence was applied to generate 15 images corresponding to 15 short axis slices. 

Post image processing was done using ImageJ software (NIH). For stroke-volume 

calculation from 2D images, raw MRI images were first converted to digital imaging and 

communications in medicine (DICOM) format and read into ImageJ software. By 

delineating both the whole brain and injured part of the brain borders, whole brain area and 

injury area were calculated. The areas were summed from all short axis slices and the 

volumes were computed from the area of traced boarders by multiplying slice thickness. A 

percentage fraction of infarction to whole brain was determined from the volumes calculated 

as above.

Statistical analyses

Data are reported as mean ± S.D. of at least three experiments. Difference between two 

means was tested by Student t test. Comparisons between multiple groups were made by 

analysis of variance. p<0.05 was considered statistically significant.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations list

12-Lox 12-lipoxygenase

BCNU 1,3-bis(2-chloroethyl)-1-nitrosourea

BL-15 5,6,7,-trihydroxyflavone

BSO L-buthioninesulfoximine

GRx1 glutaredoxin-1

GSH reduced glutathione

GSSG glutathione disulfide

LDH lactate dehydrogenase

MCA middle cerebral artery

PMPI plasma membrane potential indicator

TCT α-tocotrienol

TMRM tetramethylrhodamine methyl ester
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Figure 1. Microinjected GSH failed to rescue, while GSSG potentiated glutamate-induced death 
of HT4 neural cells
PBS (A), 500 attomole GSH (B), or GSSG (C) was injected into the cytoplasm after 4h 

glutamate challenge. After 24h incubation, some (15–20%) HT4 cells injected with PBS (D) 

or GSH (E) remained alive, while all GSSG (F) injected cells were dead (G) suggesting 

GSSG toxicity. attomoles injected [micromolar]i, n=3, Bar, 20 μm. *, lower than control. 

Results are mean ± S.D. *, p < 0.05.
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Figure 2. Dose dependent GSSG toxicity
A, 500 attomole GSH or GSSG (0, 12.5, 25, 50, 250, and 500 attomoles) was microinjected 

into the cytoplasm of HT4 cells for 24h. B, GSSG (0, 1.25, 2.5, 5 and 25 attomoles) was 

injected into the cytoplasm of HT4 cells pre-treated with 50 μM BSO for 12h. Cellular 

GSSG/total glutathione (C) was increased, and absolute value of GSH (μmol/ mg protein) 

was decreased after 50 μM BSO treatment (D). attomoles injected [micromolar]i, n=3, 

Results are mean ± S.D. *, p < 0.05.
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Figure 3. Cytosolic injection of GSSG compromised mitochondrial membrane potential
HT4 cells were injected with either PBS (A, Dextran alexa fluor 488; B, 8nM TMRM; C, 

0.5 μl/ml PMPI; D, merged image) or 500 attomole GSSG (E, Dextran alexa fluor 488; F, 

8nM TMRM; G, 0.5 μl/ml PMPI; H, merged image). Dextran alexa fluor 488 was co-

injected to visualize injected cells. After 2h incubation, 8nM TMRM and 0.5 μl/ml PMPI 

were treated to cell culture medium. I, GSSG injected cells showed lower mitochondrial 

membrane potential (F) compared to sham injected cells (B) while plasma membrane 

potential was not affected (C and G). attomoles injected [micromolar]i, n=3, Bar, 30 μm. 

Results are mean ± S.D. *, p < 0.05.
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Figure 4. GSSG-induced cell death was attenuated by 12-lipoxygenase inhibitors
Cultured HT4 cells were injected with PBS (A), 500 attomole GSH (B), or 500 attomole 

GSSG (C to E). 2.5 μM BL-15 (D) and 1 μM TCT (E) were treated to culture medium prior 

to cytoplasmic injection with GSSG. After 24h incubation, cells injected with PBS (F) and 

GSH (G) were alive, while GSSG (H) injected cells were dead. Treatment of BL-15 (I) and 

TCT (J) protected neural cells against GSSG challenge (K). attomoles injected 

[micromolar]i, n=3, Bar, 20 μm. *, lower than control. †, higher than cells injected with 

GSSG. Results are mean ± S.D. *, p < 0.05.
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Figure 5. Arachidonic acid or 12-lipoxygenase induced cell death was attenuated by 12-
lipoxygenase inhibitors
Cultured HT4 cells were treated with 50 μM BSO for 12h (A to L), and either 0.15 attomole 

arachidonic acid (A, B, and C) or 5 ×10−8 units 12-Lox (D, E, and F) were injected (marked 

by arrow) into cytoplasm (A and D, without treatment; B and E, 2.5 μM BL-15 added to 

culture medium prior to microinjection; C and F, 1 μM TCT added to culture medium prior 

to microinjection). After 24h incubation, cells injected with arachidonic acid (G) lost cell 

viability, while BL-15 (H) or TCT (I) treated cells were protected, and cells injected with 

12-Lox (J) lost cell viability, while BL-15 (K) and TCT (L) treated cells were protected 

(M). attomoles injected [micromolar]i, n=3, Bar, 20 μm. *, lower than control, †, higher than 

cells without treatment of 12 Lox inhibitors. Results are mean ± S.D. *, p < 0.05.
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Figure 6. Bischloroethylnitrosourea induced cell death was attenuated by 12-lipoxygenase 
inhibitors
HT4 cells were treated with ethanol (A), 50 μM 1,3-Bis (2-chloroethyl)-1-nitrosourea; 

BCNU (B), 50 μM BCNU and 2.5 μM BL-15 (C), or 50 μM BCNU and 1 μM TCT (D). 

After 12h of BCNU treatment, live cells were visualized using calcein-AM (A–D); cell 

viability was also assayed using a calcein AM based cell viability kit (E). Cells treated with 

BL-15 or TCT were more resistant to BCNU-induced loss of cell viability. BCNU treatment 

increased cellular GSSG over time (F). G, MK571 (20μM) was added to HT4 cell culture 

medium for 6h prior to 50 μM BCNU treatment. After 12h of adding BCNU into cell culture 

medium, loss of cell viability was assessed by measuring leakage of lactate dehydrogenase 

(LDH). MK571 treated HT4 cells were more vulnerable to BCNU-induced loss of cell 

viability. n=3, Bar, 100 μm. *, lower than control, †, higher than BCNU-challenged HT4 

cells, §, higher than control. Results are mean ± S.D. *, p < 0.05.
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Figure 7. 12-Lipoxygenase activity and GSS-12-lipoxygenase formation in response to GSSG
A, The in vitro activity of 12-Lox was assayed by using a standard spectrophotometric 

method. The final assay mixture contained 10 μmol/L of arachidonic acid and 2 units of 12-

Lox. To determine the effects of GSSG, 10 μM GSSG or GSH were incubated with this 

mixture as shown. The absorbance of the reaction mixture was measured at 234 nm as an 

index of formation of conjugated dienes. GSSG increased 12-Lox activity by increasing 

conjugated diene (reaction product) formation. B, HT4 cell lysates (20μg) were incubated 

with GSSG (10 mM) for 1h and subjected to SDS-PAGE and immunoblotting for the 

detection of formation of protein-glutathione mixed disulfides (glutathionylation). Cells 

incubated with GSSG were rich in glutathionylated proteins. C, After transfection with 12-

Lox containing V5 epitope, HT4 cell lysates were incubated with 10mM GSSG for 1h and 

cell lysates (500μg) were subjected to immunoprecipitation (IP) with V5 antibody. IP were 

subjected to SDS-PAGE and immunoblotting for the detection of formation of protein-

glutathione mixed disulfides. Cell lysates incubated with GSSG increased the formation of 

GSS-12-Lox. D, Porcine leukocytes 12-Lox (30μg) was incubated with 10mM GSSG for 1h. 

Western blot was used for detection of GSS-12-Lox formation. 12-Lox incubated with 

GSSG increased formation of glutathionylation. n=3, Results are mean ± S.D. *, p < 0.05.
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Figure 8. Glutaredoxin-1 reversed glutathionylation in HT4 neural cells and protected cells 
against glutamate challenge
After 24h of seeding, HT4 cells were transfected with adenoviral vector containing the 

glutaredoxin 1 (ad-GRx1) cDNA construct with dose-dependent manner. (A, Western blot; 

B–C, immunocytochemistry, blue-DAPI stained nuclei; green-GRx1 protein; B, cells 

transfected with 2000 m.o.i ad-LacZ; C, cells tranfected with 2000 m.o.i ad-GRx1). D, after 

transfection with ad-LacZ or ad-GRx1 (2000 m.o.i), HT4 cell lysates (30μg) were subjected 

to SDS-PAGE and immunoblotting for the detection of formation of glutathionylation. HT4 

cells transfected with ad-GRx1 expressed lower formation of glutathionylation; E, HT4 cells 

were transfected ad-LacZ or ad-GRx1. After 72h of transfection, cells were re-split and 

incubated for 24h. Cells were challenged with or without 10mM glutamate for 24h, and 

viability of HT4 cells were assessed by measuring leakage of lactate dehydrogenase (LDH). 

Cells overexpressing GRx1 were more resistant to glutamate-induced loss of cell viability. 

F, After transfection with 12-Lox containing V5 epitope, HT4 cells were challenged with 

10mM glutamate for 8h. Cell lysates (500μg) were subjected to IP with V5 antibody. IP 

were subjected to SDS-PAGE and immunoblotting for the detection of formation of 

glutathionylation. Cells treated with glutamate expressed higher formation of GSS-12-Lox. 

However, in GRx1 transfected cells glutamate-induced 12-Lox glutathionylation was 

blunted. n=3, Bar, 50 μm. *, higher than control, †, lower than glutamate-challenged LacZ. 

Results are mean ± S.D. *, p < 0.05.
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Figure 9. Glutaredoxin-1 microinjection protected HT4 neural cells against GSSG as well as 
arachidonic acid challenge
Cultured HT4 cells were either injected 500 attomole GSSG (A and B) or 0.15 attomole 

arachidonic acid (C and D), and co-injected with 2 attomole glutaredoxin-1 (B and D). After 

24h incubation, cells injected with GSSG (E) lost cell viability, while glutaredoxin-1 co-

injected cells (F) were significantly protected. Cells injected with arachidonic acid (G) lost 

cell viability, while glutaredoxin 1 co-injected cells (H) were protected (I). attomoles 

injected [micromolar]i, n=3, Bar, 20 μm. Results are mean ± S.D. *, p < 0.05.
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Figure 10. 12-Lipoxygenase-deficient mice were resistant to GSSG-induced brain damage
Transient focal cerebral ischemia was induced in 8 to 10 week old C57BL6/J mice (n=3) by 

middle cerebral artery occlusion for 90 min. A, Brain infarction was detected by T2-

weighted MRI images at 24h after reperfusion. B, MRI images were used to determine 

infarct size as a percentage of the hemispherical infract volume. C, HPLC coulometric 

electrode array detector was used to detect GSSG and GSH level in the infarcted tissue, and 

stroke-induced injured hemisphere contained elevated level of GSSG. GSSG was injected to 

the brain cortex of C57BL6/J (control, n=3) or 12-Lox knock-out (12-Lox–/–, n=3) mice. 

Two days after injection, T2-weighted MRI images were collected. WT mice injected with 

GSSG (D) had clear lesion in the brain while 12-Lox deficient mice (E) were significantly 

resistant to GSSG-induced brain injury (F). Solid arrows represent damage caused by 

GSSG. Results are mean ± S.D. *, p < 0.05.
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