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Abstract

HCO3
2 is the signal for early activation of sperm motility. In vivo, this occurs when sperm come into contact with the HCO3

2

containing fluids in the reproductive tract. The activated motility enables sperm to travel the long distance to the ovum. In
spermatozoa HCO3

2 stimulates the atypical sperm adenylyl cyclase (sAC) to promote the cAMP-mediated pathway that
increases flagellar beat frequency. Stimulation of sAC may occur when HCO3

2 enters spermatozoa either directly by anion
transport or indirectly via diffusion of CO2 with subsequent hydration by intracellular carbonic anhydrase (CA). We here
show that murine sperm possess extracellular CA IV that is transferred to the sperm surface as the sperm pass through the
epididymis. Comparison of CA IV expression by qRT PCR analysis confirms that the transfer takes place in the corpus
epididymidis. We demonstrate murine and human sperm respond to CO2 with an increase in beat frequency, an effect that
can be inhibited by ethoxyzolamide. Comparing CA activity in sperm from wild-type and CA IV2/2 mice we found a 32.13%
reduction in total CA activity in the latter. The CA IV2/2 sperm also have a reduced response to CO2. While the beat
frequency of wild-type sperm increases from 2.8660.12 Hz to 6.8760.34 Hz after CO2 application, beat frequency of CA IV2/

2 sperm only increases from 3.0660.20 Hz to 5.2960.47 Hz. We show, for the first time, a physiological role of CA IV that
supplies sperm with HCO3

2, which is necessary for stimulation of sAC and hence early activation of spermatozoa.
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Introduction

Post-testicular maturation of sperm in the epidydimis and the

female genital tract includes multiple changes in sperm membrane

composition and signal transduction [1,2,3,4]. After spermatogen-

esis sperm travel along the epididymal tract and the female genital

tract where they undergo fundamental changes in their motility.

During the early passage they have to adjust from immotility to a

linear swimming behaviour to travel along the vagina, uterus and

the oviduct. Bicarbonate plays a major role in this early activation

of spermatozoa and is necessary for successful fertilization [5,6,7].

The activation of soluble adenylyl cyclase (sAC) by bicarbonate

induces the elevation of intracellular cAMP and subsequent

phosphorylation of several proteins by protein kinase A. We have

previously shown that bicarbonate in concentrations of 15 mM

induces a reversible, robust acceleration of sperm resting beat

frequency from 2–3 Hz to 7 Hz in less than 1 min. In addition,

acceleration of beat frequency is accompanied by facilitation of

Ca2+ channels and beat symmetry [8].

Little is known how sperm regulate a rise of intracellular

bicarbonate. In addition to bicarbonate transporters using

HCO3
2 of the oviduct as a substrate, carbonic anhydrases (CAs)

can catalyze the equilibrium between CO2 and HCO3
2. More

than a dozen CAs have been identified in mammals [9]. In this

study we focused on the physiological role of CA IV after it was

identified in the male reproductive tract in mouse and rat

[10,11,12] and linked it to the early activation of sperm motility by

bicarbonate. We show that extracellular carbonic anhydrase IV is

a key enzyme in the early activation of sperm. In addition, we

demonstrate that sperm do not acquire CA IV during spermato-

genesis, but instead CA IV is transferred to the sperm membrane

during the passage through the corpus epididymidis.

Materials and Methods

Ethics statement
Killing of animals was applied for and approved by the animal

rights office of the Saarland University (ID 18/08). Human sperm

were collected from healthy volunteers with approval of the local

ethics committee of the Philipps-University of Marburg, Germany

(approval Number 105/05). Written and informed consent was

obtained from all participants.

Animals and Cell Preparation
Sperm were isolated from NMRI mice, C57BL/6J mice and

CA IV2/2 (B6.129S1-Car4tm1Sly/J). After treatment with isoflur-

ane and cervical dislocation, the caput, corpus, cauda epididymidis

and vasa deferentia were excised from mice, transferred into 1 ml
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HS buffer, incised several times, and incubated for 20 min at 37uC
in 5% CO2. Released sperm were washed twice (4006g for 3 min)

and stored at 1226107 cells/ml in HCO3
2-free HS buffer (in

mM): 135 NaCl, 5 KCl, 2 CaCl2, 1 MgCl2, 20 HEPES, 5 glucose,

10 lactic acid, 1 pyruvic acid, adjusted to pH 7.4 with NaOH.

Each experiment was performed with three or more animals.

Preparation of human sperm. Human ejaculates were

obtained from healthy volunteers between 20 and 25 years of age.

The fresh ejaculates were centrifuged (3006 g, 3 min) and the

pellet was split into two samples. Each pellet was transferred to

40 ml buffer HS and incubated for 2 hours at room temperature

to remove HCO3
2 from the seminal plasma. After centrifugation,

the cells were pooled and re-suspended in 0.5 ml buffer HS and

stored at 3246107 cells/ml.

Immunohistochemistry
Sperm from caput, corpus and cauda epididymidis were prepared as

described above. After washing in HS buffer, sperm suspensions were

diluted to a final concentration of 46105 cells/ml. Sperm were air-

dried on cover slips, fixed for 15 min in methanol and again air-dried.

Mouse kidney, testis, epididymis and vas deferens were fixed for

6 h in Bouin solution, dehydrated and embedded in paraffin. For

immunoreactions, tissue was cut into 5 mm slices and dried on

glass slides prior to deparaffinization with xylol and rehydration in

a descending alcohol series (100, 90, 80, and 70%). Endogenous

peroxidase activity was blocked for 45 min at 37uC by treatment

with glucose oxidase (Sigma, Steinheim, Germany) in PBS-glucose

buffer (10 mM glucose, 1 mM NaN3 and 0.4 U/ml glucose

oxidase). The slices were incubated overnight at 4uC with goat

anti-CA IV IgG (R&D Systems, Minneapolis, MN, USA), diluted

1:100 in PBS/5% BSA/avidin (1:300) (Merck, Darmstadt,

Germany), washed twice for 5 min in PBS and incubated for

30 min at room temperature with the secondary biotinylated

rabbit anti goat-IgG (Vector Laboratories, Burlingame CA, USA)

diluted 1:200 in PBS/5% BSA/biotin (1:50) (Sigma, Steinheim,

Germany). Finally, the slides were washed twice for 5 min in PBS.

For signal enhancement the VectastainH kit (Linaris, Wertheim-

Bettingen, Germany) was applied for 30 min at room temperature

according to the manufacturer’s protocol. Histochemical localiza-

tion of CA IV immunoreactivity was performed using diamino-

benzidine (DAB) (Sigma, Steinheim, Germany) as a chromogen.

The evaluation of the specificity of the immunoreactivity is based

on a comparison of tissues from wild-type and CA IV2/2 mice.

For nuclear staining, the slides were treated for 1 min with

hematoxylin (Roth, Karlsruhe, Germany), followed by 5 min

incubation in tap water to induce the color reaction. Finally, the

slides were dehydrated and mounted with DEPEX (Serva,

Heidelberg, Germany). Analysis was performed with a light

microscope (Axiophot, Zeiss, Jena, Germany).

Western Blot
Mouse kidney, testis, epididymis and vas deferens were isolated

and minced in homogenization buffer (100 mM NaCl, 10 mM

HEPES, 2 mM EDTA, 1 mM DTT, 2% Triton X-100) on ice.

Samples were kept on ice for 30 min and protein fractions were

extracted by centrifugation several times for 15 min, at 11,0006g

and 4uC. The protein concentrations were determined photomet-

rically with a BCA Protein Assay Kit (Thermo Scientific,

Rockford, IL, USA). Protein samples were diluted 1:1 with 2X-

Laemmli buffer and stored at 220uC.

Protein of suspensions of sperm from all three regions of the

epididymis and vas deferens were extracted by the addition of an

equal volume of 2X-Laemmli buffer. The extracts were clarified

by centrifugation at 13,000 rpm for 15 min at 4uC.

For western blot analysis, the extracts from 100 mg (tissue) or

30 ml (sperm suspension) were adjusted to 5% mercaptoethanol.

The samples were boiled for 5 min (100uC) and separated by SDS-

Page. After immunoblotting and blocking with TBS/5% Slim-

FastTM (Allpharm, Messel, Germany), the membrane was

incubated overnight at 4uC with goat anti-CA IV IgG (1:1,000

in TBS-T) (R&D Systems, Minneapolis, MN, USA). After washing

thrice with TBS-T, the membranes were incubated with HRP-

conjugated donkey anti-goat IgG (diluted 1:10 000 in TBS-T) for

1 h at RT. Proteins were detected with an ELC detection reagent

(GE Healthcare, Buckinghamshire, UK) on a Chemi-DocTM

XRS+ apparatus (Bio Rad, München, Germany).

qRT PCR
Tissue isolated from kidney, testis, caput, corpus and cauda

epididymidis was homogenized in 50 ml Tri-FastTM (PeqLab,

Erlangen, Germany) on ice. Total RNA was extracted with the

RNeasy PlusTM Micro Kit (50) (Quiagen, Hilden, Germany) and

cDNA was prepared with the High Capacity cDNATM Reverse

Transcription Kit (Applied Biosystems, Foster City, CA, USA). To

detect the CA IV gene, 100 ng of total cDNA were processed with

a TaqManH gene expression assay (Applied Biosystems, Foster

City, CA, USA). For relative quantitation with the DDCt method

[13], we used 18S ribosomal RNA as endogenous control and

kidney as reference tissue. All measurements were carried out on a

StepOnePlusTM qRT-PCR device from Applied Biosystems

(Foster City, CA, USA). Results are presented as mean RQ values

6 SEM from three independent preparations.

Assessment of Viability and Motility Parameters
Sperm motility parameters were assessed by means of a

computer-assisted sperm analysis (CASA) system (MedeaLAB

CASA System, v 5.5, Medical Technology GmbH, Altdorf,

Germany). The parameters measured were average velocity [mm/

s], motility [%] and the proportions of fast and slow progressive

sperm [%].

After washing, sperm were stored in pre-warmed HS buffer

containing 5% BSA. For analysis, 20 ml of the sperm suspension

was loaded into a pre-warmed (37uC) counting chamber (Makler,

Sefi-Medical Instruments ltd., Biosigma S.r.I., Italy). The results

are presented as mean 6 SEM.

Waveform Analysis
The flagellar waveform was analyzed as previously described

[14] with a Nikon Diaphot 300 microscope. In brief, images were

collected at 150 Hz (murine sperm) and 300 Hz (human sperm)

respectively by a M3 high speed camera (IDT; Tallahassee, FL,

USA). Determination of flagellar beat frequency was performed by

Figure 1. Immunohistochemical localization of CA IV. Immunohistochemical localization of CA IV in wild-type (+/+) and CA IV2/2 (2/2) tissue
slices and isolated sperm from different epididymis sections. Wild-type tissue from kidney, corpus and cauda epididymidis (A, I, M) show
immunoreactions. Kidney shows staining in the apical and basal plasma membrane of proximal tubuli. Corpus and cauda epididymidis display the
signal in the stereocilia network. In addition, sperm of the cauda are also CA IV positive. No signal is present in the wild-type testis and caput
epididymidis (C, E) or in any of the 2/2 tissues (B, D, F, J, N) Wild-type corpus and cauda sperm (K, O) show immunostaining in the plasma
membrane along the tail and the head. No signal is detectable in the wild-type caput sperm (G) or in any of the CA IV2/2 sperm (J, L, P). (bar:
tissue = 100 mm; sperm = 10 mm).
doi:10.1371/journal.pone.0015061.g001
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semi-automated analysis software written in Igor-ProTM (Wave-

metrics, Lake Oswego OR, USA). The data obtained was

collected in Sigma Plot (Systat Software, San Jose, CA, USA)

and presented as mean 6 SEM. Sp-5,6-dichloro-1-b-D-ribofur-

anosylbenzimidazole-39,59-monophosphorothioate (cBIMPS) was

supplied by BioMol (Hamburg, Germany), ethoxyzolamide (EZA)

and acetazolamide (AZA) were from Sigma-Aldrich (Steinheim,

Germany). 2% and 5% CO2 was supplied by Air Liquide

(Düsseldorf, Germany). To maintain CO2 equilibration during

measurements a heated measuring chamber was continuously

perfused with CO2. Where indicated CO2 was additionally

applied to solutions by gas bubbler manifolds (Harvard Aparatus,

Kent, UK) to allow equilibration before perfusion.

Determination of CA Activity by Mass Spectrometry
Determination of CA activity was performed as previously

described [15]. In brief, we monitored 18O depletion from doubly-

labeled 13C18O2 through several hydration and dehydration steps

of CO2 and HCO3
2 at 25uC [16,17]. The loss of 18O from

13C18O18O (m/z = 49) over the intermediate product 13C18O16O

(m/z = 47) and the end product 13C16O16O (m/z = 45) was

observed with a quadrupole mass spectrometer (MSD 5970;

Hewlett Packard, Waldbronn, Germany). The relative 18O

enrichment was documented by the constant measurement of

the changes in the signals for m/z = 45, m/z = 47, m/z = 49 (a45,

a47, a49) over time and was calculated by the following equation:

log enrichment = log (a496100/(a49+ a47+a45)). The linear slope

of the log enrichment over time, calculated with OriginProTM 7

(OriginLab, Northamton, MA), provided the rate of loss of 18O.

This was used to calculate the carbonic anhydrase activity, by

comparing the rate with the corresponding rate of the non-

catalyzed reaction. To calculate the enzyme activity in units, the

Badger and Price [18] definition was used, which defines 1 unit of

activity as producing a 100% increase in the non-catalyzed rate of
18O depletion from doubly-labeled 13C18O2. For the experiments,

a cuvette was filled with 8 ml HS buffer, followed by 100–200 ml

sperm suspension (46106 cells). EZA was added after 6 minutes in

the respective concentration.

Statistics
Student’s t-Test was used to calculate the significance in

differences of mean values. In the figures shown a significant level

of p,0.05 is marked with *, p,0.01 is marked with **, and

p,0.001 with ***.

Results

Wild-type kidney (the positive control) shows immunoreactions

with the CA IV antibody in the apical plasma membrane of the

proximal tubules in the cortex of the kidney (Fig. 1A/a). A weaker

Figure 2. Immunoblot and real-time PCR of CA IV. A, Immunoblot of CA IV. A CA IV signal in the range of 38 kDa is present in wild-type corpus
and cauda epididymidis and vas deferens. No specific CA IV band is detectable in wild-type testis and caput epididymidis or in any of the CA IV2/2

tissues. B, Analysis of sperm protein fractions isolated from the different sections of the epididymidis shows a positive signal in corpus and cauda
sperm and sperm from vas deferens. No specific signal is present in wild-type caput sperm or in any of the CA IV2/2 sperm. C, CA IV is present in the
whole vas deferens tissue and not present in the flushed vas deferens. With the luminal content only a specific CA IV band can be seen. D, kidney and
brain tissue were used as positive control. E, CA IV qRT PCR analysis of wild-type and CA IV2/2 mice. The diagram shows mean RQ values 6 s.e.m. of
three independent experiments for each tissue. In relation to wild-type kidney (calibrator) the RQ value of wild-type corpus epididymidis averages at
0.54. No CA IV mRNA is detectable in the other wild-type or in any of the CA IV2/2 tissues (n = 3).of wild-type and CA IV2/2 mice.
doi:10.1371/journal.pone.0015061.g002

Figure 3. Response of sperm to bicarbonate from different epididymal segments. Sperm of different segments of epididymis show varying
responses to bicarbonate. Values shown are mean 6 S.E.M. Sperm in HS buffer (black bars) do not show significant differences in resting beat
frequency. Mean values were 2.4260.13 Hz for caput sperm, 1.9560.07 Hz for corpus sperm and 2.6760.13 Hz for sperm of cauda epididymidis.
Sperm beat frequency in HSB buffer (containing 15 mM HCO3

2) (gray bars) increases the beat frequencies to 6.7960.42 Hz for caput sperm,
6.0960.25 Hz for corpus sperm and 9.1360.40 Hz for sperm of cauda epididymidis. (n = 30).
doi:10.1371/journal.pone.0015061.g003
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signal is detectable on the basal plasma membrane of the tubulus.

CA IV staining is not found in either wild-type testis or caput

epididymidis (Fig. 1C/c; 1E/e). However, immunoreactivity is

visible in the apical plasma membrane of epithelial cells in the

corpus epididymidis (Fig. 1I/i). At higher magnification (insets) the

CA IV signal is located in the stereocilia network. In addition we

found immunoreactions with CA IV antibodies in both the

stereocilia network and spermatozoa of cauda epididymids

(Fig. 1M/m). The CA IV2/2 tissue is completely negative for

CA IV (Fig. 1B/b; 1D/d; 1F/f; 1J/j; 1N/n).

Both wild-type tissue and caput sperm show no immunoreac-

tions with CA IV antibodies (Fig. 1G), whereas specific staining is

found in corpus (Fig. 1K) and cauda sperm (Fig. 1O) in the plasma

membrane along the whole sperm tail and near the plasma

membrane of the head. No signal is found in CA IV2/2 sperm

(Fig. 1H/L/P).

Figure 2A shows immunoblots for protein extracts of wild type

caput, corpus, and cauda epididymidis and the vas deferens. A

single ,38 kDa immunoreactive CA IV band is detectable in

corpus, cauda epididymidis and the vas deferens but is absent in

caput epididymidis and whole testis. No signal is detected in tissue

from CA IV2/2 mice. For wild type mice, extracts of corpus and

cauda sperm and sperm from vas deferens show a prominent

38 kDa immunoreactive CA IV band (Fig. 2B). A small signal is

detectable in caput sperm. CA IV2/2 sperm do not show any CA

IV signal. Tissue of flushed vas deferens and sperm were examined

separately and the results demonstrate, that CA IV is localized in

luminal sperm only (Fig. 2C). Kidney and brain were used as

positive controls (Fig. 2D).

qRT PCR analysis was used to examine the expression of CA IV

mRNA in the male reproductive tract (Fig. 2E). CA IV+/+ and CA

IV2/2 tissue from kidney, testis, caput, corpus and cauda

epididymidis was analyzed. Kidney, as the reference tissue, was

assigned a constant RQ value of 1. Wild-type corpus epididymidis

shows a significant RQ signal of 0.54. No significant RQ signal was

found in the other wild type tissues or in any of the CA IV2/2 tissues.

Figure 4. Effect of CA-Inhibitors on sperm beat frequency and CA-activity. A, The effect of HCO3
2 und CO2 on sperm beat frequency.

Values shown are mean 6 S.E.M. Mouse sperm beat frequency was measured in HS buffer, HSB buffer (containing 15 mM HCO3
2) and in HS buffer in

the presence of 5% CO2. Mean values are 2.9660.17 Hz of sperm in HS buffer, 8.4860.17 Hz of sperm in HSB buffer and 7.9460.31 Hz for sperm
stimulated with CO2. (n = 10). B, Concentration-dependent inhibition of carbonic anhydrase activity was determined by mass spectrometry. The
addition of varying EZA concentrations results in a decrease of enzymatic activity of between 35.0% (4.5360.87 U/ml) for 50 nM EZA and 62.12%
(2.7260.12 U/ml) for 5 mM EZA (n = 6). C, Sperm beat frequency was measured in HS and HSB buffer in the absence or presence of different EZA or
AZA concentrations. Resting beat frequency in HS is not influenced by EZA or AZA. In the presence of bicarbonate, the addition of 100 mM EZA
decreases sperm beat frequency from 7.6060.28 Hz to 4.2660.21 Hz, whereas the addition of 100 mM AZA decreases beat frequency from
7.8460.27 Hz to 5.1360.31 Hz (n = 10). D, The cAMP analogon cBIMPS increases sperm beat frequency by acting downstream of carbonic
anhydrases. Sperm measured in HS buffer including cBIMPS in the absence or presence of 10 mM ethoxyzolamide (EZA). (n = 10).
doi:10.1371/journal.pone.0015061.g004
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Figure 3 compares the ability of bicarbonate to increase the

flagellar beat frequency of sperm from the caput, corpus and

cauda epididymidis. Stimulation with 15 mM bicarbonate leads to

an increase in beat frequency of randomly-selected cells from

2.4260.13 Hz to 6.7960.42 Hz for caput sperm and from

1.9560.07 Hz to 6.0960.25 Hz for corpus sperm, whereas for

cauda sperm the beat frequency increases from 2.6760.13 Hz to

9.1360.40 Hz.

Figure 4A shows that both bicarbonate and CO2 increase

flagellar beat of cauda sperm similarly. Sperm accelerate their beat

frequency from 2.9660.17 to 8.4860.17 Hz when treated for

5 min with HS medium containing 15 mM bicarbonate. The

application of 5% CO2 to sperm in HS medium alone increases

the beat frequency within 5 minutes to 7.9460.31 Hz. The total

carbonic anhydrase activity of ,46106 cells was determined by

mass spectrometry before and after the application of different

concentrations of the carbonic anhydrase inhibitor EZA (Fig. 4B).

The addition of 50 nM EZA significantly decreases enzymatic

activity from 7.0160.46 U/ml to 4.5360.87 U/ml (35.38%

reduction), 100 nM EZA leads to a highly significant decrease

Figure 5. Effect of EZA and bicarbonate on human sperm beat frequency. A, The acceleration of mouse sperm beat frequency varies
according to the CO2 concentration. Sperm beat frequency was measured in HS buffer, which corresponds to atmospheric CO2 concentration,
followed by 2% CO2 (gray line) and 5% CO2 (black line) application for 10 minutes. 6 minutes after the application of 5% CO2, the beat frequency is
increased from 2.9060.14 Hz to 8.3760.58 Hz, while it takes 10 minutes for the frequency to increase from 2.8960.27 Hz to 6.9660.69 Hz by the
application of 2% CO2 (n = 10). The beat frequencies from the dashed box are shown on an expanded time scale in A and B. B, EZA inhibits the
accelerating effect of CO2 on mouse sperm beat frequency. Sperm beat frequency was measured in HS buffer (black line) and HS buffer containing
500 nM EZA (gray line), followed by 5% CO2 application for 10 minutes. 6 minutes after CO2 application in the absence of EZA, the beat frequency
increases from 2.9060.14 Hz to 8.3760.58 Hz. In the presence of EZA beat frequency reaches a maximal value of 8.1360.40 Hz after 8 minutes of
CO2 application (n = 10). C, Human sperm respond towards CO2 in an EZA sensitive way. Sperm were stimulated for 40 s with 2% CO2 either in the
absence or presence of 1 mM EZA. Without the inhibitor, beat frequency rises from 7.5160.56 Hz to 14.6260.70 Hz. With EZA, sperm speed from
6.2660.81 Hz to 10.5961.50 Hz. (n = 10). D, Human sperm respond to HCO3

2. Sperm were stimulated for 60 s with 15 mM HCO3
2. During that time,

the resting beat frequency increases from 6.2360.26 Hz to 13.0060.56 Hz. (n = 13). In all panels, results are presented as mean values6SEM.
doi:10.1371/journal.pone.0015061.g005
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from 6.2960.57 U/ml to 3.1560.46 U/ml (49.92% reduction)

and 5 mM EZA reduces enzymatic activity from 7.1860.20 U/ml

to 2.7260.12 U/ml (62.12% reduction). EZA or AZA also

produced a dose-dependent reduction in the action of HCO3
2

on the flagellar beat. Figure 4C shows that after treatment with

5 nM or 500 nM EZA, bicarbonate increases the beat frequency

from 2.6360.15 Hz to 5.7160.23 Hz and from 2.6160.15 Hz to

5.0160.16 Hz. The addition of HCO3
2 in the presence of

100 mM EZA results in a ,1.5-fold increase in sperm beat

frequency (from 2.9260.24 Hz to 4.2660.21 Hz) only. Treatment

with AZA in the same concentrations as EZA shows nearly

the same inhibitory effect (5 nM AZA: from 2.6360.10 Hz

to 6.4760.41 Hz; 500 nM AZA: from 2.6860.10 Hz

to 5.8360.34 Hz; 100 mM AZA: from 3.0160.25 Hz to

5.1360.31 Hz). To examine if EZA has actions downstream of

the action of HCO3
2, we used cBIMPS to stimulate sperm both in

the absence and in the presence of EZA. In the absence of EZA,

sperm beat frequency is increased within 10 minutes from

2.3260.10 Hz to 4.7160.52 Hz after application of 50 mM

cBIMPS (Fig. 4D). Sperm which were treated with 10 mM EZA

increase their beat frequency to a similar extent (from 2.24

60.11 Hz to 5.1260.35 Hz).

Different concentrations of CO2 increase the flagellar beat time-

dependently (Fig. 5A). The stimulation of sperm with 5% CO2

accelerates their beat frequency within 6 minutes from

2.9060.14 Hz to 8.3760.58 Hz. The slope of the beat frequency

between the 4th and the 6th minute after application of 5% CO2

was 0.60 Hz/min (Dm1), whereas between the 6th and 8th minute

a slope of 0.04 Hz/min (Dm2) was determined (dashed box). The

application of 2% CO2 increased beat frequency within 6 minutes

from 2.8960.27 Hz to 4.7660.51 Hz only. For the time period

between the 4th and the 6th minute after the application of 2%

CO2 a slope of 0.33 Hz/min (Dm3) was determined, which was

increased in the following two-minute period to 0.50 Hz/min

(Dm4).

In the absence of EZA, 5% CO2 accelerates sperm beat

frequency within 6 minutes from 2.9060.14 Hz to 8.3760.58Hz

(Fig. 5B). In the first two minutes after CO2 application, beat

frequency rises with a slope of 1.24 Hz/min, which is increased to

1.45 (Dm2) within the next two-minute period. In the presence of

0.5 mM EZA, beat frequency accelerates from 3.1060.10 Hz to

7.4060.54 Hz within 6 minutes. Within the first two minutes of

CO2 application beat frequency increases with a slope of 0.32 Hz/

min (Dm3) in the presence of EZA (dashed box). In the following

two-minute period the slope of beat frequency is increased to

1.83 Hz/min (Dm4) (n = 10).

Flagellar movement of human sperm was analyzed in the same

way as for murine sperm. With 2% CO2, the resting beat

frequency of 7.5160.56 Hz speeds to 14.6260.70 Hz (Fig. 5C)

after 40 s, whereas in the presence of 1 mM EZA, beat frequency

rises from 6.2660.81 Hz to 10.5961.50 Hz. Also with 15 mM

bicarbonate, which was applied for 60 s, an accelerated beat

frequency from 6.2360.26 Hz to 13.0060.56 Hz is apparent

(Fig. 5D).

Figure 6 compares the motility parameters of CASA determined

for sperm of wild type and of CA IV2/2 mice in the absence of

bicarbonate. In CA IV2/2, the total motility is significantly

decreased (35.7567.46%) as compared to wild-type sperm

(57.5064.67%). In addition, the amount of fast progressive sperm

is also significantly lower in CA IV2/2 mice (20.2565.29% as

compared to 35.3863.69%). No significant changes is observed in

the comparison of the average velocity of CA IV2/2 and wild-

type sperm (wild-type: 34.7562.49 mm/s; CA IV2/2: 26.38

63.93 mm/s). There are also no significant changes in slow

progressive sperm from wild-type mice and CA IV2/2 mice (wild-

type: 22.1361.97%; CA IV2/2: 15.5062.65%).

Figure 6. CASA of sperm from CA 2/2 mice. Differences in motility parameters between wild-type sperm and sperm of CA IV2/2 mice. Sperm
motility parameters were determined by using a computer-assisted sperm analysis (CASA) system. In comparison to wild-type sperm the number of
motile and the quantity of fast progressive sperm of CA IV2/2 is significantly reduced (wild-type: 57.5064.67%; 35.3863.69%; CA IV2/2:
35.7567.46%; 20.2565.29%) No difference between sperm of wild-type and CA IV2/2 is detectable in average velocity and slow progressive motility
(n = 8).
doi:10.1371/journal.pone.0015061.g006
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In comparison to wild type sperm, the enzymatic activity of CA

IV2/2 animals is decreased highly significantly by 32.13% (from

5.2660.34 U/ml to 3.5760.25 U/ml) (Fig. 7A). Waveform

analysis was performed to analyze the effect of HCO3
2 and

CO2 on the beat frequency of CA IV2/2 sperm (Fig. 7B, C).

Fig. 7B shows that there is only a slight difference in the first 20

seconds between the sperm of wild-type and CA IV2/2 animals in

the response to HCO3
2. Perfusion of sperm of wild-type and CA

IV2/2 animals with buffer containing 15 mM HCO3
2 leads to an

increase of sperm beat frequency within 20 seconds from

2.8160.17 Hz to 6.1360.35 Hz and from 2.9260.17 Hz to

5.5760.18 Hz, respectively (n = 10).

Sperm of wild-type animals increase their beat frequency from

2.8660.12 Hz to 6.8760.34 Hz within 20 seconds after 2% CO2

application, whereas CA IV2/2 sperm accelerate their beat from

3.0660.20 Hz to 5.2960.47 Hz (Fig. 7C). Compared to wild-type

sperm, sperm of CA IV2/2 animals show a significant reduction

of beat frequency by 20.48% after stimulation with 5% CO2 for 20

seconds (wild-type: 7.0860.43 Hz: CA IV2/2; 5.6360.36 Hz). By

contrast, after 10 minutes of stimulation with 50 mM cBIMPS,

wild-type and CA IV2/2 sperm speed their beat to values, which

do not show significant differences (from 2.8960.16 Hz to

5.7160.24 Hz and from 2.8060.15 Hz to 5.8360.30 Hz,

respectively) (Fig. 7D).

Discussion

This work analyses the distribution and physiological activity of

CA IV in the murine male genital tract. The results show that CA

IV is involved in the regulation of intracellular bicarbonate

concentration and early activation of spermatozoa by bicarbonate.

Bicarbonate as an important factor for sperm maturation and

storage in the male reproductive tract, is responsible for acceleration

of sperm beat frequency and calcium channel activation [3,8,19].

CA IV has a distinct location in the male reproductive
tract

By immunohistochemistry we show that CA IV is not a

constituent that is acquired during spermatogenesis. CA IV was

not detectable at all stages of sperm maturation in testis. However,

Figure 7. Sperm beat frequency and CA-activity in CA 2/2 mice. A, Enzymatic activity of CA measured by mass spectrometry. Mean value of
enzymatic activity of wild type sperm, is 5.2660.34 U/ml, whereas sperm of CA IV2/2 mice show activity of 3.5760.25 U/ml only (n = 6). B, Sperm of
CA IV2/2 mice show a decreased response to HCO3

2. Within the first 20 seconds after the addition of bicarbonate, the beat frequency of wild-type
sperm (solid line) increases from 2.8160.17 Hz to 6.1360.35 Hz and frequency of CA IV2/2 sperm from 2.9260.17 Hz to 5.5760.18 Hz (n = 10). C,
Sperm of CA IV2/2 mice show a decreased response to CO2. Through the application of 2% CO2 in the measuring chamber and the manifolds wild-
type sperm beat frequency (solid line) increase within the first 20 seconds from 2.8660.12 Hz to 6.8760.34 Hz, while the beat frequency of CA IV2/2

sperm takes 1 min to rise from 3.0660.20 Hz to 5.2960.47 Hz. (n = 10). D, Sperm of CA IV2/2 mice show the same response to the cAMP analogon
cBIMPS as wild-type sperm. 20 seconds after stimulation with 5% CO2, the sperm of CA IV2/2 mice show a 20.48% reduction in beat frequency
compared to wild-type sperm. By contrast, after 10 minutes stimulation with 50 mM cBIMPS wild-type and CA IV2/2 sperm speed their beat to
comparable values (from 2.8960.16 Hz to 5.7160.24 Hz and from 2.8060.15 Hz to 5.8360.30 Hz, respectively)(n = 10).
doi:10.1371/journal.pone.0015061.g007
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in caput, corpus and cauda epididymidis, CA IV appears in the

stereocilia of epithelium and from there on also in isolated

spermatozoa. Localization in the plasma membrane and in the

stereocilia network are in accordance with the findings that CA IV

is an extracellular GPI-anchored protein [20]. This supports the

proposal of Ekstedt and co-workers [12] who recognized the

possible transfer of CA IV during sperm passage through the

epididymal tract. In rat, a different distribution of CA IV was

found in the epididymis, where only epithelial cells of the corpus

epididymidis showed CA IV immunoreactivity [21]. A post-

testicular transfer of other proteins was demonstrated for sperm

adhesion molecule1 (Spam1), which is secreted in epididymosomes

released by the epithelial cells to the luminal fluid and integrated

into the sperm surface [22,23]. Such a possible transfer of CA IV is

supported by two other findings of the present study.

Western-blot and real-time PCR show CI IV mainly in the

corpus epididymidis. First western blot analysis shows CA IV

only in corpus, cauda and vas deferens and secondly real time-

PCR detects mRNA for CA IV only in corpus epididymidis. The

amount of transcripts of CA IV mRNA in corpus epididymidis is

comparable to that of the kidney, which served as reference. In

relation to the mouse kidney, the CA IV mRNA in the corpus

epididymidis averages at 54.30% compared to kidney.

The inflow of bicarbonate into the cell can either occur by anion

transporters across the cell membrane, or via diffusion of CO2,

which is then hydrated by intracellular CA. We were able to show

CO2-induced acceleration of sperm beat frequency in a dose-

dependent manner and that treatment with carbonic anhydrase

inhibitors EZA or AZA slows acceleration of beat frequency,

which shows that CAs are involved in the control of flagellar

beating presumably due to hydration of CO2 to supply sperm with

HCO3
2. The inhibitory effect of AZA in the luminal fluid of

epididiymis in rat has been investigated in other studies. It was

found that AZA depresses the luminal acidification by 80% in rat

cauda epididymidis [24].

Murine sperm show significant CA IV activity. In our

study, we were primarily interested in characterizing the

physiological role of CA IV in murine epididymal spermatozoa.

By measuring the response as acceleration of beat frequency of

single cells to CO2, we show that carbonic anhydrases are involved

in bicarbonate supply. The speed of response to CO2 could be

reduced either by using carbonic anhydrase inhibitors or using

sperm of mice with a targeted mutagenesis of the CA IV gene. In

spite of other carbonic anhydrases, which are mainly located

intracellularly, a state of equilibrium between HCO3
2 and CO2 in

the cells of CA IV2/2 animals takes longer to develop than in

sperm of wild-type animals. In addition, the free diffusion of CO2

through the sperm membrane appears to be faster than the import

of HCO3
2 by anion transporters, which might create a local

disequilibrium near the cell surface. When sperm lack CA IV, the

reestablishment of the uncatalyzed equilibrium is slower, and

acceleration of flagellar beat is delayed. This delay is even more

evident when 2% CO2 is used for stimulation instead of 5% CO2.

The presence of other CAs presumably explains why CA activity

in sperm of CA IV2/2 animals measured by mass spectrometry is

reduced only by one third, whereas inhibition of CAs using 5 mM

EZA leads to a decrease in enzymatic activity of 62.12%. We

discuss this difference either as being an inhibitory effect of EZA

towards other CA-isoforms [25], or as a compensatory effect by

upregulation of other CA-isoforms during spermatogenesis. It is

even more notable that the lack of CA IV is compensated only

partially and underlines the importance of CA IV for

spermatozoa. It was not surprising that we did not observe

fundamental changes in the response to bicarbonate in CA IV2/2

animals, since the transport of bicarbonate through anion

transporters is not affected in CA IV2/2 sperm.

cAMP acts downstream of CA
The application of cAMP analog cBIMPS in wild-type and

CAIV2/2 animals increases flagellar beat frequency to a similar

Figure. 8. Model of CA IV action in spermatozoa. The extracellular carbonic anhydrase IV (CA IV) equilibrates carbondioxide and bicarbonate
close to the sperm membrane. CO2 is freely diffusible through the plasma membrane and can be catalyzed by internal CA, such as CA II, to produce
bicarbonate. Bicarbonate can also be transported by anion exchangers from the extracellular to the intracellular space (A). Transgenic animals lacking
CA IV will experience a delayed equilibrium of CO2 and HCO3

2, which might lead to decreased acceleration of flagellar beat in response to external
CO2 (B).
doi:10.1371/journal.pone.0015061.g008
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extent. As expected, treatment of wild-type sperm with EZA, did

not lead to a difference in cBIMPS-induced acceleration of sperm

beat, demonstrating that cBIMPS bypasses the action of HCO3
2

on soluble adenylyl cyclase.

CO2 and HCO3
2 show similar effects on human sperm

beat frequency
It was previously shown that also human sperm speed flagellar

beat in response to HCO3
2 from 6.60 Hz to 12.20 Hz [26]. We

extended our studies and successfully demonstrate for the first time

that human spermatozoa also respond to CO2 with an

approximately doubled increase of beat frequency from 7.51 Hz

to 14.62 Hz. This response can be reduced with EZA about

27.56% and elucidates carbonic anhydrases to be active in these

cells. Beeing responsible for one third of the whole CA activity, CA

IV is comparable to membrane bound CA in other cells like

astorcytes [27]. However, the fact that CA IV is transferred in the

corpus epididymids to the sperm suface accentuates the impor-

tance for post-testicular regulation of CO2 and HCO3
2 and

therefore motility.

The use of computer-assisted sperm analysis (CASA) demon-

strates that basic motility parameters of a whole sperm population

can be significantly different compared to the evaluation of

motility parameters on a single cell level. We found significant

differences in the amount of motile and fast progressive

spermatozoa between wild-type and CA IV2/2 sperm. Determi-

nation of the basal beat frequency of motile sperm did not reveal

any alterations in CA2/2 animals.

Model of CA IV action in murine sperm
In conclusion we would postulate the role of CA IV in

spermatozoa as follows: CA IV, as an external carbonic anhydrase,

equilibrates HCO3
2 and CO2 near the sperm surface, so that an

increase in external CO2 rapidly replenishes HCO3
2 at the

extracellular membrane face. Bicarbonate can enter the cell by

anion transporters. In sperm carbonic anhydrases located in the

cytoplasm, such as CA II, use CO2 to provide HCO3
2 by catalytic

fast equilibration, resulting in early activation of spermatozoa by

sAC. A targeted disruption of CA IV inhibits fast equilibration

between HCO3
2 and CO2 near the cell membrane and leads to a

transient disequilibrium, and delayed restoration of the HCO3
2

concentration resulting in decreased HCO3
2 influx and hence

smaller activation of HCO3
2-dependent sAC-mediated activation

of flagellar beat (Fig. 8).
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