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Abstract
Side-population (SP) analysis has been used to identify progenitor cells from normal and
malignant tissues as well as revealing tumor cells with increased resistance to radiation and
chemotherapy. Despite enhanced chemoresistance, tumor SP cells may still express tumor
associated antigens (TAA) which may render them susceptible to elimination by the immune
system. In this study, we show that both Hodgkin’s lymphoma (HL) cell lines and primary HL
tumor samples contain a distinct SP phenotype. Importantly, while these cells showed increased
resistance to gemcitabine, a commonly used drug for the treatment of refractory HL, HL SP cells
also expressed higher levels of the TAAs MAGEA4, SSX2, Survivin and NY-ESO-1 which
allowed them to be specifically recognized and killed by TAA-specific cytotoxic T lymphocytes.
This study suggests that chemoresistant HL SP cells can be targeted by the immune system,
providing a rationale for combined chemotherapy and immunotherapy for the treatment of HL.
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INTRODUCTION
Hodgkin’s lymphoma (HL) is a common hematological malignancy, for which standard
chemotherapy regimens produce long-term, disease-free survival in more than 85% of
patients [1]. The remainder of these patients, however, will die of relapse [2], likely caused
by a small number of cells resistant to chemotherapy or radiation treatment that are not
eliminated by the endogenous immune system. SP analysis has been used to identify cells
with stem/progenitor cell-like characteristics from normal [3,4] and malignant tissues [5–
13]. However, SP cells also express multi-drug transporter proteins, including MDR1 and
ABCG2 [14,15], which not only efflux Hoechst dye but also rapidly reduce the intracellular
concentrations and thus the cytotoxicity of many commonly used therapeutic drugs [16–18].

We previously identified tumor cells with primary drug resistance using side-population
(SP) analysis [6]. Despite their resistance to chemotherapeutics, SP cells may still be
susceptible to immune responses since Englemann and colleagues demonstrated that SP
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cells from the MCF7 breast cancer cell line, which are both resistant to chemotherapeutic
drugs and radiation [19], express the tumor-associated antigen (TAA) MUC1, which is a
target of antigen-specific CTL [20,21]. Hence, the identification of antigens expressed by SP
tumor cells may allow the development of immune-based therapies that target tumor cells
resistant to conventional treatment modalities. Our own studies have suggested the clinical
relevance of immune targeting of chemoresistant cells, since treatment of relapsed/
chemoresistant Epstein-Barr virus (EBV) positive HL with cytotoxic T lymphocytes (CTL)
specific for EBV lytic antigens [22] or latent antigens (e.g. LMP-1 and 2) can induce
complete disease responses [23]. Additionally, Till et al showed that infusion of CTL
genetically engineered to express an anti-CD20 chimeric antigen receptor could also
promote partial and complete responses in patients with relapsed and refractory B cell
lymphomas [24]. In other words, adoptive T cell therapy may eradicate chemoresistant
tumors provided that the antigenic targets are expressed by the residual cells.

Our current data show the existence of an SP subset in HL which have primary drug
resistance, but which remain (like classical Hodgkin’s Reed-Sternberg (HRS) cells) CD30
positive, and express high levels of TAAs following demethylation with decitabine. The
ability to target this SP subset by immunotherapy may further improve the response rates in
subjects with relapsed and refractory HL.

MATERIALS AND METHODS
Cell Lines and Primary Tumor Samples

We obtained four EBV negative HL cell lines L428, HDLM2, L1236 and L540 from DSMZ
(Braunschweig, Germany). All were maintained in RPMI 1640 supplemented with 10% fetal
bovine serum (FBS) (FBS; Gibco, Carlsbad, CA) and 2 mM L-glutamine (GlutaMAX;
Gibco). Primary tumor samples were obtained through a Baylor College of Medicine
Institutional Review Board approved protocol. Fresh tissue specimens were prepared on the
day of resection by passing the cultured cells multiple times through a 100 micron filter to
make a single cell suspension. Cells were then prepared and analyzed as described below.

SP Analysis and Phenotyping
For SP analysis, HL cell lines and primary HL tumor cells were resuspended at 1×106 cells/
ml in pre-warmed RPMI with 2% FBS and 10 mM HEPES (Sigma-Aldrich, St. Louis, MO).
Hoechst 33342 dye (Sigma) was added to a final concentration of 5 μg/ml as previously
described [3]. Cells were then incubated at 37 C for 105 minutes, washed in ice cold Hank’s
buffered salt solution supplemented with 2% FBS and 10 mM HEPES (HBSS+) and then
immediately placed on ice. Where indicated, cells were co-incubated with 50 μM Verapamil
(Sigma) to block Hoechst efflux. For analysis of SP frequency, a live gate was defined by
using the Hoechst red and blue axes to exclude dead cells (PI positive) and debris. For
further phenotypic analyses, Hoechst labeled cells were subsequently stained with
fluorescent-conjugated antibodies: CD3, CD15, CD19, CD20 and CD30 (all from BD
Biosciences, San Jose, CA) for 15 minutes on ice. Cells were then washed again and
resuspended in ice cold HBSS+ buffer containing 2 μg/ml propidium iodide (PI; Sigma-
Aldrich) for dead cell exclusion. Gates for SP and NSP (bulk tumor cells) were subsequently
used to determine expression of surface antibodies using a BD LSRII analyzer (BD
Bioscience, San Jose, CA). For SP and NSP isolation, we sorted cells using a high-speed cell
sorter (MoFlo, Dako Cytomation, Fort Collins, CO) as previously described [6].

Gemcitabine Drug Resistances Assays
We sorted HL cells from the SP and NSP subsets and grew equal numbers in culture media
as described above, either with or without treatment with 10 nM gemcitabine (Eli Lily,
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Indianapolis, IN). For cell viability assays, 5000 sorted SP or NSP cells were cultured with
2×105 gemcitabine-sensitive L1236 feeder cells (for 2% chemoresistant cell frequency). SP
and NSP cells were then either cultured without drug or treated with 10 nM gemcitabine
(added daily) for 72 hours. Following drug exposure, we washed the cells and plated them in
fresh media without gemcitabine for 48 hours, and counted viable cells by trypan blue dye
exclusion. To measure cell proliferation, 2000 SP or NSP cells were plated into 96-well
plates in triplicate and cultured with or without gemcitabine for 7 days. On day 7, cells were
incubated with 5 μCi [3H]-thymidine for 16 hours and then harvested and counted for [3H]-
thymidine incorporation using a TriCarb 2500 TR β-counter (Perkin Elmer, Waltham, MA).
Results are shown as counts per minute (CPM). To determine whether SP or NSP cells
undergo cell death and apoptosis following gemcitabine exposure, we used the fluorochrome
inhibitor of caspases (FLICA) (Abd Serotec, Raleigh, NC), which measures apoptosis by
detecting active caspases (poly-caspase; caspase-1, -3, -4, -5, -6, -7, -8 and -9) in living cells
[25]. Here, tumor cell lines were first cultured with or without 10 nM for 48 hours, then
harvested and stained with Hoechst dye, followed by incubation with carboxyfluorescein
labeled FLICA for 5 minutes at 37° and 5% CO2, followed washing and resuspension in
PBS containing PI. Cells were placed on ice and analyzed for SP and apoptosis by flow
cytometry using the LSRII analyzer (BD).

Immunohistochemistry
Cell lines and primary HL samples were cultured in the presence of 1 μM 5-aza-2′-
deoxycitabine (Decitabine; Sigma-Aldrich) for 48 hours whereas control cells were cultured
in media only. After incubation, cells were washed and cultured without decitabine for an
additional 5 days to allow for TAA protein expression. Cells were harvested and
resuspended in phosphate buffered saline (PBS; Sigma-Aldrich), mounted onto glass slides
(Shandon Cytospin 4 Cytocentrifuge; Thermo Scientific, Waltham, MA) and then fixed with
4% paraformaldehyde (Cytofix; BD). Cells were subsequently permeabilized using 0.3%
Triton-X-100 (Gibco) for 5 minutes followed by incubation with Digest ALL1 (Zymed, San
Francisco, CA) for 10 minutes at 37°C. To block endogenous peroxidase activity, cells were
treated with 3% hydrogen peroxide (Sigma). We used Powervision+ kits (ImmunoVision
Technologies, Daly City, CA) according the manufacturer’s recommendation for
immunohistochemical analysis. Briefly, slides were first incubated in pre-block/diluent for
30 minutes followed by incubation with mouse anti-human MAGEA4 antibody (AbCam,
Cambridge, MA) diluted 1:50 in dilutant for 1 hour at room temperature. We used anti-
mouse/anti-rabbit horseradish peroxidase (HRP) to detect MAGEA4 positive cells, followed
by enzymatic conversion using the chromogenic substrate 3,3 diaminobenzidine (DAB).

Gene Expression Analysis
To compare expression of ABC transporter genes, RNA was isolated from equal numbers of
sorted SP and NSP cells using Qiagen RNeasy Micro Kits (Qiagen, Valencia, CA) and used
as template for OneStep RT-PCR (Qiagen) with gene-specific primers to ABCG2, MDR1,
MAGEA4, SSX2, NY-ESO-1 and Survivin (purchased from SABiosciences, Frederick,
MA) and normalized to expression of the housekeeping gene, GAPDH (SABiosciences). To
measure TAA gene expression and the effects of decitabine demethylation on gene
expression, cells were cultured with and without decitabine as described above. 48 hours
after decitabine exposure, cells were harvested and analyzed for TAA transcripts using One-
Step RT-PCR with the above gene-specific primers using conditions specified by the
manufacturer. PCR bands were visualized on 1% agarose gels with ethidium bromide
(Sigma).
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Generation of MAGEA4-Specific CTL
To isolate and expand MAGEA4-specific CTL (MAGE-CTL), we generated monocyte-
derived dendritic cells (DC) by isolating CD14+ monocytes from peripheral blood
mononuclear cells (PBMC) using magnetic CD14+ bead separation (MACS, Miltenyi,
Auburn, CA). Purified monocytes (>80%) were subsequently cultured in DC media
(CellGenix, Antioch, IL) supplemented with 1000 U/ml IL-4 and 800 U/ml GM-CSF (both
from R&D Systems, Minneapolis, MN). After 5 days, DC were matured in a cocktail
containing PGE2 (1 μg/ml), IL-1β (10 ng/ml), IL-6 (100 ng/ml) and TFN-α (10 ng/ml) (all
from R&D). On day 7, DC were harvested and pulsed with 2 μg/ml of a MAGEA4
overlapping peptide library (PepMix library, 15mers overlapping by 11 amino acids; JPT
Technologies, Berlin, Germany), irradiated (30 Gy) and used to stimulate autologous PBMC
at a ratio of 1:10 DC to PBMC on days 0 and 9 of the CTL culture. During the initial
stimulation, culture media was supplemented with IL-7 (10 ng/ml), IL-12 (1 ng/ml) and
IL-15 (2 ng/ml) (all from R&D). During the second and subsequent stimulations, CTL
cultures were stimulated with peptide-pulsed DC in the presence of IL-7 alone. On day 12,
culture media was supplemented with 50 U/ml IL-2 (Proleukin; Chiron, Emeryville, CA) to
promote cell expansion.

ELIspot Assays
IFN-γ ELIspot assays have been previously described [26]. T cells were plated in triplicate
and MAGEA4 or an irrelevant peptide library added. Plates were then developed and IFN-γ
spot number determined by an independent, blinded observer (ZellNet Consulting, Inc., NY,
NY).

CTL and Tumor Cell Co-Cultures Assays
To determine whether CTL could recognize and eliminate CTA expressing SP cells, we
added decitabine to 1 μM concentration daily for two days to 5×105 HDLM2 tumor cells in
triplicate. After drug treatment, the tumor cells were washed and grown in fresh media
without drug, and co-cultured with 1×106 MAGE-A4-specific, HLA-A*02 matched or non-
matched CTL. After 5 days, the co-cultures were analyzed for SP frequency and cell
viability, using trypan blue exclusion. We reported the results as the percentage viable cells
in the drug treated versus untreated tumor SP cells. Cell death following co-culture assays
was also measured by PI positivity by flow cytometry.

Statistics
All in vitro data are presented as means plus or minus standard deviation. Where applicable,
2 tailed student t tests were used to determine the statistical significance differences between
samples. A p value of ≤.05 was considered significant.

RESULTS
Detection of SP in HL Cell Lines

To determine whether HL contains a chemoresistant SP subset, we stained four HL cell lines
(HDLM2, L428, L1236 and L540) with Hoechst 33342 dye and analyzed them by flow
cytometry. In two of the cell lines, HDLM2 and L428, we detected a distinct SP phenotype
forming 0.1% and 0.48% of the total cells, respectively (Figure 1a). To confirm that the SP
phenotype was due to transporter dependent mechanisms, we co-incubated the cells with
Verapamil, which abolished Hoechst efflux and SP formation (Figure 1b) indicating that this
phenotype was not attributable to non-specific staining (Figure 1b). Two of the four HL cell
lines, L1236 and L540, lacked SP cells (Figure 1c).
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Detection of CD30+ SP Cells in Primary Tumor Biopsies
We next sought to determine whether primary HL samples contained SP cells, and whether
these cells expressed phenotypic markers characteristic of HRS cells
(CD30+CD15+CD20−) [27]. We analyzed 6 primary lymph node biopsies from HL patients
and found that all (100%) samples contained a distinct SP phenotype (range = 0.02%–6.5%;
mean = 1.7%) (Figure 2a). Fromm and colleagues demonstrated that HRS cells can be
detected by flow cytometry using a panel of surface markers (CD30+, CD15dim CD20− and
CD45−), and that HRS cells were often found in HRS-T cell rosettes [28,29]. To determine
if SP cells possessed a similar HRS phenotype, we stained with CD30, CD3, CD15, CD19
and CD20 antibodies following Hoechst labeling and compared expression of these antigens
on gated SP and NSP (bulk) viable cells. We found a higher proportion of
CD30+CD3+CD19−CD20− cells in the SP (mean 24.2%±18%; range 0.0% to 49.0%)
fraction compared to NSP cells (mean 8.5%±8.5%; range 1.2% to 22.4%) (p=0.03) (Figures
2b and 2c). In this sample set, we were unable to detect a significant cell population that co-
expressed both CD30 and CD15 (not shown). These data indicate that cells isolated from
lymph node biopsies from patients diagnosed with HL contain SP cells with an HRS
phenotype.

HL SP Cells Express High Levels of ABCG2 and MDR1 and are Gemcitabine Resistant
Because of the association of the SP phenotype with the presence of multi-drug resistance
proteins, we examined whether the SP cells of HL cell lines expressed MDR1 and ABCG2.
The cell lines L428 and HDLM2 were sorted into SP and NSP fractions and RT-PCR used
to measure expression of these two transporters. As anticipated, we observed increased
levels of ABCG2 and MDR1 in SP cells compared to NSP cells (Figure 3a). Since the SP
cells from other hematologic malignancies are more resistant to commonly used
chemotherapeutic agents than the NSP subset [30, 31], we assessed the gemcitabine
resistance of HL SP cells, since this agent is widely used to treat relapsed HL. We first
cultured SP positive cell lines (HDLM2 and L428) and SP negative cell lines (L1236 and
L540) with and without gemcitabine and evaluated cell viability after 7 days. The viability
of the SP lines HDLM2 and L428 were 81%±22% and 39%±6% respectively. These results
were compared to the observed viability of gemcitabine treated HL cell lines which lack SP
cells; the viability of each was substantially lower (L1236 7%±2% and L540 14%±2%),
indicating that cell lines containing SP cells are more resistant to f gemcitabine than cell
lines without (Figure 3b). We compared the SP cell frequency in HDLM2 and L428 before
and after exposure to gemcitabine and found a 20 and 60-fold enrichment, respectively
(Figure 3c). We then sorted SP and NSP cells from L428 and found only 5% of NSP tumor
cells survived gemcitabine treatment compared to 20% of SP cells (Figure 4a), while
analysis of DNA synthesis showed higher thymidine incorporation in SP cells than NSP
cells after drug exposure (Figure 4b). These effects were not due to Hoechst dye toxicity, as
both SP and NSP HL cells had equivalent survival and thymidine incorporation after
exposure to Hoechst dye in the absence of gemcitabine (Figure 4c). Enrichment of SP cells
and reduction in survival of NSP cells is likely due to greater apoptosis in the NSP (bulk)
tumor fraction, since the fluorochrome-labeled inhibitors of caspases (FLICA) assay [25]
showed greater FLICA staining in the NSP fraction (6.7%) compared to the SP fraction
(3.9%) 48 hrs after gemcitabine exposure (Figure 4d). Together, these data indicate that SP
cells have increased tolerance to gemcitabine compared to bulk tumor (NSP) cells and
support the potential of HL SP cells to contribute to disease resurgence following
chemotherapy.
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HL SP Cells Have Increased Expression of CTA Following Demethylation Compared to
NSP

We compared expression of HL-associated tumor antigens on SP and NSP cells, examining
MAGEA4, SSX2, survivin and NY-ESO-1 [32,33]. Although none of these antigens were
highly expressed in SP or NSP from any cell lines by RT-PCR (not shown) treatment with
the demethylating agent decitabine (5-aza-2′-deoxycitidine) induced MAGEA4 protein
expression in both HDLM2 and L428 (Figure 5a) and increased RNA expression of SSX2,
MAGE-A4, NY-ESO-1 and survivin (Figure 5b). L428 and HLDM2 were sorted into SP
and NSP fractions following decitabine exposure and analyzed by quantitative PCR (Q-
PCR), where SSX2, MAGEA4, and survivin expression were increased more prominently in
the SP fraction compared to bulk tumor cells (Figure 5c). MAGEA4 protein expression in
SP and NSP tumor cells was subsequently confirmed by immunohistochemistry
demonstrating that demethylation by decitabine treatment can induce TAA expression in
chemoresistant SP cells (Figure 5d).

MAGEA4-Specific CTL can Recognize and Eliminate Lymphoma SP Tumor Cells
To discover whether chemoresistant SP cells could be targeted by T cells directed to the
TAA expressed by the SP cells, we generated MAGEA4-specific CTLs, that responded in an
ELIspot assay to MAGEA4 peptides (PepMix), but not to a control peptide library (Aspf16)
(Figure 6a). MAGEA4-specific CTLs from HLA-A2+ normal donors could kill decitabine
treated HLA-A2+ HDLM2 tumor cells, while CTLs from HLA-A2− donors could not,
(mean tumor cell viability: 24% versus 74%, p=0.01) (Figure 6b). In addition, co-culture
experiments using MAGEA4-specific CTL with the HDLM2 cell line showed increased
killing via PI staining when used in combination with decitabine, and negligible killing
without demethylation treatment (Figure 6c). Because SP cells express elevated levels of
MAGEA4 following decitabine treatment compared to NSP, we then compared the
susceptibility of SP cells and NSP cells to elimination by MAGEA4-specific CTLs. There
was no change in SP frequency when HDLM2 were exposed to decitabine or CTLs alone
(Figure 7). However, the combination of decitabine treated (HLA-A2+) HDLM2 tumor cells
and HLA-A2 matched MAGE-specific CTL dramatically reduced SP cell frequency
(p<0.05) (Figures 7a and 7b), showing that MAGEA4-specific CTLs can kill chemoresistant
SP HL tumor cells.

DISCUSSION
In this study, we have found that both HL cell lines and primary HL tumor cells contain a
minor side-population of tumor cells that have increased resistance to gemcitabine, but that
also express tumor associated antigens which render them susceptible to killing by tumor-
specific CTLs following demethylation with decitabine. While this primary drug resistant
SP subset may therefore contribute to resurgent disease, a combination of chemotherapy and
targeted immunotherapy may be able to reduce tumor burden and decrease the risk of
relapse.

An SP subset of cells has been identified in a variety of hematologic malignancies and solid
tumors [9,30,34–37], but had not yet been reported in HL. We detected SP cells in two HL
cell lines, HLDM2 and L428, which conferred primary drug resistance to the cell lines
compared to those lacking SP cells. Importantly, we also detected SP cells in primary HL
biopsy samples that possessed an HRS phenotype, including increased expression of CD30,
CD3 (T cell rosettes [28,29]) and lack of CD20 (Figure 2). Because not all SP cells were
CD30+, it is likely that SP cells found in these biopsies include normal B and T lymphocytes
in addition to malignant cells, and that definitive identification of HRS cells with SP
properties will need to be confirmed by clonal analyses, However, these results are
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suggestive that a malignant chemoresistant cell type exists that could contribute to relapse
following disease treatment and may be targetable by antigen-specific CTL.

In other malignancies, SP cell resistance to lipophilic anti-neoplastic drugs, such as
doxorubicin and mitoxantrone, can be attributed to the expression of the multi-drug
transporter proteins including ABCG2 and MDR1 [5,6]. More recent studies, however, have
indicated that malignant SP cells may be more generally resistant to cytotoxic drugs, such as
gemcitabine, independent of their excretion by transporter proteins [8,33] and may also
resist radiotherapy [38], This may help explain the resistance of refractory HL to these
commonly used treatment modalities [39,40]. Because HL SP cells have lower apoptosis
rates following exposure to gemcitabine compared to NSP cells, and can proliferate even in
the presence of the drug, such chemotherapy exposure can simply enrich for drug resistant
SP cells (Figures 3 and 4). Although we do not know the mechanisms for this transporter-
protein independent resistance in HL-SP cells study of SP cells in pancreatic [41] and
gastrointestinal derived cell lines [8], show the cells express CEACAM6 (carcinoembryonic
antigen-related cell adhesion molecule 6), which modulates Akt-associated anti-apoptotic
activity, which would provide gemcitabine resistance [42]. Additionally, Bleau and
colleagues found that PI3K/Akt regulates ABCG2 expression in SP cells in malignant
gliomas, suggesting that malignant SP cells reside in a distinct biological state that renders
them insensitive to radiotherapy and a variety of chemotherapy agents [43].

The potential benefits of CTL for chemoresistant hematological malignancy is supported by
the long-term cures obtained following adoptive transfer of donor leukocyte infusions (DLI)
to relapsed patients after allogeneic stem cell transplant [44,45]. Predictably safe and
effective immunotherapy, however, requires identification of specific target antigens that
reside within the chemoresistant population. We have now shown that HL SP cells from cell
lines have enhanced expression of TAAs, including MAGEA4, SSX2, NY-ESO-1 and
survivin compared to NSP cells, although such expression was only seen at consistently high
levels following decitabine demethylation (Figure 5). Due to technical difficulties in
culturing and isolating sufficient numbers of viable SP cells from primary samples following
demethylation, we were unable to determine whether this effect is also relevant to HRS cells
in vivo. However, other studies have shown that HL cells have increased CpG methylation
[46], and global hypomethylation is commonly seen in leukemias [47], so that
demethylating treatments may be a generally applicable tool for enhancing TAA expression
in lymphoma and leukemia if the malignant cells are to be made susceptible to
immunotherapies [48–54]. Since multiple TAA are upregulated within chemoresistant SP
cells, it should be possible to target several antigens simultaneously, thereby reducing the
risk of tumor immune escape [55].

In summary, we have identified a distinct SP subset in HL cell lines and primary tumor
biopsies that are resistant to chemotherapy, but can be eradicated with TAA-specific CTL
following decitabine demethylation. Combination therapeutic strategies that use
conventional chemotherapy to debulk tumor burden, followed by novel drugs such as
histone deacetylation (HDAC) inhibitors and T cell immunotherapy may eliminate residual
chemoresistant tumor cells and help prevent disease relapse.
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Figure 1. Detection of a distinct SP in HL cell lines
A) HDLM2 and L428 were incubated with Hoechst dye and analyzed by flow cytometry for
SP. B) To validate the SP phenotype, HL cell lines were co-incubated with Hoechst dye and
50 μM Verapamil which efficiently blocked SP formation. C) Two cell lines, L1236 and
L540, did not possess an SP fraction following Hoechst labeling.
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Figure 2. Detection of CD30+ SP cells in primary HL biopsies
A) SP cells were detected in freshly isolated lymphoma samples from HL patients (6/6). A
representative SP phenotype is shown for a nodular sclerosis HL patient. The mean SP
frequency in these primary samples (right panel) was 1.8% (range, 0.02%–6.54%). B) The
phenotype of primary HL SP and NSP tumor cells was determined using antibodies (CD30,
CD3, CD19, CD20) in combination with Hoeschst staining. SP and NSP cells were gated
and then measured for expression, showing a significant increase in CD30+CD3+CD19-
CD20-cells in the SP fraction. C) Expression of CD30 and CD3 for four primary lymphoma
samples are shown. CD20 expression with CD30 is shown for one primary sample (LP27).
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Figure 3. SP containing HL cell lines express drug resistance transporter proteins and are
resistant to gemcitabine
A) RT-PCR for the multi-resistance genes ABCG2 and MDR1 was performed for SP and
NSP (NSP) fractions from the cell lines L428 and HDLM2 showing increased expression of
resistance genes compared to GAPDH. B) SP positive cell lines, HDLM2 and L428, were
compared with the SP negative cell lines, L1236 and L540, for viability after exposure to 10
nM gemcitabine demonstrating increased resistance in HDLM2 and L428. C) The HL cell
lines (L428 and HDLM2) were cultured in the presence of 10 nM gemcitabine for 72 hours
and then assessed for SP frequency. In both cell lines, SP frequency was enriched indicating
increased resistance to the cytotoxic drug.
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Figure 4. Sorted SP cells show enhanced tolerance to gemcitabine
Equal numbers of SP and NSP (NSP) tumor cells from L428 were sorted and cultured in the
presence of 10 nM gemcitabine and measured for viability (A) and proliferation by
thymidine incorporation (B) and compared to SP and NSP from cells treated with PI only
(C). Asterisk indicates p<.05. D) L428 was exposed to 10 nM gemcitabine and analyzed for
cell death and apoptosis in combination with Hoechst dye. SP and NSP cells were
subsequently gated and compared for FLICA and PI.
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Figure 5. HL SP cells express cancer testis target antigens
A) L428 and HDLM2 were cultured with 1 μM decitabine and then analyzed for MAGEA4
expression by IHC. MAGEA4 antigen was expressed only following decitabine exposure
(right panels). B) To examine the effects of decitabine on primary HL, cells isolated from a
nodular sclerosis HL were isolated and cultured with or without 1 μM decitabine and then
analyzed by RT-PCR for expression of SSX2, MAGEA4, NY-ESO-1 and survivin antigens,
and compared to GAPDH. C) To examine preferential expression of TAA in SP and NSP
subpopulations, SP and bulk tumor cells (NSP) were isolated from L428 and HLDM2 after
exposure to 1 μM decitabine (indicated by “+”), and real-time quantitative PCR was
subsequently performed to measure SSX2, MAGEA4 and survivin. D) Sorting of SP and
NSP tumor cells from HDLM2 and L428 and subsequent IHC for MAGEA4 antigen
expression confirmed PCR data demonstrating that MAGEA4 is elevated in expression in
tumor SP cells.
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Figure 6. Generation of MAGEA4-specific CTL for targeting of HL
A) MAGEA4-specific CTL were stimulated and expanded in vitro by peptide-pulsed DC.
To confirm specificity of the CTL lines, IFN-γ ELIspot analyses were performed against a
MAGEA4 PepMix and compared to an irrelevant PepMix (Aspf16) and CTL alone,
demonstrating MAGEA4 peptide specificity. B) MAGEA4-specific CTL were HLA-A2-
restricted as demonstrated by co-culture with the HLA-A2+ cell line, HDLM2, where cell
lysis was observed when the tumor cells were cultured with CTL and 1 μM decitabine, but
not without CTL or with an MHC-mismatched MAGEA4 CTL line. C) Histogram which
compares HDLM2 viability (PI) indicating lysis of HDLM2 when cultured with MAGEA4-
specific CTL (gray lines) or without CTL (black lines) in the presence of decitabine.
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Figure 7. MAGEA4-specific CTL eliminates HL SP tumor cells
To demonstrate specific elimination of SP tumor cells by MAGEA4-specific CTL, the HLA-
A2+ cell line HDLM2 was cultured alone or with MAGEA4-specific CTL (effector to target
ratio of 2:1), either in the presence of 1 μM decitabine or without. Following culture for 48
hours, cultures were reanalyzed for SP frequency demonstrating that SP are eliminated in
conditions containing both CTL and decitabine. B) SP percentage of HDLM2 tumor cells
cultured with and without decitabine (p=0.05).
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