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Abstract
Currently, Granger-Geweke causality models have been widely applied to investigate the dynamic
direction relationships among brain regions. In a previous study, we have found that the right hand
finger-tapping task can produce relatively reliable brain response. As an extension of our previous
study, we developed an algorithm based on the classical Granger-Geweke causality model to
further investigate the effective connectivity of three brain regions (left primary motor cortex
(M1), supplementary motor area (SMA) and right cerebellum) that showed the most robust brain
activations. Our computational results not only confirm the strong linear feedback among SMA,
M1 and right cerebellum, but also demonstrate that M1 is the hub of these three regions indicated
by the anatomy research. Moreover, the model predicts the high intermediate node density existing
in the area between SMA and M1, which will stimulate the imaging experimentalists to carry out
new experiments to validate this postulation.
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Introduction
Recently, effective connectivity methods have been widely applied on the functional
Magnetic Resonance Imaging (fMRI) data set to investigate the dynamic directional
relationships among brain regions [1–5]. In particular, in generating the testable hypothesis
regarding the function of human brain networks, directional information obtained from
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Granger-Geweke causality model [6–12] has played a pivotal role. The Granger-Geweke
causality model[7,13,14], which is a well-developed statistical measure based on the concept
of time series forecasting [5,6,11,15–18], has been proposed for multivariate time series
analysis to investigate the linear causal relationships among a set of univariate time series
variables. For instance, Lin et al.[11] and Chen et al.[6] employed Granger–Geweke
Causality model to investigate the interictal spike propagation and the effective connectivity
of supplementary motor areas, respectively.

In a previous fMRI study, we [19] investigated the test-retest reliability of
electroacupuncture stimulation, a mode of sensory stimulation and finger-tapping task. We
found that compared with electroacupuncture stimulation, finger-tapping task can generate
significant and reliable fMRI signal increases across different experimental sessions. Thus,
in this study, we propose to reanalyze the finger-tapping data set (six subjects each repeated
in 6 identical experimental sessions) using Granger-Geweke causality model to elucidate the
effective connectivity among the key regions involved in the finger tapping. These three
regions are left primary motor area (M1), medial supplementary motor area (SMA) and right
cerebellum. Several reasons motivated selection of the data sets. First, right hand finger
tapping task can produce robust and reliable fMRI signal increase; secondly, the brain
regions involved in finger-tapping and their interaction are relatively clear.

The fMRI technology provides different types of time series for brain research, either
stationary or non-stationary time series, but the classical Granger–Geweke Causality model
can only process the stationary time series. For this reason, the aim of this research is
developing a general algorithm developed from the Granger–Geweke Causality model to
analyze the various types of fMRI time series us, such as our previous experimental data
[19]. This algorithm is briefly described as follows. First, since fMRI will provide us a
stationary or nonstationary time series, the augmented Dickey-Fuller (ADF) unit root test
[20–22] will be implemented to test the stationarity of raw data. If the data are
nonstationary, the plot of autocorrelation function will be applied to check the patterns and
choose an appropriate smoothing technique to transform the raw data to stationary data.
Next, the approximation to the critical values of Schwarz's Bayesian information criterion
(SBIC) is computed by ARFIT algorithm [23] to determine the order of auto-regressive
equation of the Granger–Geweke Causality model. Consequently, an time series
autoregressive model with appropriate order will be developed to fit smoothed fMRI data.
Lastly, the confidence intervals will be constructed for the measures of feedback. In the
study, the results of the model not only agree with our previous experimental findings[19]
that there are strong correlations among SMA, M1 and cerebellum, but also match the
observations of the anatomy[24] that both SMA and cerebellum project to M1.

Materials and Methods
Experimental material and methods

In the present study, we reanalyzed the data from a previous study (experimental details
described in the original paper). In summary, 6 healthy right handed subjects were included
in this study. All experiments were conducted with the written consent of each subject and
approved by the Massachusetts General Hospital’s Institutional Review Board

Experimental procedures
Each subject participated in 6 identical fMRI scanning sessions. Sessions 1 and 2 were
separated by 20–30 minutes. Sessions 2 and 3 were separated by 3–6 days. After Session 3,
the interval between subsequent sessions was 7–21 days. The block design was applied. The
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fMRI scan started with 30s baseline, four 30s blocks of stimulation (ON, right finger-
tapping), were separated by four rest periods (OFF) of 30s, 60s, 30s and 30s respectively.

fMRI data acquisition and analysis
All brain imaging was performed with a 3-axis gradient head coil in a 3 Tesla Siemens MRI
System (Erlagen, Germany) equipped for echo planar imaging. After automated scout and
shimming procedures, functional MR images were acquired using gradient echo T2*-
weighted sequence with TR 2000 ms, TE 40 msec and a flip angle of 90 degrees. Thirty
slices (4 mm thick, 1 mm skip) oriented parallel to the AC-PC plane were collected to
provide whole brain coverage. A high resolution 3D MPRAGE sequence was also collected.
Pre-processing and statistical analysis were performed using SPM2 software (Wellcome
Department of Cognitive Neurology). Pre-processing began with motion correction. All
functional runs were realigned to the first volume acquired in the scan session. We set a
movement threshold of 2mm within a scan to eliminate subjects with excessive head
movement. However, none of the subjects had head movements that exceeded this threshold.
Thus, all data were used for this analysis. All functional runs were normalized to MNI
stereotactic space and spatially smoothed with an 8mm Gaussian kernel. A separate general
linear model (GLM) for each session was specified across each subject with regressors for
the difference from baseline for each of the four conditions. Global signal scaling was
applied. Low-frequency noise was removed with a high-pass filter applied with default
values to the fMRI time series at each voxel. For each individual session, a threshold of
p<0.005 uncorrected with 10 contiguous voxels was used for finger-tapping; then for each
predefined ROI, left M1, SMA and right cerebellum, the average time courses of 3mm sphere
around the peak of the three regions were extracted for Granger causality analysis.

Mathematical model
Granger-Geweke Causality Model

In this study, the Granger–Geweke Causality model is employed as the major tool to analyze
the fMRI imaging data and to reveal the relationships among those brain regions of interest.
Consider two zero-mean vector time-series X and Y. The time-indexed observations are
denoted as xt and yt, where t = 1,…,n is the time index. X, Y can be modeled as
autoregressive (AR) processes of order p as

(1)

(2)

(3)
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(4)

where a1i, b1i, a2i, b2i, c2i, d2i are coefficients of AR models, and u1t, v1t, u2t, v2t are the
zero-mean residuals. Their variances Σ1, T1, Σ2, T2, respectively. Let U1n×k, V1n×l,
U2n×k,V2n×lbe the respective residual matrix of equations 1 through 4, the variances can be
estimated by ordinary least squares (OLS) method, such that 

. Then the measure of linear feedback is computed by equation 5
and 6.

(5)

(6)

where FY→X indicates the strength of time series Y Granger-causing X, and FX→Y indicates
the strength of time series X Granger-causing Y. The measure of instantaneous linear
feedback is computed by equation 7.

(7)

where Γ in equation 8 is the covariance matrix

(8)

and C denotes the covariance of u2t, v2t. The measure of linear dependence is the sum of the
measures of the three types of linear feedback, which is referred as FX,Yin equation 9:

(9)

Typically, a time series can be described as either stationary or non-stationary, depending on
the constancy of its statistical properties [25–27]. The stationary time series should have
constant mean and variance over time as well as covariance which is a function of time
difference only. The non-stationary time series may have either non-constant means, or non-
constant variance or both, which results in spurious regression; [28, 29]. This poses a very
serious problem for the estimation, and over-rejects hypothesis with T(true) or F(false) test
statistics. Since Granger-Geweke Causality model focuses on the stationary purely
nondeterministic multiple time series, the raw fMRI imaging data is confirmed to be
stationary. If non-stationary, differencing method is employed to transform the non-
stationary data to stationary data. For this reason, a general procedure to employ Granger-
Geweke Causality model is presented and described by Figure 1. Next, we will illustrate
each step in detail.
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Check if the dataset are stationary or non-stationary
The augmented Dickey-Fuller (ADF) unit root test [20,21] and the plot of autocorrelation
function (ACF) [27,30] are most two common methods to test whether the dataset is
stationary or non-stationary.

The ADF test statistics a numeric indicator such that the more negative it is, the stronger the
rejection of the null hypothesis that there is a unit root (Data is not stationary) at some level
of confidence. The ADF test model, referred as a random walk, is described by equation 10,

(10)

where k is the lag order, xt,xt−i xt−j are respective observations at time t, t−1, t−j, j = 2,…,k,
in the time series X, η is the constant drift, λt is the time-trend term, γ, δ are coefficients, and
εt is the noise with mean zero and constant variance. Since the well-developed auto
regression (AR) models of Granger-Geweke causality model have neither time trend nor
drift processes, the current ADF test model can be simplified as equation 11,

(11)

The number of lags is determined by the sampling frequency. If the sampling frequency is
large, k should be small [31]. Because the time frequency of the fMRI experiments is 2
seconds long, we have to set k to 1, smallest lag number in this case. And then the unit root
test is carried out under the null hypothesis γ = 1 against the alternative hypothesis of γ < 1.
Once a value for the test statistic, equation 12 is computed, which can be compared to the
relevant critical value derived in Monte Carlo study[22]

(12)

If the test statistic is smaller (this test is non symmetrical so we do not consider an absolute
value) than the critical value at α significant level, then the null hypothesis of γ=1 is rejected
and no unit root is present which means the data are stationary. Once the test results (Table
1) show that all fMRI time series are non-stationary, the next step is to choose the
appropriate smoothing technique by ACF plot.

The ACF plot is a powerful graphical tool to measure the correlation between observations
at different distances apart, to check the randomness of data and to find repeating pattern in
them. Given the time series X given in equation 1, the ACF between its observations xt and
xt−i is defined as

(13)

where cov(xt−i,xt−i) is the covariance of xt and xt−i, and  is the variance of the series [13,
21]. If the autocorrelation dies out quickly in the plot (with autocorrelations on the y axis
and the different time lags on the x axis), the series should be considered as stationary [14,
32]; especially if the autocorrelations are close to zero, the data are considered as white
noise. Otherwise, the data will be considered as non-stationary time series [33];.
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Data preprocessing
Differencing is a classical tool to transform the dataset from non-stationary to stationary.
The first-order difference of a time series is the one that changes from one period to the
next, that is, at time period t the first order difference of series X is xt − xt−1 denoted by Δxt.
Here, we only list the ACF plots (Figure 2) for the subject 1 at section 1(see Table 1)
restricted to the page limit. The rest of the ACF plots are very similar to Figure 2. Since
Figure 2 shows seasonal trends for each time series, the differencing method is adopted to
remove these trends from the time series.

Therefore, the equation 1 through equation 4 can be rewritten as

(14)

(15)

(16)

(17)

After the first-order difference, ADF test is employed again of Δxt to evaluate whether the
treated dataset is stationary or non-stationary. If it is still non-stationary, the second-order
difference (Δ2xt = xt − 2xt−1 + xt−2) should be applied. However, if the series need
differencing more than twice we should use other methods, such as log transformation. In
the results section of the study, we are going to discuss the data preprocessing result in
detail.

Model Selection
After the stationary data set is generated, the order of the equation 14 to 17 by computing
the approximation to the criteria values of Schwarz's Bayesian information criterion (SBIC)
is identified with ARFIT algorithm [23, 34]. SBIC is an information criterion used for
goodness-of-fit model selection for fixed effects models with different number of parameters
at some significance level, and the one with lower SBIC fits the data better. Given the time
series X in equation 1, the corresponding SBIC can be calculated as

(18)

where n is the number of observations in X, p is the order of the AR model and U1 is the
residual matrix of X. We choose the order of AR model, p, with smallest SBIC value.
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Linear feedback calculation
After the order of AR models is determined, the linear feedback for each pair of brain
regions by equation 5 and 6 is computed. Then, the conventional large-sample distribution
theory is used to test the null hypothesis that a given measure of feedback zero. As indicated
by Geweke’s research[7] if FY→X = 0, then ; if FX→Y = 0, then

; if FX·Y = 0, then ; if FX,Y= 0, then . The
k, l are the number of columns in the residual matrix U1n×k, V1n×l. And p is the lag of
autoregressive models. With respect to this null hypothesis test, we can have the followed
eight relations (equations 19.1–19.8) between two series X and Y [35] described by Figure 3.

Results
Stationary check for the dataset

Table 1 shows the ADF test results for time series M1, SMA, and cerebellum. It indicates
that each time series is non-stationary at 10% significant level. Restricting to page limit,
Figure 2 shows the ACF plots of each time series for subject 1 at session 1. However, the
ACF plots of the rest of persons are similar with Figure 2. For this reason, we should employ
differencing method to transform the dataset from non-stationary to stationary time series.

Data transformation from non-stationary to stationary time series
Table 2 shows ADF test results for time series M1, SMA, and cerebellum after the first-order
differencing method is applied. Now each time series is stationary and the Hochberg’s[36]
step-up multiple test procedure is implemented. This procedure is based on the individual P-
value (Table 3) calculated by ADF test and concluded that the stationarity assumption has
been satisfied. Figure 4 describes the ACF plot of these time series for subject 1 in session 1
restricting to the page limit. Figure 4 shows that seasonal trend has been removed from time
series for subject 1 in session 1 after first-order differencing. Our results show that ACF
plots for the remaining subjects are similar.

Order selection for the Geweke-Granger causality model
By equation 18, we evaluated the order p of the Geweke-Granger models with smallest SBIC
values. With respect to the time interval of the previous fMRI experiments (2 seconds)[19],
the candidates order p is limited from 1, 2 and 3. And the results in Table 4 show when p=1,
for most of sessions, Geweke-Granger model will receive minimum SBIC value. Therefore,
we choose p=1 as the order of the model.

Causality among different brain regions
The Table 5 lists the directions among different brain regions by session. The sign is
introduced by the equations 19.1–19.8. It reveals the following emergent phenomenon.

1. Most of the relations are instantaneous causality only without direction, X causes Y
with instantaneous causality (X→Y) and Y causes X with instantaneous causality
(Y→X). In the rest of the discussion, we denote the directed relation as X causes Y
with instantaneous causality and Y causes X with instantaneous causality.

2. There should be strong directed relations between M1 and cerebellum, because we
detect sixteen signals between these regions regarding to thirty six experiments as
well as ten times the direction is from cerebellum to M1 and six times from M1 to
cerebellum.
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3. There should be strong directed relations between M1 and SMA because we detect
ten signals between these regions regarding to thirty six experiments as well as five
times the direction is from cerebellum to M1 and five times from M1 to cerebellum.

The Table 6 lists the directions among different brain regions by subject, which explores the
following emergent phenomenon.

1. It shows that all the subjects response to the stimulation during right finger-tapping
task.

2. Except one subject, the rest of the five subjects have the similar response pattern to
the stimulation.

3. As we discussed in equation 9, the sum of the measure of linear dependence FX,Y is
the linear combination of directed linear feedback FX→Y and FY→X as well as the
instantaneous linear feedback (FX·Y). Here, the instantaneous linear feedback (FX·Y)
takes very high percentage over the sum of the measure of linear dependence FX,Y,
most of the percentage is more than 90%.

Discussion and conclusion
This study applied Granger-Geweke Causality model to investigate the effective
connectivity of M1, SMA and cerebellum during the finger-tapping task. Equation 9 shows
that linear dependence FX,Y has three components, instantaneous linear feedback (FX·Y),
directed linear feedback (FX→Y and FY→X). Especially, instantaneous linear feedback (FX·Y)
describes the impact between time series X and Y at current time step. And directed linear
feedback (FX→Y and FY→X) describes how the effect of time series X or Y in previous t−1
time steps affects time series Y or X at t time step. Actually, the relation between two time
series could include more than one type of linear feedbacks simultaneously. Therefore,
Kirchgässner and Wolters[35] classified these linear feedbacks to eight relations (equations
19.1–19.8), which are not independent each other.

The current results show (Table 5) that most of the pair wise relations between the brain
regions are instantaneous causality only without direction (equation 19.2), X causes Y with
instantaneous causality (equation 19.3) and Y causes X with instantaneous causality
(equation 19.5). The rest relation such as feedback without instantaneous causality (equation
19.8) only appears twice (Table 5). Here, we denote the relations like X causes Y with
instantaneous causality (equation 19.3) and Y causes X with instantaneous causality
(equation 19.5) as the directed relation in the rest of the discussion. Table 6 shows
instantaneous causality only without direction (equation 19.2) is the most favorite relation in
the results. More importantly, the most popular relation instantaneous linear feedback (FX·Y)
component takes high percentage (mostly more than 90% (Table 6)) of the sum of the linear
dependency (FX,Y). The phenomena imply that neurology response time period should be
shorter than the fMRI time interval (2 seconds). Next, the directed relations among these
brain regions were investigated. Figure 5 describes the directed relations between each pair
of the brain regions. It shows strong directed relations between M1 and cerebellum, M1 and
SMA, because there are sixteen and ten directed signals transductions occurred between the
pair of these regions, respectively. Additionally, if we consider each region as a node of the
brain network, Figure 6 demonstrates that M1 should be a busy node, since it is involved 26
directed signal transductions. Particularly, this finding matches the anatomical
observations[24] that the both SMA and Cerebellum project to M1. Furthermore, Figure 5
shows that SMA and cerebellum are the regions which have less directed signal
transductions. Due to that, we consider the number of intermediate nodes between SMA and
cerebellum should be fewer than others which will not cause many latency of the signal
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transduction between these regions. Figure 7 shows the directed simulation response is
stable and believable, since five out six subjects shows the directed relations.

In summary, the results demonstrate strong linear feedback among SMA, M1 and cerebellum
as our previous study. Especially, the instantaneous linear feedback plays the very important
role. Also, strong directed relations were found between M1 and cerebellum, M1 and SMA.
It derives that M1 should be the hub of these three regions and such findings agree with the
observation of anatomy that both SMA and Cerebellum project to M1. Also, indicated by the
anatomy field[24], the distance between SMA and M1 is the shortest, but a number of
directed signals are detected (Figure 5), which implies a high intermediate node density
existing in the area between these two regions. On the other hand, the distance between SMA
and cerebellum is much longer than SMA and M1, but many directed relations between them
cannot be obtained. We postulate that there are not many intermediate nodes in the area
between SMA and cerebellum compared to the area between SMA and M1.
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Figure 1.
A general procedure to employ Granger-Geweke Causality model to investigate the relations
among the interesting regions of the brain.
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Figure 2.
The ACF plot of observations within each brain area for the subject 1 in Session 1. The x
axis represents the number of lag; the y axis represents the autocorrelation.
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Figure 3.
The relations between two time series
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Figure 4.
The ACF plot of first-order differenced observations within each brain area for the subject 1
in session 1. The x axis represents the number of lag; the y axis represents the
autocorrelation.
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Figure 5.
The directed relation between every two brain areas. The arrow indicates the direction of
causality. The label of each link indicates the number of the directed signals.
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Figure 6.
The number of directed signal transductions for each brain regions, M1, cerebellum and
SMA.
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Figure 7.
The directed relation between every two brain areas. The label of each link indicates the
numbers of subject out of six have the relation between these two regions.

Zhang et al. Page 17

J Biomed Sci Eng. Author manuscript; available in PMC 2011 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Zhang et al. Page 18

Ta
bl

e 
1

AD
F 

te
st

 re
su

lts
 fo

r t
im

e 
se

rie
s M

1,
 S

M
A 

an
d 

ce
re

be
llu

m

Su
bj

ec
t

Se
ss

io
n

M
1

SM
A

ce
re

be
llu

m
Su

bj
ec

t
Se

ss
io

n
M

1
SM

A
ce

re
be

llu
m

1

S1
0.

62
83

0.
69

88
0.

73
38

4

S1
0.

62
56

0.
88

48
0.

83
32

S2
0.

88
34

0.
79

67
0.

84
06

S2
0.

69
81

0.
70

02
0.

84
2

S3
0.

69
15

0.
71

64
0.

65
93

S3
0.

70
63

0.
74

29
0.

90
74

S4
0.

63
21

0.
52

4
0.

64
05

S4
−
0.
11
3

−
0.
27

−
0.
10
72

S5
0.

57
59

0.
85

67
0.

82
47

S5
0.

85
79

0.
79

53
0.

78
11

S6
0.

77
28

0.
75

33
0.

93
37

S6
0.

75
94

0.
90

34
0.

86
19

2

S1
0.

76
97

0.
68

38
0.

71
79

5

S1
0.

70
73

0.
76

33
0.

76
59

S2
0.

58
57

0.
65

71
0.

60
15

S2
0.

83
68

0.
84

08
0.

85
12

S3
0.

74
62

0.
73

52
0.

72
48

S3
0.

69
26

0.
81

52
0.

81
25

S4
0.

66
97

0.
78

57
0.

74
02

S4
0.

71
43

0.
76

67
0.

79
99

S5
0.

60
79

0.
58

5
0.

71
34

S5
0.

66
98

0.
72

42
0.

66
12

S6
0.

64
73

0.
66

64
0.

84
95

S6
0.

80
22

0.
87

28
0.

82
55

3

S1
0.

70
59

0.
82

23
0.

83
81

6

S1
0.

58
49

0.
84

09
0.

66
31

S2
0.

68
82

0.
77

47
0.

76
34

S2
0.

80
7

0.
76

44
0.

84

S3
0.

69
72

0.
88

79
0.

77
82

S3
0.

69
15

0.
71

64
0.

65
93

S4
0.

87
51

0.
78

2
0.

63
41

S4
0.

76
88

0.
55

15
0.

80
83

S5
0.

62
04

0.
70

89
0.

60
91

S5
0.

69
08

0.
69

05
0.

71
62

S6
0.

77
09

0.
83

31
0.

87
59

S6
0.

78
11

0.
83

98
0.

84
79

J Biomed Sci Eng. Author manuscript; available in PMC 2011 September 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Zhang et al. Page 19

Ta
bl

e 
2

AD
F 

te
st

 re
su

lts
 fo

r f
irs

t-o
rd

er
 d

iff
er

en
ce

d 
tim

e 
se

rie
s M

1,
 S

M
A 

an
d 

ce
re

be
llu

m
.

Su
bj

ec
t

Se
ss

io
n

M
1

SM
A

ce
re

be
llu

m
Su

bj
ec

t
Se

ss
io

n
M

1
SM

A
ce

re
be

llu
m

A
y

S1
−
6.
24
01

−
5.
12
29

−
5.
05
59

M
w

e

S1
−
7.
03
35

−
5.
20
7

−
3.
96
94

S2
−
4.
39
75

−
4.
48
1

−
4.
78
84

S2
−
4.
85
56

−
7.
17
19

−
3.
38
72

S3
−
5.
15
25

−
5.
43
16

−
4.
56
84

S3
−
5.
79
65

−
5.
43
41

−
3.
13
31

S4
−
7.
27
45

−
7.
94
21

−
6.
28
19

S4
−
11
.2
84

−
10
.8
79
7

−
12
,0
45
8

S5
−
6.
75
13

−
3.
13
35

−
5.
38
33

S5
−
5.
19
12

−
4.
39
87

−
4.
28
6

S6
−
4.
42
35

−
5.
78
43

−
3.
05
88

S6
−
10
.9
81
2

−
8.
86
44

−
6.
81
67

M
j

S1
−
4.
61
3

−
7.
03
75

−
5.
04
71

W
i

S1
−
4.
83
46

−
5.
32
48

−
4.
77
2

S2
−
6.
86
88

−
6.
88
3

−
6.
37
38

S2
−
2.
89
13

−
3.
96
84

−
2.
29
62

S3
−
4.
49
81

−
4.
05
34

−
5.
90
15

S3
−
4.
61
29

−
4.
61
22

−
3.
92
87

S4
−
4.
91
6

−
5.
67
06

−
4.
25
94

S4
−
4.
45
93

−
4.
55
42

−
5.
15
56

S5
−
7.
59
81

−
6.
83
71

−
6.
41
66

S5
−
4.
47
34

−
6.
08
08

−
6.
04
91

S6
−
7.
42
77

−
8.
46
13

−
3.
42
88

S6
−
2.
95
85

−
2.
52
92

−
3.
64
65

M
m

S1
−
4.
21
32

−
4.
51
37

−
2.
39
73

Y
t

S1
−
3.
90
59

−
5.
54
96

−
4.
46
26

S2
−
3.
05
48

−
4.
62
81

−
4.
39
99

S2
−
4.
31
65

−
5.
56
88

−
3.
47
85

S3
−
4.
06
6

−
3.
77
52

−
5.
01
95

S3
−
5.
15
25

−
5.
43
16

−
4.
56
84

S4
−
3.
84
8

−
4.
88
16

−
6.
10
45

S4
−
4.
00
86

−
5.
63
79

−
4.
92
53

S5
−
5.
69
78

−
4.
81
86

−
5.
20
83

S5
−
6.
75
13

−
3.
13
35

−
5.
38
33

S6
−
2.
81
61

−
4.
57
13

−
2.
49
98

S6
−
3.
20
64

−
3.
52
99

−
3.
22
31

J Biomed Sci Eng. Author manuscript; available in PMC 2011 September 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Zhang et al. Page 20

Ta
bl

e 
3

Th
e 

p-
va

lu
e 

of
 A

D
F 

te
st

.

Su
bj

ec
t

Se
ss

io
n

M
1

SM
A

ce
re

be
llu

m
Su

bj
ec

t
Se

ss
io

n
M

1
SM

A
ce

re
be

llu
m

1

S1
4.

88
·1

0−
9

9.
79

·1
0−

7
1.

32
·1

0−
6

4

S1
8.

18
·1

0−
11

6.
71

·1
0−

7
0.

00
01

15

S2
2.

15
·1

0−
5

1.
53

·1
0−

5
4.

23
·1

0−
6

S2
3.

17
·1

0−
6

3.
92

·1
0−

11
0.

00
09

17

S3
8.

57
·1

0−
7

2.
40

·1
0−

7
1.

07
·1

0−
5

S3
4.

3·
10

−
8

2.
38

·1
0−

7
0.

00
21

1

S4
2.

26
·1

0−
11

5.
86

·1
0−

13
3.

96
·1

0−
9

S4
<2

·1
0−

16
<2

·1
0−

16
<2

·1
0−

16

S5
<2

·1
0−

16
2.

07
·1

0−
9

<2
·1

0−
16

S5
7.

2·
10

−
7

2.
14

·1
0−

5
3.

37
·1

0−
5

S6
1.

94
·1

0−
5

4.
45

·1
0−

8
0.

00
26

6
S6

<2
·1

0−
16

3.
32

·1
0−

15
2.

61
·1

0−
10

2

S1
8.

87
·1

0−
6

8·
10

−
11

1.
37

·1
0−

6

5

S1
<2

·1
0−

16
4.

56
·1

0−
16

<2
·1

0−
16

S2
<2

·1
0−

16
<2

·1
0−

16
<2

·1
0−

16
S2

9.
3·

10
−

12
2.

83
·1

0−
15

7.
28

·1
0−

12

S3
1.

43
·1

0−
5

8.
34

·1
0−

5
2.

59
·1

0−
8

S3
9.

88
·1

0−
16

2.
09

·1
0−

13
2.

22
·1

0−
15

S4
2.

44
·1

0−
6

7.
84

·1
0−

8
3.

74
·1

0−
5

S4
<2

·1
0−

16
4.

65
·1

0−
15

<2
·1

0−
16

S5
3.

91
·1

0−
12

2.
3·

10
−

10
2.

01
·1

0−
9

S5
2.

29
·1

0−
15

<2
·1

0−
16

<2
·1

0−
16

S6
9.

88
·1

0−
12

3.
17

·1
0−

14
0.

00
07

97
S6

1.
4·

10
−

10
2.

89
·1

0−
10

3.
97

·1
0−

13

3

S1
4.

49
·1

0−
5

1.
34

·1
0−

5
0.

01
78

6

S1
3.

06
·1

0−
14

<2
·1

0−
16

2.
6·

 1
0−

16

S2
0.

00
27

8.
33

·1
0−

6
2.

13
·1

0−
5

S2
6.

07
·1

0−
11

<2
·1

0−
16

3.
22

·1
0−

13

S3
7.

94
·1

0−
5

0.
00

02
35

1.
55

·1
0−

6
S3

<2
·1

0−
16

<2
·1

0−
16

<2
·1

0−
16

S4
0.

00
01

8
2.

83
·1

0−
6

9.
58

·1
0−

9
S4

1.
83

·1
0−

12
<2

·1
0−

16
2.

43
·1

0−
16

S5
6.

89
·1

0−
8

3.
71

·1
0−

6
6.

67
·1

0−
7

S5
1.

04
·1

0−
12

8.
9·

10
−

12
4.

93
·1

0−
12

S6
0.

00
55

6
1.

06
·1

0−
5

0.
01

36
S6

2.
06

·1
0−

14
1.

24
·1

0−
9

<2
·1

0−
16

J Biomed Sci Eng. Author manuscript; available in PMC 2011 September 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Zhang et al. Page 21

Ta
bl

e 
4

Th
e 

or
de

r o
f A

R 
m

od
el

 fo
r e

qu
at

io
n 

14
 to

 e
qu

at
io

n 
17

.

Su
bj

ec
t

Se
ss

io
n

M
1

SM
A

ce
re

be
llu

m
Su

bj
ec

t
Se

ss
io

n
M

1
SM

A
ce

re
be

llu
m

1

S1
1

1
1

4

S1
2

1
1

S2
1

1
2

S2
1

1
1

S3
1

1
1

S3
1

1
1

S4
1

2
1

S4
3

1
2

S5
1

1
1

S5
1

1
1

S6
1

1
1

S6
1

1
1

2

S1
1

2
1

5

S1
1

1
1

S2
1

1
1

S2
1

1
1

S3
1

1
1

S3
1

1
1

S4
1

1
1

S4
1

1
1

S5
1

1
1

S5
1

1
1

S6
2

2
1

S6
1

1
1

3

S1
1

1
1

6

S1
2

2
1

S2
1

1
1

S2
1

1
1

S3
1

1
1

S3
1

1
1

S4
1

1
1

S4
1

1
1

S5
1

1
1

S5
1

1
1

S6
1

1
1

S6
1

1
1

J Biomed Sci Eng. Author manuscript; available in PMC 2011 September 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Zhang et al. Page 22

Ta
bl

e 
5

Th
e 

re
la

tio
ns

 b
et

w
ee

n 
m

ul
tiv

ar
ia

te
 b

ra
in

 a
re

as
 in

ve
st

ig
at

ed
 b

y 
fM

RI
 so

rt 
by

 se
ss

io
ns

.

su
bj

ec
t

M
1,

SM
A

M
1,

 c
er

eb
el

lu
m

SM
A

, c
er

eb
el

lu
m

su
bj

ec
t

M
1,

SM
A

M
1,

 c
er

eb
el

lu
m

SM
A

, c
er

eb
el

lu
m

S1

1
–

→
–

S

1
–

–
–

2
–

–
–

2
–

–
–

3
–

←
–

3
–

–
–

4
⇔

←
→

4
←

←
–

5
←

←
–

5
–

←
←

6
–

–
–

6
←

–
←

S2

1
→

→
–

S

1
–

–
–

2
–

–
–

2
–

–
–

3
–

←
←

3
–

–
–

4
–

–
–

4
→

⇔
–

5
–

←
–

5
–

–
–

6
→

→
–

6
←

→
→

S3

1
–

–
–

S

1
–

←
←

2
–

–
–

2
–

–
–

3
←

→
→

3
–

←
–

4
–

←
–

4
–

–
←

5
–

–
–

5
→

–
–

6
–

→
–

6
→

–
–

J Biomed Sci Eng. Author manuscript; available in PMC 2011 September 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Zhang et al. Page 23

Ta
bl

e 
6

Th
e 

re
la

tio
ns

 b
et

w
ee

n 
m

ul
tiv

ar
ia

te
 b

ra
in

 a
re

as
 in

ve
st

ig
at

ed
 b

y 
fM

RI
 so

rt 
by

 su
bj

ec
ts

. T
he

 n
um

be
r i

n 
th

e 
pa

ra
gr

ap
h 

sh
ow

s t
he

 ra
tio

 o
f F

X·
Y 

/ F
X,

Y.

su
bj

ec
t

M
1,

SM
A

M
1,

 c
er

eb
el

lu
m

SM
A

, c
er

eb
el

lu
m

su
bj

ec
t

M
1,

SM
A

M
1,

 c
er

eb
el

lu
m

SM
A

, c
er

eb
el

lu
m

1

S1
–

→
(9

9.
5%

)
–

4

S1
⇔

←
(9

5.
4%

)
→

(9
5.

4%
)

S2
→

(9
6.

1%
)

→
(9

2.
4%

)
–

S2
–

–
–

S3
–

–
–

S3
–

←
(9

6.
1%

)
–

S4
–

–
–

S4
←

(6
7.

9%
)

←
(2

4.
5%

)
–

S5
–

–
–

S5
→

(9
1.

6%
)

⇔
–

S6
–

←
(9

6.
7%

)
←

(9
7.

7%
)

S6
–

–
←

(9
3.

3%
)

2

S1
–

–
–

5

S1
←

(9
6.

6%
)

←
(9

9.
7%

)
–

S2
–

–
–

S2
–

←
(9

7.
7%

)
–

S3
–

–
–

S3
–

–
–

S4
–

–
–

S4
–

←
(9

6.
3%

)
←

(9
5.

4%
)

S5
–

–
–

S5
–

–
–

S6
–

–
–

S6
→

(9
5.

8%
)

–
–

3

S1
–

←
(9

6.
9%

)
–

6

S1
–

–
–

S2
–

←
(9

3.
5%

)
←

(9
4.

6%
)

S2
→

(9
6.

9%
)

→
(9

7.
5%

)
–

S3
←

(9
4.

1%
)

→
(9

6.
7%

)
→

(9
6.

7%
)

S3
–

→
(9

7.
2%

)
–

S4
–

–
–

S4
←

(9
9.

2%
)

–
←

(9
6.

5%
)

S5
–

–
–

S5
←

(9
2.

3%
)

→
(9

2.
9%

)
→

(9
2.

2%
)

S6
–

←
(9

5.
7%

)
–

S6
→

(9
6.

9%
)

–
–

J Biomed Sci Eng. Author manuscript; available in PMC 2011 September 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Zhang et al. Page 24

Relations Sign equation

X and Y are independent, if

FX ,Y = 0

(x,y) (equation 19.1)

Instantaneous causality only without direction, if

FX ,Y ≠ 0, FY→X = 0, FX→Y = 0

(x–y) (equation 19.2)

X causes Y, with instantaneous causality, if

FX ,Y ≠ 0, FY→X = 0, FX→Y ≠ 0

(x→y) (equation 19.3)

X causes Y, without instantaneous causality, if

FX ,Y = 0, FY→X = 0, FX→Y ≠ 0

(x=>y) (equation 19.4)

Y causes X, with instantaneous causality, if

FX ,Y ≠ 0, FY→X ≠ 0, FX→Y = 0

(x←y) (equation 19.5)

Y causes X, without instantaneous causality, if

FX ,Y = 0, FY→X ≠ 0, FX→Y = 0

(x<=y) (equation 19.6)

Feedback with instantaneous causality, if

FX ,Y ≠ 0, FY→X ≠ 0, FX→Y ≠ 0

(x↔y) (equation 19.7)

Feedback without instantaneous causality

FX ,Y = 0, FY→X ≠ 0, FX→Y ≠ 0

(x⇔y) (equation 19.8)
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