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Summary

 

Neuroplasticity is characterized by growth and branching
of dendrites, remodeling of synaptic contacts, and neuro-
genesis, thus allowing the brain to adapt to changes over
time. It is maintained in adulthood but strongly repressed
during aging. An age-related decline in neurogenesis is
particularly pronounced in the two adult neurogenic
areas, the subventricular zone and the dentate gyrus. This
age-related decline seems to be attributable mainly to
limited proliferation, associated with an age-dependent
increase in quiescence and/or a lengthening of the cell
cycle, and is closely dependent on environmental changes.
Indeed, when triggered by appropriate signals, neuro-
genesis can be reactivated in senescent brains, thus
confirming the idea that the age-related decrease in new
neuron production is not an irreversible, cell-intrinsic
process. The coevolution of neurogenesis and age-related
memory deficits – especially regarding spatial memory –
during senescence supports the idea that new neurons in
the adult brain participate in memory processing, and
that a reduction in the ability to generate new neurons
contributes to the appearance of memory deficits with
advanced age. Furthermore, the age-related changes in
hippocampal plasticity and function are under environ-
mental influences that can favor successful or pathological
aging. A better understanding of the mechanisms that
regulate neurogenesis is necessary to develop new
therapeutic tools to cure or prevent the development of
memory disorders that may appear during the course of
aging in some individuals.

Key words: aging; hippocampus; memory; neurogenesis;
neuroplasticity; spatial learning.

 

Introduction

 

The vast majority of cells in the adult central nervous system

(CNS) are generated during the embryonic and early postnatal

period. However, it is now well accepted that new neurons are

continuously added in specific regions of the mammalian brain

throughout adulthood. In rodents, monkeys, and humans, neuro-

genesis has been described within the hippocampal formation

(HF) in the subgranular layer (SGL) of the dentate gyrus (DG),

and in the subventricular zone (SVZ) (Gross, 2000; Abrous 

 

et

 

 

 

al

 

.,

2005; Ming & Song, 2005; Christie & Cameron, 2006; Lledo

 

et

 

 

 

al

 

., 2006; Scharfman & Hen, 2007) (Fig. 1).

The process of neurogenesis in the young adult brain can be

divided into a series of distinct developmental steps, which can be

examined separately and include the proliferation of precursor

cells, the survival of newly born cells, the migration of these

cells, and, finally, their differentiation into mature functional

neurons. Precursor cells can be either 

 

stem cells

 

, characterized

by a slow-dividing cell cycle, long-term self-renewal potential,

and multipotentiality, or 

 

progenitors

 

, which exhibit a higher

dividing rate of turnover and reduced self-renewal abilities.

Progenitors are more differentiated than stem cells, and their

multipotentiality is still a matter of debate.

In the DG, new neurons originate from cells located in the

SGL at the border of the granule cell layer (GCL) facing hilus.

These cells are slowly proliferating astrocytes [identified on the

basis of their expression of glial fibrillary acidic protein (GFAP)

and their ultrastructural properties], presumably radial glia

(Garcia 

 

et

 

 

 

al

 

., 2004b; Seri 

 

et

 

 

 

al

 

., 2004). However, their stem cell

nature is still a matter of debate as 

 

in vitro

 

 studies have shown

that cells isolated specifically from the DG have only limited

self-renewal abilities and are restricted to the neuronal lineage

(Seaberg & van der Kooy, 2002). This lack of stem cell properties

may be caused by the experimental 

 

in vitro

 

 conditions, yet we

will refer to these cells as ‘stem-like’ cells rather than stem cells.

The SGL-dividing astrocytes generate immature, GFAP-negative,

intermediate-amplifying precursors that in turn divide. Their

daughter cells migrate a short distance into the GCL. A significant

fraction of the newly generated neuronal cells undergo pro-

grammed cell death (Gould 

 

et

 

 

 

al

 

., 1999; Sun 

 

et

 

 

 

al

 

., 2004; Dupret

 

et

 

 

 

al

 

., 2007), while the surviving cells successfully differentiate,

mostly into hippocampal granule cells, extending axons into the

CA3 region (Stanfield & Trice, 1988; Hastings & Gould, 1999;
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Markakis & Gage, 1999; van Praag 

 

et

 

 

 

al

 

., 2002) and becoming

functionally integrated in the hippocampal circuitry (Hastings &

Gould, 1999; Carlen 

 

et

 

 

 

al

 

., 2002; van Praag 

 

et

 

 

 

al

 

., 2002; Jessberger

& Kempermann, 2003; Kee 

 

et

 

 

 

al

 

., 2007; Toni 

 

et

 

 

 

al

 

., 2007).

In the SVZ, GFAP cells have been identified as stem cells (Doetsch

 

et

 

 

 

al

 

., 1999a). They divide slowly to generate rapidly dividing

transit amplifying cells, which in turn give rise to neuroblasts.

These neuronal precursors born in the SVZ migrate tangentially

along the rostral extension of the SVZ toward the olfactory bulb

(OB), constituting the rostral migratory stream (RMS). As in the

DG, a high proportion of the cells generated in the SVZ die after

birth (Petreanu & Alvarez-Buylla, 2002; Winner 

 

et

 

 

 

al

 

., 2002). After

reaching the core of the OB, surviving cells move radially into

the granular and periglomerular layers where they differentiate

into functional interneurons (Luskin, 1993; Lois & Alvarez-Buylla,

1994; Carlen 

 

et

 

 

 

al

 

., 2002; Huang & Bittman, 2002; Magavi 

 

et

 

 

 

al

 

.,

2005).

Although the adult brain retains remarkable plastic capabilities,

aging is classically associated with a decline in several forms of

neuronal plasticity. Indeed, the ability of neurons to modify their

connectivity by changing their number and spine shape in

response to various environmental (e.g. brain damage) and

physiological stimuli is less robust in the senescent brain (see, for

review, Petit & Ivy, 1988; Burke & Barnes, 2006). In this context,

it is logical that neurogenesis, which continues throughout life,

decreases in both of the neurogenic areas with increasing age.

Even if the functional significance of this ongoing adult neuro-

genesis is not fully understood, evidence has been provided that

newly produced neurons play an important role in functions

associated with the neurogenic areas. Adult neurogenesis has

been shown to be involved in several brain functions (e.g. memory

and emotion) and pathologies (e.g. depression and addiction)

(Abrous 

 

et

 

 

 

al

 

., 2005). Here, we will focus mainly on neurogenesis

and memory. Indeed, the functional consequences of the age-

related decline in neurogenesis have been examined only in rela-

tion to this function, known to be altered in the course of aging

(Stevens & Cain, 1987; Grady & Craik, 2000; Hulshoff Pol 

 

et

 

 

 

al

 

.,

2000; Kaneda 

 

et

 

 

 

al

 

., 2000). Briefly, in young subjects, an increasing

number of studies have correlated changes in the rate of dentate

neurogenesis with spatial memory ability, and changes in adult-

born olfactory neurons to olfactory memory (Leuner 

 

et

 

 

 

al

 

., 2006;

Lledo 

 

et

 

 

 

al

 

., 2006; Abrous & Wojtowicz, 2008). Based on these

observations, it has been hypothesized that the age-related

decline in neurogenesis, together with a decline in other type of

structural and synaptic plasticity, may contribute to the normal

physiological reduction in memory function associated with aging.

Consequently, in this review, we propose an overview of the

current knowledge about the evolution of adult neurogenesis

Fig. 1 The main neurogenic areas of the adult brain. Adult neurogenesis has been described in the subventricular (SVZ)/olfactory bulb (OB) and in the hippocampal 
system. Representations of the different stages of adult neurogenesis that may be affected by aging; glial fibrillary acidic protein-positive astrocytes (green) 
have been identified as in vivo stem cells in the SVZ and stem-like cells in the dentate gyrus (DG). They divide slowly to give rise to transit amplifying progenitors 
(blue), which in turn generate immature cells (red) able to differentiate either into neurons (orange) or glial cells (yellow). A significant fraction of the newborn cells 
die during the maturation process (dotted cells). RMS, rostral migratory stream; LV, lateral ventricle; St, striatum; GCL, granule cell layer; SGL, subgranular layer.
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during aging and its functional consequences. We will first

describe the changes in neurogenesis observed during aging

and then focus on ‘intrinsic’ and extracellular mechanisms (i.e.

the changes in the environmental niche for neurogenesis) that

can explain the observed age-related modifications of neuronal

production. Finally, we will focus on the relationship between the

age-related decline in neurogenesis and age-dependent memory

impairments, and discuss the possible role of decreased neuro-

genesis in the memory decline reported in some senescent subjects.

 

Neurogenesis in the aging brain

 

Multiple reports demonstrate that the production of new

neurons in neurogenic brain regions declines dramatically with age.

However, in most of these studies, neurogenesis was measured

by labeling the newborn cells with a thymidine analogue such

as bromodeoxyuridine (BrdU) or by expression of markers for

proliferation and immature cells. Various BrdU dosages, injection

frequencies, and survival times have been used, yielding different

results concerning fate or numbers of newborn cells, and

making it difficult to compare these studies in terms of absolute

numbers. Moreover, the basal level of neurogenesis, the onset

of its age-related down-regulation, and ‘how old is old’ vary

significantly among species, strains (and median lifespan), sex, and

experimental conditions. Consequently, all of these variables could

explain the discrepancies between experiments that we will report.

In the following section, we will review the effect of aging

on the different steps leading to the production of new neurons.

Neurogenesis in the adult brain can be divided into three phases

in accordance with the sequence of neurogenesis during

development: (i) proliferation, when new cells are generated;

(ii) survival of a portion of these new cells and their migration

toward target areas; and (iii) terminal differentiation into a

neuronal or glial phenotype. Substantial changes in some or all

of the above events may underlie the reduction in hippocampal

neurogenesis during aging (Fig. 2). The aging process could

either deplete the number of precursors or alter their mitotic

activity; both would ultimately lead to a reduction in the actual

number of newly born cells. Additionally, the newborn cells

could die before they differentiate into granule neurons or

toward another cell phenotype.

 

In the DG

 

The time course of 

 

cell proliferation

 

 has been extensively studied

in rodents (see Table 1) using injected proliferation markers such

as BrdU and tritiated thymidine associated with short survival

periods (usually 24 h after the injection as this is sufficient for

a newborn cell to complete at least one cell cycle) to label

proliferating cells and their progeny. Alternatively, cell proliferation

may be studied using intrinsic proliferation markers such as Ki67,

proliferating cell nuclear antigen (CNA), the phosphorylated

histone 3 (HH3), and the minichromosome maintenance deficient

2 mitotin (MCM-2) (Maslov 

 

et

 

 

 

al

 

., 2004) that are transiently

Fig. 2 Different stages of adult neurogenesis and 
their potential modifications during aging. 
Neurogenesis in young adult (a) and aged 
(b–e) brain. The decline of neurogenesis observed 
during aging can be the consequence of: 
(b) a decrease of the number of precursors; 
(c) a reduction in the proliferative activity of the 
precursors as a consequence either of a lengthening 
of the cell cycle or an increase in their quiescence; 
(d) a decrease of the proportion of newly generated 
cells surviving after the first weeks of maturation; 
(e) a differentiation biased toward a glial 
phenotype. It is likely that a combination of all of 
these mechanisms is involved in the aging of 
neurogenic areas.
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expressed by cycling cells. All are considered to be reliable

markers to assay the proliferative activity of precursors (Kee 

 

et

 

 

 

al

 

.,

2002; Wojtowicz & Kee, 2006; Taupin, 2007). In the rat DG, cell

proliferation reaches a peak during the second postnatal week

(Schlessinger 

 

et

 

 

 

al

 

., 1975), and then declines dramatically with

increasing age. In a pseudo-longitudinal study, cell proliferation

was reported to decrease by 80% from adolescence (28 days)

to adulthood (3 months), by 70% from adulthood to middle

age (12 months) and by 60% from middle age to senescence

(22 months) (Lemaire 

 

et

 

 

 

al

 

., 2000). Although many studies

found an overall age-related decline in cell proliferation (Kuhn

 

et

 

 

 

al

 

., 1996; Kempermann 

 

et

 

 

 

al

 

., 1998b; Cameron & McKay,

1999; Lemaire 

 

et

 

 

 

al

 

., 2006; Molofsky 

 

et

 

 

 

al

 

., 2006), the existence

of a decline between middle age and senescence is still a matter

of debate because some studies reported a significant effect

(Bizon & Gallagher, 2003; Bondolfi 

 

et

 

 

 

al

 

., 2004; Rao 

 

et

 

 

 

al

 

.,

2006) while others did not (Seki & Arai, 1995; Lichtenwalner

 

et

 

 

 

al

 

., 2001; Nacher 

 

et

 

 

 

al

 

., 2003; Heine 

 

et

 

 

 

al

 

., 2004a; Rao 

 

et

 

 

 

al

 

.,

2005; Driscoll 

 

et

 

 

 

al

 

., 2006; Kronenberg 

 

et

 

 

 

al

 

., 2006). Notably,

BrdU-labeled precursors appeared to be lost equally at rostral

and caudal levels, as well as in suprapyramidal and infrapyram-

idal blades of the GCL (Olariu 

 

et

 

 

 

al

 

., 2007). In contrast, cell

proliferation in the hilus was not at all (Kuhn 

 

et

 

 

 

al

 

., 1996) or

only slightly (Lichtenwalner 

 

et

 

 

 

al

 

., 2001) affected by aging,

making the age-related decrease in proliferation specific to

the GCL.

Despite a drastic drop in proliferation, the short-term 

 

survival

 

pattern of the newborn cells, that is, the proportion of cells that

Table 1 Influence of aging on cell proliferation within the subventricular zone (SVZ) and the dentate gyrus (DG)

Proliferation

Reference Species Strains Sex Ages Area Results

(Bizon & Gallagher, 2003) Rat Long-Evans Male 7, 13, 25 months DG #BrdU cells: 7 m > 13 m > 25 m

(Bondolfi et al., 2004) Mouse C57BL/6 Male 2, 12, 18 months DG #BrdU cells: 2 m > 12 m > 18 m

(Brunson et al., 2005) Rat SD Male 3 and 12 months DG #BrdU cells: 3 m > 12 m

(Cameron & McKay, 1999) Rat SD ? 5 and 26 months DG #BrdU cells: 5 m > 25 m

(Cuppini et al., 2006) Rat SD Male 2, 5, 12 months DG #BrdU cells: 2 m > 5 m > 12 m

(Driscoll et al., 2006) Rat FBNF1 Female 3, 12, 24 months DG #Ki67 cells: 3 m > 12 m = 24 m

(Enwere et al., 2004) Mouse C57BL/6 Male 2 and 24 months SVZ #BrdU, Ki67, Mash cells: 2 m > 24 m

RMS #BrdU cells: 2 m > 24 m

(Gould et al., 1998) Macaque M. mulatta 

and fascicularis

Male and female 5, 7–16, 23 years DG #BrdU cells: 5y > 7–16y > 23y

(Hattiangady & Shetty, 2008) Rat F344 Male 4, 12, 24 months DG %Sox 2/BrdU cells: 15 > 2.5 > 1

%Sox 2/Ki67 cells: 25 > 8 > 4

(Heine et al., 2004a) Rat Wistar Male 2 weeks, 6 weeks, 

12, 24 months

DG #BrdU cells: 2w > 6w > 12 m = 24 m

(Kempermann et al., 1998b) Mouse C57BL/6 Female 6 and 18 months DG #BrdU cells: 6 m > 18 m

(Kim et al., 2004) Rat SD Male 1, 2, 14 months DG #BrdU cells: 1 m > 2 m > 14 m

(Kronenberg et al., 2006) Mouse C57BL/6 Male 1.5, 9, 12, 24 months DG #BrdU cells: 1.5 m > 9 m > 12 m = 24 m

(Kuhn et al., 1996) Rat F344 Female 6 and 21 months DG #BrdU cells: 6 m > 21 m

SVZ #BrdU cells: 6 m = 21 m

(Lemaire et al., 2000) Rat SD Male 1, 3, 10, 22 months DG #BrdU cells: 1 m > 3 m > 10 m > 22 m

(Lemaire et al., 2006) Rat Wistar Male 4 and 26 months DG #BrdU cells: 4 m > 26 m

#Ki67 cells: 4 m > 26 m

(Lichtenwalner et al., 2001) Rat BNxF344 Male 5, 18, 28 months DG #BrdU cells: 5 m > 18 m = 28 m

(Luo et al., 2006) Mouse ? ? 2, 10, 22 months SVZ #BrdU cells: 2 > 22

(Maslov et al., 2004) Mouse C57BL/6 Male 4 and 26 months SVZ #BrdU cells: 4 m > 26 m

(McDonald & Wojtowicz, 2005) Rat SD Male 1 and 12 months DG #BrdU cells: 1 m > 12 m

(Molofsky et al., 2006) Mouse C57BL/6 Male 2 and 24 months SVZ #BrdU cells: 2 m > 24 m

(Nacher et al., 2003) Rat F344 Female 3, 10, 20 months DG #BrdU cells: 3 m > 10 m = 20 m

(Olariu et al., 2007) Rat SD Male 2.5 and 10 months DG #BrdU cells: 2.5 > 10 m

#PCNA cells: 2.5 > 10 m

(Rao et al., 2005) Rat F344 Male 4, 12, 24 months DG #BrdU cells: 4 m > 12 m = 24 m

(Rao et al., 2006) Rat F344 Male 4, 12, 24 months DG #BrdU cells: 4 m > 12 m = 24 m

#Ki67 cells: 4 m > 12 m > 24 m

(Seki & Arai, 1995) Rat Wistar Male 1, 2, 4, 6, 12, 

18 months

DG #BrdU cells: 

1 m > 2 m > 2 m > 4 m > 6 m 

> 12 m = 18 m

(Simon et al., 2005) Tree shrew 3–10, 11–20, 

21–30 months

DG #BrdU cells: 3–10 m > 11–20 m 

> 21–30 m

(Tanaka et al., 2007) Mouse ICR Males 2 and 9 months DG #Ki67 cells: 2 m > 9 m

SVZ #Ki67 cells: 2 m > 9 m

(Tropepe et al., 1997) Mouse SW/COBS Males 2–4 and 23–25 months SVZ #BrdU cells: 2–4 m > 23–25 m
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do not die shortly after their birth, seems to be unaffected by

aging (see Table 2). A time course study comparing juvenile

(38 days) and middle-aged rats (12 months old) has shown a

significant peak in the number of BrdU-labeled cells observed

7 days after the injection, independent of the animal’s age

(McDonald & Wojtowicz, 2005). Following this peak, the

number of BrdU-labeled cells rapidly starts to decrease with

time. By comparing the ratio between the number of BrdU-

positive cells just after BrdU injection and the number of

BrdU-labeled cells surviving a few weeks after the injection,

several studies have revealed that there is no effect of age on

the rate of survival of newborn progeny (Kempermann et al.,
1998b; Lichtenwalner et al., 2001; Bondolfi et al., 2004;

McDonald & Wojtowicz, 2005; Rao et al., 2006). Even 5 months

after their birth, the survival of adult-born neurons is independent

of the age of the animals (Rao et al., 2005).

In addition to changes in proliferation, the capacity of the

newly born cells to migrate radially from their birthplace in the

SGL toward the GCL also slows down with increasing age (Heine

et al., 2004a; Rao et al., 2005). In fact, in aged animals, only a

small fraction of the newly born cells is able to migrate to the

GCL within 4 weeks (Heine et al., 2004a). However, 5 months

Table 2 Influence of aging on the newborn cell survival and differentiation within the subventricular zone (SVZ) and the dentate gyrus (DG) 

Reference Species Strains Sex Ages Delay Area Results

Survival of newly generated cells
(Bizon et al., 2004) Rat Long-Evans Male 7 and 25 months 3 weeks DG #BrdU cells:7 m > 25 m

(Bondolfi et al., 2004) Mouse C57BL/6 Male 2, 12, 18, 24 months 4 weeks DG #BrdU cells: 2 m > 12 m > 18 m = 24 m

Survival rate: 2 m = 12 m = 18 m = 24 m

(Cuppini et al., 2006) Rat SD Male 2, 5, 12 months 15 days DG #BrdU cells: 2 m > 5 m > 12 m

(Jin et al., 2003a) Mouse CD1 Male 3 and 20 months 1 week DG #BrdU cells: 3 m > 20 m

SVZ #BrdU cells: 3 m > 20 m

(Heine et al., 2004a) Rat Wistar Male 6 weeks, 12, 24 months 4 weeks DG #BrdU cells: 6w > 12 m = 24 m

(Kempermann et al., 1998b) Mouse C57BL/6 Female 6 and 18 months 4 weeks DG #BrdU cells: 6 m > 18 m

Survival rate: 6 m = 18 m

(Kuhn et al., 1996) Rat F344 Female 6, 12, 27 months 4 weeks DG #BrdU cells: 6 m > 12 m = 27 m

(Lichtenwalner et al., 2001) Rat BNxF344 Male 5, 18, 28 months 4 weeks DG #BrdU cells: 5 m > 18 m = 28 m

Survival rate: 5 m = 18 m = 28 m

(McDonald & Wojtowicz, 2005) Rat SD Male 1 and 12 months 60 days DG #BrdU cells: 1 m > 12 m

Survival rate: 1 m = 12 m

(Merrill et al., 2003) Rat F344 Female 2 and 21 months 10 days DG #BrdU cells: 2 m > 21 m

(Rao et al., 2005) Rat F344 Male 4, 12, 24 months 5 months DG Survival rate: 4 m = 10 m = 24 m

(Rao et al., 2006) Rat F344 Male 4, 12, 24 months 10 days #BrdU cells: 4 m > 12 m = 24 m

(Segovia et al., 2006) Rat Wistar Male 2 and 25 months 6 weeks DG #BrdU cells: 2 > 25 m

(Tropepe et al., 1997) Mouse SW/COBS Male 2–4 & 23–25 months 31 days OB #BrdU cells: 2–4 m > 23–25 m

(van Praag et al., 2005) Mouse C57BL/6 Male 3 and 19 months 35 days DG #BrdU cells: 3 m > 19 m

(Wati et al., 2006) Rat SD Male 3–4 and 28 months 1 week DG #BrdU cells: 3–4 m > 28 m

Phenotype of newly generated cells
(Bizon et al., 2004) Rat Long-Evans Male 7 and 25 months 3 weeks DG %BrdU/NeuN: 83 > 67

%BrdU/GFAP: 0/5

(Bondolfi et al., 2004) Mouse C57BL/6 Male 2, 12, 18, 24 months 4 weeks DG %BrdU/NeuN: 68 > 39 = 33 = 30

%BrdU/S100: 9/15/21/20

(Driscoll et al., 2006) Rat FBNF1 Female 3, 12, 24 months 5 weeks DG %BrdU/NeuN cells: 3 m > 12 m > 24 m

(Enwere et al., 2004) Mouse C57BL/6 Male 2 and 24 months 4 weeks OB %BrdU/TH: 2 m > 24 m

%BrdU/calretin: 2 m > 24 m

(Heine et al., 2004a) Rat Wistar Male 12 and 24 months 4 weeks DG %BrdU/NeuN: 12 m > 24 m

(Kempermann et al., 1998b) Mouse C57BL/6 Female 6 and 18 months 4 weeks DG %BrdU/NeuN: 6 m > 18 m

%BrdU/S100 : 6 m < 18 m

(Lichtenwalner et al., 2001) Rat BNxF344 Male 5, 18, 28 months 4 weeks DG %BrdU/NeuN: 5 m > 18 m = 28 m

(McDonald & Wojtowicz, 2005) Rat SD Male 1 and 12 months 3, 7, 8, 14, 

21, 60 days

DG %BrdU/DCX: 1 m > 12 m

%BrdU/CaBP: 1 m > 12 m

(Molofsky et al., 2006) Mouse C57BL/6 Male 2 and 24 months 4 weeks OB %of NeuN/BrdU: 2 m > 24 m

(Nacher et al., 2003) Rat F344 Female 3, 10, 20 months 3 weeks DG %BrdU/rCRMP4: 3 m > 10 m > 20 m

(Rao et al., 2005) Rats F344 Male 4, 12, 24 months 10 days DG %BrdU/DCX: 4 m = 12 m = 24 m

5 months %BrdU/DCX: 4 m = 12 m = 24 m

%BrdU/NeuN: 4 m = 12 m = 24 m

(van Praag et al., 2005) Mouse C57BL/6 Male 3 and 19 months 35 days DG %BrdU/NeuN: 3 > 19 m

%BrdU/S100b: 3 m < 19 m

The column ‘Delay’ refers to the interval between the labeling of newly generated cells by BrdU injections and the sacrifice of the animals. 
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after their birth, the position of newly born cells within the GCL

of aged subjects is similar to that of their young counterparts

(Rao et al., 2005). This delayed migration may be because of an

age-related decline in the expression of a highly polysialylated

neural cell adhesion molecule, which is associated with the

migration and maturation of immature precursor cells (Seki &

Arai, 1995; Ni Dhuill et al., 1999).

The phenotype of 2-week-old to 6-week-old newborn cells

is determined by double labeling of BrdU-labeled cells with

immature neuronal markers (e.g. doublecortin), mature neuronal

markers (e.g. calbindin or neuron-specific nuclear protein,

NeuN), or glial markers (e.g. GFAP, see Table 2). Most studies

have shown a strong reduction in the differentiation into

neuronal phenotypes in aging subjects (Kempermann et al.,

Table 3 Aging of the neurogenic microenvironment and its effects on neurogenesis

Evolution with aging Effect on neurogenesis in aged brain

Corticosteroids Increase basal level 

Prolonged stress-induced 

secretion 

Increased expression of GR by 

precursors 

Expression of MR by precursors

(Sapolsky, 1992) Acute ADX: increase of cell proliferation 

in the DG

(Cameron & McKay, 1999) 

(Garcia et al., 2004a)

Long-term ADX: increase of cell 

proliferation in the DG

Inverse correlation between adrenal 

glands’ weight and proliferation or 

number of new neurons in the DG

(Montaron et al., 1999) 

(Montaron et al., 2006) 

(Montaron et al., 2006)

Neurosteroids Acute Preg-S icv infusion: increase of cell 

proliferation in the DG

(Mayo et al., 2003)

Glutamate NMDA-R antagonist ip injection: increase 

of the number of radial glia-like cells, 

proliferating cells and new neurons in the 

DG

(Nacher et al., 2003)

EGF signaling Decrease of EGF-R expression in 

the SVZ (non-studied in DG)

(Enwere et al., 2004) HB-EGF icv infusion: (3 days): increase of 

cell proliferation in the DG and the SVZ

(Jin et al., 2003a) 

(Enwere et al., 2004)

Decrease of TGFα expression in 

the SVZ (non-studied in DG)

EGF icv infusion (3 days): increase of cell 

proliferation in the SVZ

IGF-I Decrease of IGF-I concentration 

Decrease of IGF-I receptor 

expression

(Sonntag et al., 1997) 

(Sonntag et al., 1999) 

(Lai et al., 2000) 

(Shetty et al., 2005)

IGF-I icv infusion (14 days): increase of 

cell proliferation in the DG

(Lichtenwalner et al., 

2001)

FGF-2 Decrease of hippocampal 

concentration of FGF-2 

Decrease of FGFR-2 in the DG, the 

SVZ, the RMS, and the OB

(Shetty et al., 2005)

 

(Chadashvili & 

Peterson, 2006)

FGF-2 icv infusion (3 days): strong 

increase of cell proliferation in the aged 

DG and the SVZ

(Jin et al., 2003a) 

FGF-2 icv infusion (2 weeks): increase of 

both cell proliferation and dendritic 

growth in middle-aged DG

(Rai et al., 2007)

Vasculature and VEGF Decrease of cerebral 

microvasculature (especially 

marked in DG)

(Riddle et al., 2003) 

(Hattiangady & 

Shetty, 2008) 

?

Decrease of microvascular 

plasticity

(Sonntag et al., 1997) 

Increase of the distance between 

precursors and blood vessels

Reduced VEGF synthesis

(Shetty et al., 2005) 

(Hattiangady & 

Shetty, 2008)

Cell cycle regulators Increase of p16INK4a expression 

(undetectable in young animals)

(Molofsky et al., 

2006)

Bmi-1 KO mice′: premature senescence 

of NSC and decrease of proliferation in 

SVZ, the phenotype is rescued by p16INK4a 

or p19Arf deletion

(Molofsky et al., 2005) 

(Bruggeman et al., 2005) 

P16INK4a KO mice: proliferation is 

increased in SVZ but not DG of aged mice

(Molofsky et al., 2006)

DG, dentate gyrus; EGF, epidermal growth factor; FGF, fibroblast growth factor; IGF-I, insulin-like growth factor-I; icv, intracerebroventricular; OB, olfactory 

bulb; Preg-S, pregnenolone sulfate; RMS, rostral migratory stream; SVZ, subventricular zone; VEGF, vascular endothelial growth factor.
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1998b; Lichtenwalner et al., 2001; Nacher et al., 2003; Bizon

et al., 2004; Bondolfi et al., 2004; Heine et al., 2004a; McDonald

& Wojtowicz, 2005; Driscoll et al., 2006; Molofsky et al., 2006).

In the most drastic case reported, almost 70% of newly born

cells differentiated into neurons (Bizon et al., 2004). However,

some groups were not able to reproduce these results and have

reported only small (McDonald & Wojtowicz, 2005) or undetect-

able changes in the proportion of new cells differentiating into

neurons (Rao et al., 2006). These discrepancies are likely

because of the fact that either the animals were significantly

younger or the survival period between BrdU injection and

animal perfusion was different. In some studies, an increase in

astrocytic differentiation was also observed in aged animals

(Bizon et al., 2004; Bondolfi et al., 2004).

Additionally, analysis of dendritic growth in 12-day-old BrdU–

DCX double-labeled neurons revealed that dendritic maturation

was considerably reduced during aging. At that time, newly

born neurons exhibited diminished dendritic branching and total

dendritic length compared with their age-matched counterparts

in young DG (Rao et al., 2006). However, another study labeling

adult-born cells with a GFP retrovirus found that dendritic

length, branching, and spine density of 4-week-old cells were

similar in young and aged brain (van Praag et al., 2005). The

discrepancy between these two studies could be related to the

age of the cells studied (2 weeks vs. 4 weeks). Another possibility

is that in one study (van Praag et al., 2005), dendritic analysis

was performed after running, a condition that might accelerate

the maturation of adult-born neurons. Clearly, some additional

experiments are needed to better understand the effect of aging

on dendritic maturation.

In the SVZ

Within the SVZ, the existence of age-related changes in cell pro-

liferation is not so clear and may show important variations

among species (see Tables 1 and 2). In mice, a two- to threefold

reduction of cell proliferation in the SVZ has been reported using

BrdU labeling in young adults (2–5 months) compared to aged

(20–27 months) mice (Tropepe et al., 1997; Jin et al., 2003a;

Enwere et al., 2004; Maslov et al., 2004; Molofsky et al., 2006).

In rats, however, no difference in the density of BrdU-labeled

cells was observed between 6-month-old and 21-month-old

rats (Kuhn et al., 1996). Aside from possible species-specific dif-

ferences, this discrepancy can likely be explained by the fact that

in the SVZ, newborn cells quickly leave the proliferation area

to migrate toward the OB. Consequently, slight differences in

the BrdU injection protocol may strongly affect the labeling

index of SVZ cells and make the differences between young and

aged individuals undetectable. Indeed, the use of intrinsic

markers of cell proliferation expressed by proliferating and/or

relatively quiescent cells such as MCM-2, Ki67, and HH3 showed

a substantial reduction of neurogenesis in the SVZ of aged rats

compared with young adult rats (Zhang et al., 2006; Tanaka

et al., 2007). Electron microscopy studies have revealed that the

proliferation defect is specific to neuroblasts and transitory

amplifying progenitor cells, which are restricted to the anterior

dorsolateral horn of the SVZ, while the number of SVZ stem cells

remains relatively constant (Luo et al., 2006). Moreover, in vitro
experiments suggest that an age-related decrease occurs in the

number of restricted progenitors, but not in the number of stem

cells (Tropepe et al., 1997), thus indicating that SVZ progenitors

and stem cell numbers are differentially regulated with age. In

agreement with this, the number of BrdU–GABA double-labeled

neurons in the granule and glomerular layers of the OB was

halved in aged mice (Enwere et al., 2004). This was accompanied

by a reduction of BrdU-labeled periglomerular neurons expressing

tyrosine hydroxylase (TH, 71%) or calretinin (59%).

Conclusions

Cell proliferation is the stage of neurogenesis in the DG and

the SVZ that is most affected by aging. In contrast, migration,

survival, and neuronal fate choice seem to be less dramatically

affected, as they seem only to be delayed in the aged DG. Given

the ‘paucity’ of data in the SVZ, it is unknown whether aging

affects migration (tangentially along the RMS or radially within

the OB), cell survival, or cell differentiation. Remarkably, after

a pronounced increase in the first few postnatal weeks, the

volume of the GCL and the total number of granule cells in the

DG appear to be essentially stable throughout life (West, 1993;

West et al., 1994; Rapp & Gallagher, 1996; Rasmussen et al.,
1996; Kempermann et al., 1998b; Merrill et al., 2001; Rapp et al.,
2002; Jin et al., 2003a; Heine et al., 2004a), suggesting that

aging affects the turnover of granule cells rather than their

absolute number. This hypothesis is strengthened by the fact

that apoptosis slows down profoundly in the DG (Heine et al.,
2004a). However, it is obvious that further studies are needed

to: (i) distinguish the effects of aging on the activity of slowly

cycling stem or stem-like cells and the more rapidly cycling

transit progenitors; (ii) better characterize the effects of aging

on the development of new cells in an old environment; and

(iii) study the electrophysiological properties of these neurons.

What are the mechanisms involved in 
the decrease of neurogenesis?

Age-related changes in neurogenesis could be the consequence

of the inability of old precursors to respond appropriately to

external stimuli because of changes in their intrinsic properties.

Alternatively, age-related changes that occur in local and

systemic environments might be responsible for the decline in

neurogenesis.

Old cells?

Overall, the data available from the bibliography suggest that

the main difference between juvenile/young and aged rats is a

decrease in the rate of cell proliferation. However, the mechanisms

responsible for this effect are still unclear. Lengthening of the

cell cycle occurring throughout the lifelong proliferative period



Neurogenesis and aging, E. Drapeau and D. N. Abrous

© 2008 The Authors
Journal compilation © Blackwell Publishing Ltd/Anatomical Society of Great Britain and Ireland 2008

576

could be responsible for the reduction in the rate of neuronal

production that occurs with age. Alternatively, decreased

neurogenesis could result from a progressive loss of precursors.

Finally, those precursors might become quiescent with age,

even though they could still retain the potential for reactivation.

Ultimately, the age-related decline in neurogenesis may be the

consequence of not just one of these phenomena but, more

likely, a combination of them.

In the DG
As there are no specific markers for stem/progenitor cells in the

adult brain, it is difficult to determine their precise number

throughout life. Cumulative BrdU labeling, as well as endogenous

markers of cell proliferation, suggest that the size of the dividing

precursor pool is three to four times smaller in middle-aged

animals compared to young adult animals (Olariu et al., 2007).

GFAP-, nestin-, and vimentin-expressing radial-like cells are

believed to be the precursor cells that divide asymmetrically to

generate a daughter radial cell and a DCX-expressing direct

progenitor (Seri et al., 2004; Encinas et al., 2006). Similar to

what is observed with cumulative labeling studies, the number

of these cells in the GCL is also dramatically decreased with age,

becoming very low in both middle-aged and aged animals

(Alonso, 2001; Nacher et al., 2003). However, these approaches

do not take into consideration the existence of quiescent

precursors. Using Sox-2 as a putative marker of stem cells, it has

been shown that the overall number of Sox-2 cells remains con-

stant in young, middle-aged, and aged rats, yet the percentage

of these cells expressing proliferation markers (BrdU and Ki67)

is drastically reduced with age (Hattiangady & Shetty, 2008).

These results suggest that aging is not associated with a

decrease in the total number of precursors in the SGL, but,

rather, with a decrease in the proportion of active precursors,

as a result of increased quiescence of these cells, likely because

of age-related changes in the surrounding milieu. Moreover, a

comparison of Sox-2/BrdU data with Sox-2/Ki67 results suggests

a lengthening of the cell cycle of NSCs between young adult

and middle-aged F344 rats as well as between middle-aged and

aged F344 rats (Hattiangady & Shetty, 2008). However, this

result was not confirmed by a study carried out on young adult

and 10-month-old Sprague–Dawley rats, using a protocol of

multiple BrdU and tritiated thymidine injections coupled with

endogenous proliferation markers, specifically designed to

measure the size of the proliferating population and its cell cycle

duration (Olariu et al., 2007). Additional studies on older animals

are now required to definitively corroborate or rule out the

possibility of changes in the cell cycle with advancing age.

In the SVZ
Only a few studies have examined the mechanisms involved

in the decrease of neurogenesis in the aged SVZ, leading to

contradictory results. On one hand, sequential labeling with

BrdU and tritiated thymidine has revealed a lengthening of the

cell cycle in the SVZ of older mice (Tropepe et al., 1997; Jin et al.,
2003a). On the other hand, the use of a combination of

proliferation markers specific for the different stages of the cell

cycle to identify the fraction of the proliferative progenitors that

are in S-phase at a given time has demonstrated that aging does

not change the rate of division of SVZ cells (Maslov et al., 2004).

However, consistent with an increase in the length of the cell

cycle, the time course for repopulation after a complete depletion

of constitutively proliferating cells in the SVZ by an AraC treatment

(see Doetsch et al., 1999b for protocol) is markedly different in

aged animals compared to their younger counterparts. Complete

recovery was not seen until 14 days in aged animals compared

to only 4–8 days in young adult animals (Enwere et al., 2004).

These experiments suggest that the reduction in proliferation

detected in the SVZ might result from a lengthening of the cell

cycle rather than from a reduction in the number of precursors.

However, it is unknown if this lengthening is an intrinsic property

of the aging SVZ stem/progenitor cells or if it is the consequence

of changes in the environment, for example, the influence of

inhibitory factors and/or absence of a stimulatory factor.

Conclusion
When taken together, these results suggest that the drastic decline

of neurogenesis observed during aging may be attributable to

several mechanisms (Fig. 2), for example, a decreased number

of proliferating cells or limited proliferation potential resulting

from increased quiescence. 

Old environment?

In this context, either newly born cells may have lost their intrinsic

capacity to respond to the mitotic stimuli provided by the environ-

ment (e.g. growth factor receptors) or, alternatively, the local

environment may have changed so that the mitotic stimuli are

no longer provided (see Table 3). The rapid reduction in the rate

of proliferation and migration during aging is intriguing, as it

suggests that the fate of newborn cells is strongly influenced

by local environmental factors rather than by intrinsic or genetic

cues. This hypothesis is strongly supported by the fact that: (i)

during aging, positive regulators of neurogenesis are known

to decrease, whereas signals identified as neurogenesis inhibitors

are increased; and (ii) neurogenesis in the aging brain can be

boosted by increasing the level of pro-neurogenic factors or

by decreasing the levels of anti-neurogenic factors (see below).

It has been suggested that this effect does not result from

accelerating the cell cycle of the precursors, but from an

increase in the number of precursors in aged DG (Olariu et al.,
2007). The additional dividing cells could potentially come from

precursors that have become quiescent over time, that is, cells

that are not dividing but have retained their capacity to divide.

Consequently, in the senescent brain, the adult neural precursor

cells can apparently stop dividing for long periods of time, but

still proliferate when prompted by the right signal.

Steroids
Corticosteroids. Corticosteroids have been identified as one of

the factors having the strongest negative regulatory effects on
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adult hippocampal neurogenesis. Corticosteroids are released

into the blood circulation following the activation of the

hypothalamo–pituitary–adrenal (HPA) axis, primarily by stress.

Corticosterone, the main corticosteroid in rodents, regulates its

own secretion through negative feedback by interacting with

two receptors present in the DG, the mineralocorticoid receptor

(MR) and the glucocorticoid receptor (GR) (van Eekelen et al.,
1991; Sapolsky et al., 2000). Mineralocorticoid receptors have

a higher affinity for corticosterone than GRs, and are primarily

found in limbic structures, including the HF (van Eekelen et al.,
1988), whereas GRs are expressed ubiquitously. Acute (Cameron

& Gould, 1994) or chronic (Ambrogini et al., 2002) treatment

with corticosterone has been associated with a strong down-

regulation of cell proliferation in the adult DG. Different

paradigms of stress, which dramatically increase corticosterone

levels, decrease either cell proliferation (Gould et al., 1997, 1998;

Czeh et al., 2001; Pham et al., 2003; Heine et al., 2004b; Simon

et al., 2005) or cell survival and neuronal differentiation in the

DG (Pham et al., 2003; Thomas et al., 2007). This effect is revers-

ible, as 3 weeks after the termination of the stress stimulus, a

total recovery is observed (Heine et al., 2004b). On the other

hand, short-term suppression of corticosterone secretion by

adrenalectomy in adulthood increases granule cell neurogenesis

(Gould et al., 1992; Cameron & Gould, 1994). This change can

be prevented by corticosterone replacement or by stimulation

of MR or GR (Gould et al., 1992; Rodriguez et al., 1998; Montaron

et al., 2003). In the young DG, GRs are expressed by 50% of

the stem-like astrocytes, early progenitors, and immature new

neurons, whereas MRs seem to be expressed only by more mature,

calbindin-positive granule cells (Garcia et al., 2004a). However, the

presence of MRs in mature neurons is inconsistent with the fact

that the stimulation of these receptors is sufficient to reverse

the adrenalectomy-induced increase in cell proliferation (Montaron

et al., 2003; Wong & Herbert, 2005).

The age-related decline in neurogenesis has been associated

with increased exposure to corticosterone, resulting from

increased basal levels, mainly during the dark phase of the

circadian cycle, and prolonged stress-induced secretion (Meaney

et al., 1992; Sapolsky, 1992; Lupien et al., 1994). This intriguing

correlation has led to the hypothesis that chronically elevated

corticosterone levels are responsible for reduced neurogenesis

in the aging DG. Consequently, the effects of adrenalectomy

in senescent rats were studied. Adrenalectomy in senescent rats

dramatically reduces corticosterone levels (below 0.3 μg dL−1)

(Montaron et al., 1999), and 1 week later, increases cell prolifera-

tion and, consequently, neurogenesis (Cameron & McKay, 1999;

Montaron et al., 1999). This effect depends on corticosterone

secretion because it can be prevented by treatment with the

hormone (Montaron et al., 1999). This set of experiments was

the first to indicate that the age-related decrease in neuro-

genesis may not be solely caused by a limitation of the stem cells

themselves, but rather, to inadequate environmental signals.

Adrenalectomy at midlife blocked the age-related increase in

both basal- and stress-induced corticosterone secretion and,

subsequently, increased cell proliferation and neurogenesis in

senescent animals (Montaron et al., 2006). When adrenalectomy

is performed during early postnatal life and treatment with

corticosterone is given orally, the rate of neurogenesis in middle-

aged rats does not differ from that of age-matched, sham-

operated controls (Brunson et al., 2005). However, differences in

corticosterone levels [10 μg dL−1 in middle-aged, adrenalectomized

rats (Brunson et al., 2005) compared to less than ≤ 2 μg dL−1 in

3-month-old rats and to aged rats adrenalectomized at either

middle age or senescence (Montaron et al., 1999, 2006)] might

explain this discrepancy. Using an approach that takes into

account the individual differences in the activity of the HPA

axis, we have shown that in aged animals, the weight of the

adrenal glands, considered as a reliable index of the chronic

activity of the HPA axis, is inversely correlated with the pro-

liferation and survival of BrdU-labeled cells in the GCL

(Montaron et al., 2006). In other words, hyperactivity of the

HPA axis is associated with a low level of cell proliferation and

survival. When compared to young animals, aged rats have

higher expression of GR in early precursors, and calretinin-

positive immature neurons express both GR and MR (Garcia

et al., 2004a). This shift of the GR and MR expression profile

toward a more immature stage of neuronal development sug-

gests increased steroid sensitivity of the aged DG to corticoid

impregnation.

In conclusion, long-term exposure to high levels of cortico-

sterone throughout the animal’s life can damage the precursor

cell population, permanently decreasing the size of the dividing

population in aged animals. Alternatively, corticosterone may be

directly affecting proliferation without damaging the precursors,

resulting in a reversible decline in neurogenesis.

Neurosteroids. Neurosteroids are a subclass of steroids syn-

thesized de novo in the brain, in particular, in the HF (Baulieu &

Robel, 1997). In young adult rats, intracerebroventricular (icv)

infusion of allopregnanolone, a neurosteroid which acts as

a positive allosteric modulator of the GABAA receptors that are

present on neuroblasts, decreases hippocampal cell genesis. In

contrast, other neurosteroids such as pregnenolone sulfate (Preg-

S) and dehydroxyepiandrosterone acting as negative allosteric

modulators of GABAA, increase hippocampal neurogenesis

(Karishma & Herbert, 2002; Mayo et al., 2003). The effects of

Preg-S on neurogenesis are probably mediated by GABAA

receptors because the Preg-S-induced increase in neurogenesis

can be blocked by prior icv administration of muscimol, a GABAA

agonist. Pregnenolone sulfate may act directly on these receptors

because it is able to stimulate the proliferation of neural spheres

in vitro (Mayo et al., 2003). In aged animals, acute icv infusion

of Preg-S considerably increases the rate of cell proliferation and

neurogenesis (Mayo et al., 2003). Interestingly, it has been pro-

posed that age-related alterations are caused by an abnormally

strong inhibitory GABAergic input (Marczynski, 1998; Segovia

et al., 2006). Together with the observation that Preg-S increases

neurogenesis, this suggests that the age-related decline in

neurogenesis could be related to an enhancement of GABA

transmission.
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Glutamate
Granule cells are glutamatergic in nature and receive glutama-

tergic afferents mainly from the entorhinal cortex through the

perforant pathway (Vizi & Kiss, 1998). In the young adult

DG, the blockade of NMDA receptors by competitive or non-

competitive receptor antagonists enhances the number of newly

generated granule neurons. This suggests an inhibitory action

of glutamate on neurogenesis (Cameron et al., 1995; Nacher

et al., 2001). Moreover, NMDA receptors and corticosterone are

believed to work synergistically in inhibiting cell proliferation

(Cameron et al., 1998). In aged rats, neurogenesis can be

reactivated by intraperitoneally injecting NMDA receptor

antagonists, which elicit a significant increase in the number of

stem-like cells, proliferating cells, and new neurons in the DG

(Nacher et al., 2003).

Growth factors
Epidermal growth factor (EGF) signaling. Among the various

members of the EGF family of ligands that are able to interact

with EGF receptor (EGFR), only three have been shown to be

expressed in the brain: (i) transforming growth factor alpha

(TGFα), which binds only the EGF-R and is supposed to be the

main endogenous ligand in the brain (Wilcox & Derynck, 1988;

Seroogy et al., 1991, 1993; Lazar & Blum, 1992); (ii) heparin-

binding EGF-like growth factor (HB-EGF), also able to bind a

related receptor, ErbB4; and (iii) amphiregulin, to a lesser extent

(Opanashuk et al., 1999). In the adult SVZ, icv administration of

EGF expands the precursor population. This is accompanied by

a differentiation bias toward the astrocyte phenotype, ultimately

leading to a reduction in the total number of newborn neurons

that reach the OB (Kuhn et al., 1997). Heparin-binding EGF-like

growth factor seems to have a different effect as it is able to

increase both cell proliferation in the SVZ and the number of

newly born neurons reaching the OB (Jin et al., 2002a, 2003b).

In the DG, HB-EGF (Jin et al., 2002a, 2003a) but not EGF (Kuhn

et al., 1997) increases cell proliferation and neuronal differentia-

tion (Jin et al., 2002a), while the role of TGFα is still unknown.

During aging (between 2 months and 24 months in mice),

both EGFR and TGFα expression (at least in the SVZ) decline by

50% and 70%, respectively (Enwere et al., 2004). This suggests

that the expansion potential of NSC progeny may be reduced

because of a reduction in EGFR signaling. The consequences of

HB-EGF infusion in the aged brain are similar, yet more significant,

than the effects observed in young adults. Indeed, HB-EGF

increases cell proliferation by ~1.6- and 5.5-fold in young and

aged DG, respectively, and ~2.4- and ~2.7-fold in the young

and aged SVZ, respectively. In the end, the number of BrdU-

labeled cells is comparable in untreated 3-month-old and

treated 20-month-old mice (Jin et al., 2003a). On the other

hand, EGF is less efficient at increasing cell proliferation in the

aged SVZ when compared to HB-EGF (~1.8-fold increase in

young adult and ~1.4-fold in aged animals) (Enwere et al.,
2004). The differences observed between these EGFR ligands

are likely because of the different receptors and intracellular

pathways involved.

Insulin-like growth factor-I (IGF-I). Among the growth factors

that may regulate neurogenesis, IGF-I is of particular interest

given its expression pattern throughout life. Insulin-like growth

factor-I is strongly expressed during development (Bondy, 1991;

Baker et al., 1993), but its expression is subsequently gradually

reduced in the adult brain. However, it persists in adult neuro-

genic areas (Rotwein et al., 1988; Anlar et al., 1999), most likely

because of its local production by glial cells (Fernandez-Galaz

et al., 1997; Du & Dreyfus, 2002). Insulin-like growth factor-I has

considerable influence in adult hippocampal neurogenesis, as it

stimulates both cell proliferation and neuronal differentiation

(Aberg et al., 2000; Trejo et al., 2001; Anderson et al., 2002).

During aging, IGF-I and IGF-I receptor levels undergo a secondary

decline (Sonntag et al., 1999; Lai et al., 2000; Shetty et al.,
2005), especially in the HF. Consequently, the reduced IGF-I

concentration observed from middle age may contribute to

initiating the age-related decline in neurogenesis. Indeed, the

decrease of IGF-I levels with age correlates with the evolution

of neurogenesis and can be reversed by icv infusion of IGF-I

(Lichtenwalner et al., 2001). This treatment triples the number

of newborn neurons in aged rats through a remarkable increase

in cell proliferation.

Fibroblast growth factor 2 (FGF-2). Fibroblast growth factors

(FGFs), in particular FGF-2 (also called basic FGF), have been

shown to play an important role during CNS development by

controlling neurogenesis, neuron survival, and differentiation

(Walicke et al., 1986; Morrison et al., 1988; Vicario-Abejon et al.,
1995; Nakagami et al., 1997; Vaccarino et al., 1999). The expression

of FGFs and FGF receptors (FGFRs) persists in the adult brain.

Strikingly, the astrocytes of the DG, the SVZ, the RMS, and the

OB display the most robust FGF receptor 2 (FGFR-2) expression

in the adult brain (Chadashvili & Peterson, 2006). This result

points out the possible role of FGF signaling in neurogenesis.

In adult SVZ, a proliferative effect of FGF-2 as well as an

enhancement of migration to the OB has been clearly demon-

strated (Kuhn et al., 1997; Wagner et al., 1999; Jin et al., 2003a).

In the adult DG, similar experiments increase proliferation in the

hilus but are ineffective in the SGL (Kuhn et al., 1997; Jin et al.
2003a). On the other hand, over-expression of FGF-2 by gene

transfer in lifelong FGF-2-deficient mice up-regulates DG cell

proliferation (Yoshimura et al., 2001).

The hippocampal concentration of FGF-2 decreases between

young adult age and middle age, but shows no change between

middle age and old age. This decrease is more particularly

associated with the decline of a subpopulation of astrocytes that

express FGF-2 and could be the consequence of an age-related

impairment in FGF-2 synthesis by astrocytes (Shetty et al.,
2005). In this manner, an age-related decrease in FGFR-2 levels

is observed in the SVZ, RMS, OB, and HF, but not in non-

neurogenic regions of the brain (Chadashvili & Peterson, 2006).

Unlike what is observed in young adults, FGF-2 icv infusion for

2 weeks or 3 days increases neurogenesis in both the DG and

the SVZ of middle-aged (Rai et al., 2007) and aged mice (Jin

et al., 2003a). The enhanced production of new neurons was
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associated with an enhanced dendritic growth (Rai et al., 2007).

Thus, age-related declines in hippocampal neurogenesis are

likely linked to reduced FGF-2 concentrations.

Vasculature and vascular endothelial growth factor (VEGF).
The vasculature is an important component of adult neurogenic

niches. Blood vessels are conduits for the delivery of long-

distance paracrine factors (e.g. hormones, growth factors.) from

distant sources, and by this means, they could play an essential

indirect role in the regulation of neurogenesis. Furthermore, in

the DG (Palmer et al., 2000; Heine et al., 2005) as well as in

the SVZ (Bovetti et al., 2007), new cells are clustered in close

proximity to blood vessels where VEGF expression is high and

angiogenesis is ongoing (Palmer et al., 2000). It is, thus, believed

that neurogenesis and angiogenesis are mechanistically linked,

and that VEGF, which is normally expressed in cerebral micro-

vessels, is the linking factor between these two events (Palmer

et al., 2000; Jin et al., 2002b). Consistent with this hypothesis,

several studies performed in young adult rodents have high-

lighted the importance of VEGF in adult bulbar and hippocampal

neurogenesis (Jin et al., 2002b; Fabel et al., 2003; Sun et al.,
2003; Cao et al., 2004; Greenberg & Jin, 2004).

Brain aging is associated with a reduction in the cerebral

microvasculature (Sonntag et al., 1997), a loss of microvascular

plasticity (Riddle et al., 2003), and reduced VEGF synthesis

(Shetty et al., 2005). This is specifically true in the DG where

the total volume of the SGL occupied by RECA-1+ capillaries

undergoes a more than 25% decrease in aged compared to

young adult animals (Hattiangady & Shetty, 2008). Thus, limited

angiogenesis, decreased cerebral blood flow, and decreased

concentration of the associated growth factor, VEGF, in the

aged brain may contribute to the decline in cell genesis. Using

Sox2 as a marker of neural stem/progenitor cells, it has been

shown that the distance between endothelial cells and the puta-

tive stem cells is increased with aging. This may in turn reduce

the accessibility of these cells to endothelial-cell-derived and

blood-transported factors (Hattiangady & Shetty, 2008).

Cell cycle regulators
The polycomb transcriptional repressor Bmi-1 is required for the

self-renewal and postnatal maintenance of hematopoietic

(Lessard & Sauvageau, 2003; Park et al., 2003) and neural stem

cells (Molofsky et al., 2003, 2005). The absence of Bmi-1 in

Bmi-1-deficient mice induces a premature senescence of

stem cells and, consequently, a severe reduction in the rate of

proliferation in the SVZ, both in vitro and in vivo. Conversely,

Bmi-1 over-expression can prevent senescence and extend the

replicative lifespan of primary cells (Molofsky et al., 2005).

Bmi-1 acts through the repression of two inhibitors of cell

proliferation whose induction has also been associated with

cellular senescence: p16Ink4a, a cyclin-dependent kinase inhibitor,

and p19Arf, which promotes p53 activation (Jacobs et al., 1999;

Sherr, 2001). Indeed, deletion of Ink4a or Arf from Bmi-1–/– mice

partially rescued stem cell self-renewal and stem cell proliferation

defects in the SVZ (Bruggeman et al., 2005; Molofsky et al., 2005).

p16INK4a Gene expression increases with age in a variety of

tissues (Zindy et al., 1997; Krishnamurthy et al., 2004), including

the SVZ where p16INK4a expression is not detectable in the SVZ

of 60-day-old mice, but becomes detectable by 1 year of age

and is further increased at 2 years of age (Molofsky et al., 2006).

On the other hand, p19Arf expression in the SVZ is not affected

by aging. The effects of p16INK4a on the generation of new

neurons in the SVZ increase with age and have been studied

employing p16INK4a-deficient mice. While no effect was

observed in young adults, p16INK4a deficiency significantly

increases the frequency of newly generated OB neurons in aged

animals. Notably, p16INK4a deficiency does not affect the ratio

of non-neuronal cells in the OB or neurogenesis in the DG

(Molofsky et al., 2006). Thus, in certain regions such as the SVZ

but not the DG, stem cell function is regulated by a balance

between Bmi-1, which promotes stem cell maintenance and

regenerative capacity, and tumor suppressors like p16INK4a,

which reduce regenerative capacity and promote aging. During

aging, this balance is probably affected by as yet unidentified

factors resulting in a reduction of precursor function and neuro-

genesis in at least certain regions of the nervous system.

Conclusion
The studies conducted so far have clearly showed that corticos-

teroids exert a deleterious influence on hippocampal neurogenesis

during aging (see also the third section). Although the list of

factors influencing the course of neurogenesis is growing, little

is known about their influence in the aging brain. This is because

not only of the inherent difficulty of in vivo aging studies, but

also to the controversy over the effects of some factors cited

earlier in young rats, for example, glutamate and GABA have

also been shown to promote neurogenesis (Deisseroth et al.,
2004; Ge et al., 2007). Furthermore, in vivo ‘pharmacological’

studies involve changes in local networks (other neurons and

other types of cells in the DG), in the structure (HF) and in connected

structures. Thus, the observed effects are certainly not only the

result of a direct action on the precursors or their lineage.

The changes observed during senescence cannot be explained

by only one of the listed factors, and are a consequence of

intricate regulation of different factors working in concert and

often dependent on each other. They can play either permissive

or instructive roles, and it is likely that there is a strictly orches-

trated regulation of all of them, where some could be involved

at early stages of aging and others could take effect only at

later times, leading to the aging of neurogenic areas. This

environmental-dependent regulation of neurogenesis supports

the idea that the age-related loss of new neurons is not an

irreversible cell-intrinsic process and shows that, when triggered

by appropriate signals, neurogenesis can be reactivated in

senescent brain.

A reduction of neuronal plasticity is hypothesized to be the

cornerstone of the appearance of age-related deficits. The

possibility of preventing it by manipulating the basal level of

neurogenesis raises new hope of improving brain function

during aging. Consequently, in the last part of this review, we
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will examine the known relationships between the age-related

decline in neurogenesis and age-dependent memory impairment,

and see to what extent the low rate of neurogenesis can con-

tribute to the appearance of deficits.

Functional consequences of the age-related 
decrease in neurogenesis

Several lines of evidence based on the structure–function relation-

ships support the involvement of neurogenesis in memory

processing in the young adult brain. In particular, adult-born

olfactory neurons have been shown to be involved in olfactory

memory, while adult-born hippocampal neurons have been

related to complex forms of spatial or associative memories

(Aimone et al., 2006; Leuner et al., 2006; Lledo et al., 2006;

Abrous & Wojtowicz, 2008). The fact that adult neurogenesis

strongly decreases with age raises the important question of

whether this decline in plasticity participates in the appearance

of age-related dysfunction and whether a reduced number of

new cells in an old brain can make a relevant functional con-

tribution. Apart from an elegant study by Enwere et al. (2004)

showing that the age-related decline in adult-born periglomerular

neurons is associated with deficits in fine odor discrimination,

most studies on aging have focused on the role of adult

hippocampal neurogenesis in hippocampal functioning and,

especially, in spatial memory. The spatial learning deficits observed

in senescent animals are similar to those caused by hippocampal

alterations (Rosenzweig & Bennett, 1996; Morris, 2006); this

has raised the critical issue as to whether an alteration of

hippocampal neurogenesis could be responsible for the age-

related loss of spatial memory abilities. From an operational

standpoint, the water maze has been the only test used, with

the exception of one study. This paradigm requires that animals

learn multiple extra-maze visual cues, allowing them to build

a dynamic spatial representation of their surroundings for

navigating to a platform hidden underneath the surface of the

water. The requirement of having to learn complex relationships

of extra-maze visual cues is the aspect of the test that renders

it sensitive to hippocampal dysfunction.

In the following sections, we will review the evidence linking

neurogenesis and memory during ‘normal’ aging. By this term,

we refer to the natural process of memory decline that does

not involve neurodegenerative processes such as those observed

in Alzheimer’s disease. A distinction will be made between

successful and pathological aging, the latter – and not the former

– being characterized by the appearance of memory deficits.

Spatial memory abilities and neurogenesis in old rats

It has long been recognized that spatial learning is particularly

vulnerable to the effects of aging. However, memory alteration

is extremely variable within a population, and not all experi-

mental animals exhibit memory disorders (Gage et al., 1988;

Markowska et al., 1989; Rapp & Amaral, 1992; Gallagher et al.,
1993). In particular, some old animals show a clear impairment

of spatial reference memory using the water maze, while others

exhibit memory capacities similar to those of younger individuals

(Gage et al., 1988; Markowska et al., 1989; Rapp & Amaral,

1992; Gallagher et al., 1993). The impairments observed in some

aged animals are similar to those observed after hippocampal

lesions (Redish & Touretzky, 1998; Stoelzel et al., 2002) and

have been associated with defects in hippocampal circuitry

and plasticity (Petit & Ivy, 1988; Markowska et al., 1989;

Gallagher et al., 1990; Rapp & Amaral, 1992; Rowe et al., 2007).

The hypotheses being pursued relate the ability to perform

hippocampus-related functions to hippocampal neurogenesis in

basal (off the learning phase) and dynamic (in the course of

learning) conditions.

The rate of basal neurogenesis determines learning 
performance and memory
The existence of a correlation between spatial memory ability,

cell proliferation, cell survival, and neurogenesis was examined

under basal conditions. In these circumstances, spatial memory

performance of aged rats was found to predict the level of

hippocampal neurogenesis. Indeed, memory abilities were

positively correlated to the number of proliferating cells, surviving

cells, and new neurons evaluated 3 weeks after training. In

other words, animals with preserved spatial memory [aged

unimpaired (AU)] exhibited a higher level of proliferating cells,

1-month-old surviving cells, and new neurons compared to

animals displaying spatial memory impairments [aged impaired

(AI)]. This quantitative relationship between a reservoir of new

neurons and memory capability – revealed by linking, for a given

individual, the levels of memory performances, and the levels

of neurogenesis – reinforces the contention that neurogenesis

participates in learning and memory. A similar correlation was

observed using two different hippocampal-dependent tasks: a

modified version of the water maze and a transverse patterning

discrimination (visual discriminations) task (Driscoll et al., 2006).

In these two tasks, performance was shown to be correlated

with both hippocampal volume (measured by in vivo MRI) and

neurogenesis assessed by DCX. However, two other studies

failed to demonstrate a correlation between cell proliferation

and spatial memory (Bizon & Gallagher, 2003; Merrill et al.,
2003), and another one reported that greater numbers of

3-week-old BrdU-positive cells were associated with worse

memory performance (Bizon et al., 2004). Various experimental

differences in BrdU injection time (i.e. immediately or 1 week

after the completion of the behavioral study as longer intervals

are required to make sure that the effects observed are specific

to the basal rate of neurogenesis and not a consequence of the

recent training; see also below), number of subjects, rat strain,

and gender of the animals could explain this apparent controversy.

Influence of learning on neurogenesis
Hypothetically, age-related memory deficits could result not

only from an alteration of the new neuronal pool, but also from

changing the dynamics of hippocampal neurogenesis. To this

end, the influence of spatial learning on the birth and/or survival
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of adult-born cells has been examined. Indeed, in young rats,

spatial learning has been reported to influence the production

and fate of the newly born cells, depending on the time at which

the cells were generated relative to learning. Learning increases

the survival of cells born before the beginning of learning (Gould

& Tanapat, 1999; Dupret et al., 2007), while the survival of cells

generated during the early phase of learning (when performance

improves rapidly) is decreased by the late phase of learning

(when performance is stabilized) (Dobrossy et al., 2003). Further-

more, this late phase also shows an increase in cell proliferation

(Dobrossy et al., 2003). The learning-induced decrease in BrdU

cell number was found to reflect the elimination of young

neurons by apoptosis (Dupret et al., 2007). These three events

– survival of relatively mature neurons, apoptosis of more

immature cells, and proliferation of precursors – are in fact

interrelated events that may mediate learning. Indeed, blocking

learning-induced apoptosis inhibits cell survival and cell prolifer-

ation, and impairs memory performance (Dupret et al., 2007).

In aged rats, spatial learning also influences the fate of the

newly born cells according to their birth date and to individual

memory abilities (Drapeau et al., 2007). In AU rats, learning

increases the survival of cells generated at least 1 week before

the learning episode, whereas it decreases survival of cells pro-

duced during the early phase of learning. In AI rats, cell survival

was not influenced by learning. These data indicate that learning,

and not training, decreased the survival of adult-born cells, and

that spatial memory abilities critically depend on dynamic

regulation of adult-born cell survival. Moreover, in contrast to

what has been observed in young rats, the late phase of learning

(nor the earliest phase) did not increase the proliferation of the

cells produced concurrently with this phase. However, given

that aging might delay the process leading to neurogenesis,

we hypothesized that the learning-induced increase in cell

proliferation may also be delayed in the old brain. To this end,

cell proliferation was examined 9–14 days after the completion of

spatial training. Unexpectedly, cell proliferation was negatively

correlated to memory ability: cell proliferation was higher in rats

unable to master the task in comparison to animals displaying

preserved spatial memory. This surprising result, explained in

terms of enhanced swimming activity, is consistent with a

previous study (Bizon et al., 2004). In this case, the number of

surviving cells born 1 week after testing, which were 3 weeks

old at the time of the sacrifice, was higher in AI rats compared

to AU rats. These interindividual differences in survival likely

come from initial differences in cell proliferation. Thus, an aberrant

delayed rebound in cell proliferation may also participate in

memory impairment.

The homeostatic regulation of cell survival observed in AU rats

(and in young rats) is consistent with the selective stabilization

theory, according to which only a particular set of contacts will

be selected among many others, thereby sculpting the precise

circuits that are crucial for a given function (Changeux et al.,
1976). The mechanisms underlying this selective stabilization

process are unknown, but it might be hypothesized that only

the adult-born cells which are successfully connected, both in

terms of efferent output and afferent input, are the ones

rescued by activity-dependent stimuli generated in the course

of learning. The other fundamental question which remains to

be answered is what is the function of these surviving neurons?

Biological mechanism involved in age-related decline 
in spatial memory and neurogenesis in old rats

We have studied the role of the HPA axis in the existence of such

phenotypic interindividual variations. Indeed, its up-regulation

is involved in the appearance of age-related disorders (Landfield

et al., 1978, 1981; Issa et al., 1990; Sapolsky, 1992). Further-

more, corticosterone inhibits neurogenesis in the aged brain

(see pp. 8–9). Thus, the hypothesis at work was that excessive

levels of corticosterone throughout the life of the animal would

favor the emergence of memory deficits (pathological aging)

by reducing neurogenesis. In favor of this hypothesis, we

found that the magnitude of HPA axis activity in old animals

was correlated with their level of hippocampal neurogenesis

and memory ability. Indeed, animals with the heaviest adrenal

glands, indicative of chronic HPA axis hyperactivity, exhibited

the worst performance in the water maze and the lowest

number of proliferating cells or 3-week-old surviving cells

(Montaron et al., 2006). This indicates that hyperactivity of the

HPA axis produces spatial memory deficits by decreasing hippo-

campal neurogenesis. In order to strengthen this hypothesis, the

secretion of corticosterone was reduced from midlife onward by

adrenalectomy, and its effect on neurogenesis and spatial

memory ability in old rats was analyzed. It was found that

lowering corticosterone secretion from midlife onward reduced

the decline in neurogenesis observed in old rats and prevented

age-related memory disorders (Montaron et al., 2006). These

results demonstrate that exposure to high levels of corticosterone

throughout life is responsible for age-related memory disorders

and the age-related decline in neurogenesis. It remains to be

determined whether other biological factors described to

modulate neurogenesis in the aged brain (see Table 3) could

be useful in preventing or curing the development of memory

disorders during the course of aging.

Predictive model of aging

The next question that we addressed was whether these inter-

individual variations in the functional expression of neurogenesis

could be predicted early in life. We took advantage of natural

individual differences in the activity of the HPA axis in young

adult animals, which are associated with a behavioral reactivity

trait, and determined whether they could predict the extent

of age-induced memory impairments. Indeed, rats that are

high-behavioral responders to stress (HRs) exhibit prolonged

corticosterone secretion in response to stress when they are

young, premature aging of the HPA axis, and an increased

propensity to develop age-related memory deficits in comparison

to rats that are low-behavioral responders to novelty (LRs) (Dellu

et al., 1994, 1996). By comparing these two groups of animals
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that spontaneously differ in their behavioral reactivity to novelty,

it was found that cell proliferation, cell survival, and conse-

quently neurogenesis were higher in LRs in comparison to HRs

(Lemaire et al., 1999). Because behavioral and neuroendocrino-

logical reactivity in youth has been demonstrated to be predictive

of spatial memory impairments later in life, these individual

differences in neurogenesis may account, at least in part, for

individual differences in memory abilities in old age. In other

words, the subjects starting off with impaired neurogenesis

(HRs) are predisposed to the development of age-related memory

disorders. A longitudinal study, however, is necessary to verify

this prediction. This raises the issue of whether boosting neuro-

genesis in the young HRs by exposing them to enriched lifestyle

conditions (see below) will prevent the appearance of memory

deficits when they reach senescence.

Risk factor of pathological aging: 
early deleterious life events

The interindividual differences that we observed may result from

both genetic and environmental influences that predispose the

individual (vulnerable phenotype) to develop memory disorders.

Given the role of stress and corticosterone in pathological

aging, a particular emphasis was given to early environmental

experiences such as prenatal stress. Prenatal stress is known to

significantly affect the development of the brain and the organ-

ization of behavior. In particular, prenatal stress impairs memory

processes, but the underlying mechanisms are unknown.

We tested the hypothesis that prenatal-stress-induced memory

deficits are related to impaired neurogenesis. By comparing

juvenile (28-day-old), adult (3-month-old), middle-aged (10-

month-old), and old (22-month-old) animals, it was found that

prenatal stress cut cell proliferation in half over a lifetime. In

fact, there was a premature decline of cell proliferation with

increasing age (Lemaire et al., 2000). Cell survival and cell pheno-
type, in contrast, were not influenced by prenatal stress, at least

when examined in adulthood (Lemaire et al., 2000, 2006). As

a consequence, the number of adult-born neurons was reduced

in prenatally stressed rats. Increased activity of the HPA axis

following prenatal stress could explain the curtailed neuro-

genesis. Indeed, prenatal stress increases HPA activity as assessed

by adrenal mass (Lemaire et al., 2000), and this effect is blocked

by postnatal handling, a manipulation that counteracts the

down-regulation of neurogenesis induced by prenatal stress

(Lemaire et al., 2006). These results do not exclude the possibility

that other mechanisms which remain to be elucidated mediate

the deleterious effect of prenatal stress on neurogenesis.

Structural hippocampal defects resulting from prenatal stress

were associated with impairment in spatial memory and in

learning-induced regulation of some aspects of neurogenesis.

When tested at 4 months of age, a significant difference in the

rate of acquisition was observed between control and prenatally

stressed rats. The latter did not reach an asymptotic level of

performance. This impairment was associated with a disruption

of learning-induced cell proliferation. These results are in

agreement with the observation that, in young and aged rats,

cell proliferation is increased only when the task is mastered

(Döbrössy et al., 2003).

In summary, early life stress has long-lasting, deleterious

effects on hippocampal neurogenesis, producing impairment in

hippocampal-related spatial tasks and blocking the learning-

induced increase in cell proliferation. More importantly, the

neurobiological consequences of prenatal stress on hippocampal

neurogenesis can be reversed with a form of postnatal environ-

mental stimulation, therefore suggesting that pathological aging

could be prevented.

Preventing pathological aging: positive life events

An intellectually and a physically active life is known to protect

from memory impairment during the course of ‘normal’ aging

or in neurodegenerative disorders (Laurin et al., 2001; Vaillant

& Mukamal, 2001; Le Carret et al., 2005; Hattori et al., 2007).

Therefore, it is of importance to determine whether age-related

decline in memory and neurogenesis can be reversed by stimu-

lating life events.

Enriched environment
Exposure of young adult rodents to a complex enriched

environment increases hippocampal neurogenesis by promoting

neuron survival (Kempermann et al., 1997; Nilsson et al., 1999;

Auvergne et al., 2002; Brown et al., 2003; Ueda et al., 2005;

Rossi et al., 2006; Hattori et al., 2007; Tashiro et al., 2007) and, in

some cases, by increasing cell proliferation (Kempermann et al.,
1998a). At the same time, these conditions improve some aspects

of spatial learning (Kempermann et al., 1997; Nilsson et al., 1999).

In the aging brain, short-term (40-day-long) (Kempermann

et al., 1998b) or long-term (10 months starting at 10 months

old) (Kempermann et al., 2002) exposures to an enriched

environment improve neurogenesis in senescent subjects. This

effect has been associated with changes in cell survival, neuro-

nal differentiation (Kempermann et al., 1998b), and/or cell

proliferation, although this latter effect did not reach statistical

significance (Kempermann et al., 2002). From a functional point

of view, a slight improvement in spatial performances was

observed when animals were tested in the water maze after only

40 days of enriched environment (Kempermann et al., 1998b),

while a longer exposure, from 10 months to 20 months of age,

yielded a stronger improvement of enriched mice scores

(Kempermann et al., 2002).

Physical activity
Voluntary access to a running wheel has been shown to be one

of the components that may lead to an increase in neurogenesis

when living in an enriched environment. However, besides

promoting the survival of the newborn cells and their neuronal

differentiation, exercise has been shown to also increase cell

proliferation in young adults (van Praag et al., 1999a,b).

In 19-month-old mice, 45 days of unlimited access to a

running wheel restores the subsequent number of surviving
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newly born cells to a level corresponding to 3 months old,

non-running mice (van Praag et al., 2005). Furthermore, the

percentage of cells differentiating into a neuronal phenotype

shows a 2.5-fold increase. The pro-neurogenic results of exercise

were also observed at both 10 months and 20 months of age after

an ‘acute’ shorter exposition to the running wheel (Kronenberg

et al., 2006). Interestingly, whereas in young animals a longer

exposure to the running wheel suppresses the proliferative

effect, exercise from 3 months to 9 months of age significantly

reduces the age-dependent decline in cell proliferation, even if

it does not maintain net neurogenesis at levels corresponding

to a younger age (Kronenberg et al., 2006). In 14-month-old

rats, a smaller yet significant enhancement of cell proliferation

is also observed after short-term exposure to a treadmill (Kim

et al., 2004). As expected, experience-induced increases in

neurogenesis were associated with an improvement in spatial

learning abilities (van Praag et al., 2005). Recently, it has been

shown that maternal running and swimming cause increases in

the cell genesis (Bick-Sander et al., 2006; Lee et al., 2006; Kim

et al., 2007) and short-term memory (Lee et al., 2006; Kim et al.,
2007) of the offspring. These data suggest that such ‘prenatal

exercise’ may favor successful aging.

Altogether, these results show that positive life events such as

exposure to a variety of new (and changing) stimuli throughout

life may improve memory function by increasing neurogenesis

during the course of aging. Recently, it has been shown that

social isolation leading to an HPA axis hyperactivity precludes

the positive effects of exercise on neurogenesis (Stranahan

et al., 2006). This suggests that the existence of interindividual

differences should be taken into account in the future as they

may buffer or preclude the effects of positive life events on the

aging brain.

Conclusion

Altogether, the results shown strongly suggest that hippo-

campal neurogenesis is involved in the aging of memory

functions (see Fig. 3). Aging is not inescapable, and wide inter-

individual differences are observed among aged subjects. These

differences in the risk of developing age-related memory disorders

can be predicted earlier in life. Low hippocampal plasticity may

render animals more vulnerable to aging processes. On the

other hand, subjects starting off with a high level of neuro-

genesis may be resistant to the development of age-related

memory disorders. These different phenotypic orientations may

result from early deleterious or positive life events, which will shape

the developmental trajectory of the subjects within a genetic

envelope. For example, prenatal stress affects neurogenesis in

pathological ways throughout life and precipitates age-related

memory impairments. On the contrary, positive life events such

as perinatal enrichment may prevent the appearance of an age-

related decline in neurogenesis and memory abilities. Given that

hippocampal neurogenesis plays a pivotal role in environmen-

tally induced vulnerability to the development of pathological

Fig. 3 Conceptual framework highlighting the role played by hippocampal neurogenesis in environmentally induced vulnerability to the development of 
pathological aging. In aged rats, interindividual differences in the risk of developing age-related memory disorders are associated with individual differences 
in hippocampal neurogenesis. These interindividual differences can be predicted earlier in life. Animals with a low level of neurogenesis [i.e. high-behavioral 
responders to stress (HRs)] may not be able to adapt to environmental demands and, thus, may be more vulnerable to aging processes. On the other hand, 
the low-behavioral responders to novelty (LRs) starting off with a high level of neurogenesis would be resilient to the development of age-related memory 
disorders. These different phenotypes may result from early environmental experiences. For example, stressful events during the pre- and/or the postnatal 
period may lead to an HR phenotype and vulnerability to the aging processes. On the contrary, positive life events during development might favor an LR 
phenotype, resistant to the appearance of memory disorders.
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aging, a better understanding of the mechanisms that regulate

neurogenesis during aging is required. Indeed, the challenge for

future research will be to develop therapeutic strategies aimed

at first stimulating plasticity in the aged brain and preventing

the alteration of memory function that may appear in some

individuals.
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