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Abstract
Bones provide mechanical and protective function, 
while also serving as housing for marrow and a 
site for regulation of calcium ion homeostasis. The 
properties of bones do not remain constant with 
age; rather, they change throughout life, in some 
cases improving in function, but in others, function 
deteriorates. Here we review the modifications in 
the mechanical function and shape of bones, the 
bone cells, the matrix they produce, and the min-
eral that is deposited on this matrix, while present-
ing recent theories about the factors leading to 
these changes.

KEY WORDS: bone properties, aging, senes-
cence, bone cells, bone mineral, review.

Introduction

The image of bone as a static “skeleton in the closet” has created the false 
impression that, once formed, bones do not change. The purpose of this 

review is to demonstrate how bones change with development and aging, from 
the whole bone level down to the specific components, and to suggest some 
mechanisms for the age-dependent modifications in bone structure, composi-
tion, and function.

Bone serves mechanical and homeostatic functions, protecting the internal 
organs, allowing for locomotion and load-bearing, and serving as a home for mar-
row, and as a reservoir for calcium homeostasis. With aging, these functions 
become impaired, bone becomes more fragile and less able to perform its 
mechanical functions, and the calcium stores are often depleted (Chan and Duque, 
2002). To understand why this does not occur in all individuals and how the fac-
tors that control these processes change with age is a major area of investigation.

Bone is a composite structure, consisting of inorganic mineral crystals, an 
extracellular organic matrix, cells, lipids, and water. The mineral crystals are 
analogous to the geologic mineral, hydroxylapatite. Since bone mineral is 
made of OH-deficient nano-particles, we will refer to it here as hydroxyapa-
tite (HA) (Boskey, 2007). Most of the mineral crystals contain impurities, 
mainly carbonate, magnesium, citrate, and other trace elements whose content 
depends on what the animal has ingested (Grynpas, 1993b). The organic 
matrix is mainly type I collagen, but other types of collagen and several 
non-collagenous proteins, reviewed elsewhere, are also present (Zhu et al., 
2008). The cells, which produce, nurture, and remodel the mineralized extra-
cellular matrix, also respond to mechanical and other signals, which deter-
mine the properties (morphology and function) of the bone. The relative 
composition of bone varies with health and disease, tissue site, and animal 
and tissue age. It is the variation with age that is the focus of this review.

Independent of age, bone has a hierarchical structure: from the level of 
whole tissue, where there are different types of bones—long and short, flat 
and tubular—to the tissue level, where bone is arranged into cortical (com-
pact) and trabecular (woven and lamellar) structures, to the microscopic level, 
where bone consists of cells, matrix, and mineral, and to the nanometer level, 
where the individual crystals and collagen fibrils can be seen (Fig. 1).

Bone Growth and Development

Bone development begins in the embryo with the formation of a cartilage anla-
gen that gradually becomes replaced with bone in a process known as endo-
chondral ossification (Provot et al., 2008) (Fig. 2). As reviewed in detail 
elsewhere (Zuscik et al., 2008), during this process, developmental signals 
within the “growth plate”, cartilaginous tissue found at the distal and proximal 
ends of the developing long bone, regulate the differentiation and maturation of 
the resident cells (chondrocytes). Chondrocytes proliferate, deposit a matrix, 
and then become surrounded by a mineralized matrix, and subsequently 
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undergo apoptosis (programmed cell death). Blood vessels then 
invade the tissue, forming a marrow cavity, and the calcified car-
tilage is replaced by bone, hence the bone grows in length. Bone 
grows in width (appositional bone growth) by periosteal expan-
sion, with new bone forming on already existing surfaces. In most 
species, the growth plates close at puberty, and long bone growth 
essentially stops. Appositional bone growth continues, and this 
accounts for the changes in bone shape, and consequent mechan-
ical changes (Rauch, 2005).

The endochondral ossification pro-
cess is recapitulated during fracture 
healing (Ferguson et al., 1999); thus, 
it is interesting to ask whether there  
are changes in fracture healing with 
age, although anecdotally one knows 
that, in general, children heal their  
fractured bones more rapidly than do 
adults. In rabbits, studied throughout 
their lifespan, the chondrogenic poten-
tial of the periosteum decreased with 
age (O’Driscoll et al., 2001). Age also 
affects the rate at which rats regain 
their mechanical competence after frac-
ture (Meyer et al., 2001). In mice, 
the rate of cellular differentiation,  
and hence the rate of repair, decreases 
with age (Naik et al., 2009). The rate 
of revascularization also decreases  
with increasing age (Lu et al., 2008). 
No such comparative analysis of the 
rate of fracture healing in humans has 
been reported. These observations may 
explain some of the observed shifts in 
bone morphological and mechanical 
properties with age, with decreases in 
the rates of multiple processes such  
as cell proliferation and differentiation, 
as well as tissue revascularization, all 
being affected.

Age-Dependent Changes in 
Bone Mechanical Behavior

The components of bone are main-
tained in a balance to resist fracture 
while optimizing the weight of the 
skeleton. Stiffness (resistance to defor-
mation) and strength (maximum stress 
to failure) are required to carry large 
loads, while toughness, or ductility, is 
required to absorb the energy from 
impact loads. A shift in the balance to a 
higher tissue mineral content will gen-
erally yield stiffer but more brittle 
bones. It is important to recognize that 
changes in collagen structure may also 
contribute to increased brittleness due 

to the shift in its cross-linking profile, which not only stiffens 
the organic matrix, but also affects the morphology of the 
mineral component, as will be discussed below. It is also 
important to realize that, although bone mineral density 
(BMD) decreases in some fragility diseases such as osteopo-
rosis (Manolagas, 2010), it is increased in others such as 
osteopetrosis (Kaste et al., 2007). Thus, it is the tissue-level 
properties in combination with the bone geometry that deter-
mine fracture risk.

Figure 1.  The structural levels of bone. Cortical bone is made up of longitudinally oriented 
osteons, and the trabecular bone within the metaphyses is made up of connected struts and 
plates. In both bone types, the bone is laid down in layers (lamellae). Both tissue types contain 
identical components, and their properties are dependent on the amount, morphology, and 
interaction of these components at each level.

Figure 2.  Endochondral ossification of long bones. Condensation of mesenchymal cells forms 
the general shape of the long bone. Differentiation of these cells into chondrocytes begins the 
process of bone formation in the primary ossification center. In late differentiation, 
chondrocytes undergo apoptosis, leaving behind a mineralized scaffold onto which osteoblasts 
brought in by the invading vasculature lay down bone, lengthening the bone while forming 
the marrow cavity. As development continues, secondary ossification centers form in the 
epiphyses. Bone increases in width through deposition of bone on the periosteal side and, 
through endochondral ossification, continues to increase in length until the growth plates fuse.
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There are reports that older individu-
als may have a 10-fold-increased 10-year 
fracture risk compared with younger indi-
viduals with the same BMD (Kanis, 
2002). Since many investigators and cli-
nicians believe that BMD is a marker of 
fracture susceptibility, because it declines 
with age in both women and men, it is 
important to examine why there is an age-
dependent increase in bone fragility or  
in brittleness of bone. Several studies 
have reported that cortical bone becomes 
more brittle and weaker with age (Currey 
and Butler, 1975; Burstein et al., 1976; 
McCalden et al., 1993; Tommasini et al., 
2007). Similarly, the trabecular struts (see 
Fig. 1) also weaken with age (Nagaraja  
et al., 2007). In studies that extend to 
extremely old age (> 85 yrs), the inci-
dence of fractures is reported to be 10-15 
times as likely as in persons aged 60-65 
yrs (Melton, 1996; Yates et al., 2007).

The strength of bone as a tissue is determined by the amount 
of mineral that is there (usually provided clinically as a two-
dimensional BMD and a T- or Z-score comparing the value with 
that of healthy sex-matched 25-year-olds or with healthy age-
matched control individuals, respectively), and the way that min-
eral is distributed relative to the forces applied to the bone 
(Ammann and Rizzoli, 2003). With aging, sex-related differences 
(not discussed here) in the distribution (geometry and morphol-
ogy) become more pronounced, and these differences are believed 
to contribute to increased fracture incidence in the extremely 
elderly population (Yates et al., 2007). In a study of mice ranging 
in age from 3-77 wks, where the mice were grouped into age 
ranges of fewer than 12 wks, 13-50 wks, and 50-77 wks, bone 
density and elasticity decreased with age (Kavukcuoglu et al., 
2007). Testing cortical bones of old and elderly specimens in ten-
sion, Nyman et al. (2007) also found that increasing age affected 
all parameters (including strength) except for the elastic stiffness. 
Age-dependent changes were associated with increases in cortical 
porosity, non-enzymatic collagen cross-links, and absolute colla-
gen content, as will be discussed below.

Bone that is repetitively loaded (by normal activities of daily 
life, by extreme exercise, or in ex vivo experimental situations) 
develops cracks, initially at the sub-micron level, but eventually 
these cracks become visible, and if they are not repaired by the 
bone remodeling process, they can lead to failure (O’Brien 
et al., 2005). The cause of the initial damage is hypothesized 
(Mohsin et al., 2006) to be either disruption of bone mineral 
crystallites, debonding at the mineral organic interface, or dis-
ruption of collagen fibrils, or some combination of all three. 
Disruption of the structure of the bone cells that are embedded 
in mineral, the osteocytes, also can contribute (Verborgt et al., 
2000). For example, in an animal model of early premature 
aging, the klotho mouse, osteocytes die and their interaction 
with the matrix is altered (Suzuki et al., 2005). The extent of this 
micro-damage increases exponentially with age in humans 
(Schaffler et al., 1995), as the micro-crack densities and lengths 

also increase (Vashishth, 2007). It is likely that both the inability 
to repair the cracks (Hirano et al., 2000) and their increasing 
propagation with age, contribute to the reduced toughness of 
both cortical and trabecular bone (Currey et al., 1996).

Changes in Bone Morphology with Age

Morphology describes the shapes (geometry) of bones, in terms 
of whether they are long bones (such as the femur and tibia), 
short bones (such as the bones of the feet and hands), or flat 
bones (such as the calvaria or breast bones). The morphological 
traits that determine strength are the sizes and the shapes of the 
bones (Jepsen, 2009). There are compact areas (cortices) and 
spongy areas (trabecular) found in the ends of all long bones and 
in the central region of other bones (see Fig. 1). Bones change 
in shape to facilitate their mechanical functions—being strong 
enough to withstand large forces and streamlined enough to 
minimize energy demands (Seeman, 2003; Wang and Seeman, 
2008; Seeman, 2009, Jepsen, 2009) (Fig. 3).

During development and aging, bone shape changes in 
response to load, as postulated in Wolff’s Law and demonstrated 
in exercise experiments in various animals (Woo et al., 1981; 
Wallace et al., 2007; Chen et al., 2009), as well as hormonal and 
growth factor signals. As the shape changes (lengthening, nar-
rowing walls, shifting the center of gravity), the bone’s func-
tional ability may also be modified. This can be seen in animal 
models, as well as in humans. In mice, for example, cortical bone 
size, trabecular bone volume, and bone strength decline with age 
after 3 mos corresponding to achievement of peak bone mass in 
this species (Ramanadham et al., 2008), as the bones become 
more slender (Kawashima et al., 2009). In mature rats (from 8-36 
mos of age), the only change reported in bone structure is an 
increase in the cross-sectional moment of inertia (distribution of 
the bone around the central axis), due to the expansion of the outer 
diameter (periosteal deposition) of their bones, with a thinning of 
the cortical walls (endosteal resorption) (LaMothe et al., 2003; 

Figure 3.  Long bone geometrical changes with age. Left: micro-CT 3D renderings of rat tibias 
with increasing age. Right: Cortical drift in the tibias of human bones with age. Changes in 
periosteal and endosteal remodeling around the bone are non-uniform throughout life. Note 
that the AP drift is larger from 2 to 9 yrs, and that the ML drift is greater from 9 to 14 yrs. 
Right panel adapted from Goldman et al. (2009). AP: anterior-posterior direction. ML: medial-
lateral direction.
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Westerbeek et al., 2008). However, in a more recent study, when 
the trabecular bones in proximal tibias of 23-month-old and 
5-month-old rats were compared, mineral density, bone volume 
fraction, and trabecular number were significantly reduced in the 
aged rats compared with the younger rats (Pietschmann et al., 
2007). Serum markers of bone formation were also reduced in the 
older rats. In bovine samples (Nagaraja et al., 2007), the trabecu-
lar struts decreased in thickness with age, and the degree of 
anisotropy was decreased in the older specimens, as shown by 
micro-computed tomography.

Human samples, although more difficult to assess in such 
numbers, show similar patterns of morphological changes with 
age. In necropsied tibias from males ranging in age from 17 to 
46 yrs, significant changes in mechanical properties were cor-
related with the size (slenderness) of the tibia in an age-indepen-
dent fashion, with increased mechanical weakening, and more 
brittle behavior observed with increasing age (Tommasini et al., 
2005, 2007).

The shape of long bones changes during development (Fig. 3). 
Beginning early in life, the cross-sectional geometry of long 
bones undergoes modification, beginning with a more uniform 
outer wall thickness and progressing to a more ellipsoidal shape 
through a process known as “cortical drift” (Goldman et al., 
2009). Cortical drift occurs when formation is decreased and 

resorption increased on the endosteal sur-
face, while bone is deposited on the peri-
osteal surface. This leads to an increase in 
bone diameter and, in the case where end-
osteal resorption is greater than forma-
tion, cortical thinning. Cortical drift 
occurs rapidly during pre-pubertal growth, 
levels off after closure of the epiphyseal 
plate, and increases again in the elderly, 
often resulting in weaker bone with a 
wider diameter and significantly thinner 
cortices. Cortical drift does not occur uni-
formly around the bone diameter. Like 
many of the transformations we will dis-
cuss, it is the response to mechanical 
demands and biological signaling that 
results in the alteration in bone geometry 
throughout life (Goldman et al., 2009).

In humans, there is some debate 
(Seeman, 2003) as to whether the pat-
terns of resorption and formation are 
similar in men and women, but this is 
beyond the scope of this review. It must 
be noted, however, that within trabecular 
bone, the age-related loss in men is pre-
dominantly due to thinning of the indi-
vidual struts, while in women the loss is 
due to a decrease in connectivity (Aaron 
et al., 1987). Thus, in most animals stud-
ied, as well as in humans, bone gets 
stiffer with age, and the cross-sectional 
area (trabecular surface over which 
mechanical load is distributed) decreases. 
The impact of this is that stress (load/unit 

area) increases and bone deformation increases, and in fragile 
bone, this may lead to fracture.

In the healthy individual, bone formation and resorption are in 
a state of balance. The variations in bone morphology are related 
to the changes in this balance between bone formation and bone 
remodeling. While these changes do not affect all bones equally, 
the general trends are similar. For example, in terms of hip struc-
ture, men and women older than 85 yrs of age have been reported 
to have the most “unfavorable” hip geometry, narrower cortices, 
and decreased resistance to bending/buckling (Yates et al., 2007). 
Similar “unfavorable” properties also exist in tibias (Tommasini 
et al., 2005), and perhaps in other bones, but this might not be 
detected in bones that are loaded to a lesser extent than tibias and 
femurs. The reason for these morphological changes is related to 
genetics, the loading of the bones, and the activity of the cells.

The Bone Cells and How they Age

There are several types of cells in bone (Fig. 4) (for review, see 
Blair et al., 2007; Bonewald, 2007; Bonewald and Johnson, 2008; 
Lian and Stein, 2008; Boyce et al., 2009; Chen et al., 2009).
The majority of the bone cells are of mesenchymal cell origin: 
chondrocytes, which are responsible for the deposition of the 
growth plate and its subsequent remodeling (Fig. 2); osteoblasts, 

Figure 4.  Bone remodeling pathways. Several factors can initiate bone remodeling, which, in 
a balanced system, begins with resorption by osteoclasts and ends with formation by 
osteoblasts. Signals from external sources (Wnts) and from within the bone (osteocyte 
apoptosis) contribute to osteoblast and osteoclast differentiation and activity, a selection of 
which is shown in this figure. Light gray = resorption pit, dark gray = osteoid, yellow = newly 
mineralized osteoid.
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which synthesize the bone matrix and 
facilitate the mineralization process; and 
osteocytes, which respond to load and 
regulate bone resorption and formation 
(Adachi et al., 2009).

Osteoblastogenesis is regulated by 
numerous pathways, some of which are 
illustrated in Fig. 4. From 60 to 80% of 
osteoblasts recruited to a resorption pit 
die by apoptosis within 200 days (Jilka 
et al., 2007; Manolagas and Parfitt, 
2010). Some of the osteoblasts become 
small, quiescent bone-lining cells  
along inactive surfaces. The remaining 
osteoblasts are surrounded by mineral 
and extend long processes (dendrites), 
which allow signaling and nutrition to 
pass from cell to cell through channels 
in the bone called canaliculi. These 
mineral-surrounded cells are known as 
osteocytes, and they make up approxi-
mately 90% of the cells in bone. They 
have a lifespan of 1 to 50 yrs (Manolagas 
and Parfitt, 2010), and they are the cells 
that are most responsive to mechanical 
signals (Matsuo, 2009; Rochefort et al., 
2010). These cells maintain contact 
with other osteocytes and the surface 
through gap junctions. In fact, the most abundant gap junction 
protein in bone, connexin 43, is required for bone modeling and 
remodeling (Matsuo, 2009; Rochefort et al., 2010). Theoretically, 
mechanical loading results in fluid flow within the canalicular-
lacunar network, resulting in cell-level shear forces, membrane 
deformation, and tension in elements connecting osteocytes 
with the canalicular walls, which results in the release of anti-
apoptotic factors. Osteocyte apoptosis due to disruption of the 
canalicular network or lack of mechanical stimulus is hypothe-
sized to regulate osteoclast and osteoblast function to induce the 
remodeling of the local bone tissue (Rochefort et al., 2010).

The other major bone cells, the osteoclasts, are of hematopoi-
etic origin, and they are multinucleated giant cells responsible 
for removing bone (resorption) following signals from osteo-
blasts and osteocytes. In male rats and in all mice studied to 
date, osteoclast differentiation is impaired in old as compared 
with younger animals (Cao et al., 2005, 2007; Pietschmann
et al., 2007), and the relative rates of bone removal far exceed 
the rates of new bone formation. Another interesting finding is 
that osteoclasts develop to a greater extent when they encounter 
older bone in vitro, so that older bone may be resorbed prefer-
entially (Henriksen et al., 2007). Some of the factors involved 
in the differentiation of these cells are shown in Fig. 4. These 
factors and the way they control the development of the skeleton 
have been reviewed by Provot et al. (2008).

All normal cells, including osteoblasts, osteoclasts, and osteo-
cytes, have a limited lifespan, which is controlled by the number 
of replication cycles and external factors (Fig. 5). The Hayflick 
limit of cell division indicates that cells can undergo only a lim-
ited number of divisions, and that the number of such divisions 

declines with age (Martin et al., 1970). In the cell nucleus, the 
lengths of the telomeres at the ends of genes are presumably the 
determinant of that number. A telomere is a repetitive length of 
DNA and associated proteins that provide stability to the ends of 
chromosomes. With each cell division, telomeres decrease in 
length due to the inability of the cell to fully replicate this region, 
and once the telomere length reaches some critical level, cell 
senescence and apoptosis are initiated (Calado, 2009). Self-
renewing hematopoietic and mesenchymal stem cells have low 
levels of an enzyme, telomerase, which extends their life cycle 
significantly compared with that of mature cells. However, the 
activity of this enzyme is not indefinite and decreases with age 
(Calado, 2009). Damage to telomeres by UV light and oxidative 
stress may also accelerate telomere shortening, thereby curtailing 
the lifespan of cells (Muller, 2009).

It has been noted in mice null for telomerase-specific genes 
that the first generation of the knock-out animals had no advanced 
aging phenotype, presumably due to telomere reserves that 
retained their chromosome stabilizing functions (Blasco et al., 
1997). However, mice from the third generation and beyond 
exhibited systemic impaired organ function, tissue atrophy, and 
classic age-related disorders such as osteoporosis (Lee et al., 
1998). Werner syndrome in humans results in the premature onset 
of age-associated diseases with accelerated telomere attrition after 
puberty (Martin, 2005). However, Wrn-null mice do not demon-
strate any of the classic symptoms of the disease until the knock-
out is developed in mice with telomerase-deficient backgrounds, 
further highlighting the role telomere maintenance in the onset of 
the premature aging phenotype (Chang et al., 2004). Studies in 
humans have found that telomere length was associated with 
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decreased development of age-associated diseases; the connec-
tion between telomere length and longevity is still in question 
(Sahin and DePinho, 2010).

Cells often show changes in gene expression and activity with 
age, perhaps due to altered gene (mRNA) translation. A study by 
Kennedy and Kaeberlein (2009) found that treatments that 
decrease mRNA translation in animals increase their lifespan. Of 
particular importance to the cells in bone, although this appears 
to be true for all cells, aging is associated with the development 
of an inability to respond to forces [“mechanotransduction” 
(Chen et al., 2009)]. As recently reviewed (Wu et al., 2010), the 
ability of cells, in general, to sense, process, and respond to 
mechanical stimuli appears to be altered with aging, and these 
changes are associated with increased susceptibility to mechani-
cal damage, increased apoptosis, alterations in intracellular sig-
naling, and an impaired regulation of gene expression.

Among the key cell-based changes that occur with age, 
which in turn affect bone’s decline in mechanical function are 
modifications in the amount and rate of bone remodeling, the 
process by which osteoclasts remove existing bone (resorption), 
and osteoblasts then replace that bone (formation). With age, the 
amount of bone deposited with each cycle of remodeling 
decreases (Szulc and Seeman, 2009), possibly due to a reduction 
in the number of cell precursors of osteoblasts, a reduction in the 
number of stem cells from which these precursors are derived, 
or a reduction in the lifespan of osteoblasts. The signals that lead 
to differentiation of osteoblast precursors decrease with age 
(Lee et al., 2005), which may also contribute to the loss in osteo-
blast numbers. The number of hematopoietic cells, which are 
osteoclast precursors, declines with age in non-human primates 
(Lee et al., 2005), and there may also be a decrease in the 
amount of surface available for resorption. The net result is a 
decrease in the amount of bone with age, starting fairly early in 
life (Szulc and Seeman, 2009).

Few studies have examined whether human bone cell dif-
ferentiation is age-dependent. In one study of 80 patients aged 
14-79 yrs, bone marrow stromal cell gene expression was char-
acterized for several markers of differentiation: Runt-related 
transcription factor 2 (Runx2) for osteoblasts, Peroxisome 
Proliferator-Activated Receptor gamma (PPAR-γ) for adipo-
cytes, SRY-box containing gene 9 (sox9) for chondrocytes, and 
Receptor Activator for Nuclear Factor κB Ligand (RANKL) for 
osteoclasts were measured (Jiang et al., 2008). Markers of apop-
tosis were elevated with increasing age, and RANKL and 
PPAR-γ levels were positively correlated with age in female 
patients, but not in males. There was also a slight (not signifi-
cant) decrease with increasing age in the osteoblast marker, 
Runx2. In another study (Zhou et al., 2008), the patients ranged 
in age from 17 to 90 yrs, and the markers examined were 
senescence-associated β-galactosidase, proliferation, apoptosis, 
p53 pathway genes, and osteoblast differentiation by alkaline 
phosphatase activity and osteoblast gene expression analysis. 
There were 4 times as many marrow stromal cells that were 
positive for senescence, and the doubling times for the older 
subjects’ samples were correlated with age. There was also an 
age-dependent decrease in marrow stromal cell proliferation and 
osteoblast differentiation. All of these indicate that cell differen-
tiation and proliferation in human bone is age-dependent.

Apoptosis is a regulatory mechanism in most tissues and 
plays a role in normal tissue maintenance (Carrington, 2005). 
The dysregulation of apoptosis contributes to the imbalance 
between bone resorption and formation, as well as changes in 
local tissue mechanical properties (Carrington, 2005). It has 
been noted that osteocyte apoptosis increases with tissue age, 
which contributes to bone weakening independent of BMD 
through at least two mechanisms: (i) the formation of areas of 
micropetrosis due to mineralization of empty lacunae; and (ii) 
disruption of the canalicular system, thereby decreasing repair 
of microcracks (Jilka et al., 2007; Manolagas and Parfitt, 2010). 
Studies have also shown that many of the factors that regulate 
cell function in bone remodeling, such as steroids and hormones 
(glucocorticoids and estrogen), local autocrine and paracrine 
factors (inflammatory cytokines, Wnts, and the TGF-β super-
family), and mechanical stimuli also regulate apoptosis of osteo-
cytes and osteoblasts (Almeida et al., 2007b). Cell senescence 
may alter the responses of cells to apoptotic signals (see Muller, 
2009, for review), although whether this is the case in bone cells 
has yet to be investigated.

Genetic, Molecular, and Other Changes 
in Bone Cell Responses with Aging

There are multiple pathways that control differentiation and 
metabolism by the bone cells. These were recently reviewed in 
detail elsewhere (Provot et al., 2008; Chau et al., 2009), and 
here we will consider only those that are known both to be 
affected by age and to result in age-dependent changes in bone 
properties.

Signaling by a family of genes called wingless-type MMTV 
integration site (Wnt) (Williams and Insogna, 2009) is believed to 
regulate cellular aging in all cells, although the mechanism 
through which this occurs has not been completely accepted 
(Brack et al., 2007; DeCarolis et al., 2008) (Fig. 6). A study com-
paring the expression levels of all genes in the Wnt pathway in 
bones of different ages, and in cells isolated from young and old 
bones, found that all Wnt-associated genes were decreased in adult 
and old mice compared with younger mice, with many being sig-
nificantly decreased (Rauner et al., 2008). Of note, transgenic 
overexpression of one of the Wnt genes (Wnt 10b) prevented bone 
mass loss in aged mice, again demonstrating the importance of the 
Wnt pathway in aging osteoblasts (Bennett et al., 2005). Studies in 
an animal model of early senescence, the senescence-accelerated 
mouse strain P6 (SAMP6), reported that a soluble frizzled related 
protein, sFRP-4, a protein that increases osteoblast differentiation, 
is negatively associated with peak bone mass (Nakanishi et al., 
2006). In the canonical Wnt pathway, Wnt proteins bind to a 
Frizzled family member transmembrane receptor to initiate the 
signaling cascade by activating the Disheveled protein (Dsh) by 
excessive phosphorylation. This in turn prevents phosphorylation 
of β-catenin by the complex (GSK-3, APC, and Axin) (Fig. 6). If 
not proteolytically degraded, β-catenin accumulates exterior to the 
cell nucleus, where stable β-catenin interacts with lymphoid 
enhancer factor/T-cell factor (Lef/Tcf) and is translocated into the 
nucleus as a complex of β-catenin/Lef/Tcf to stimulate target gene 
transcription (Novak and Dedhar, 1999). When Wnt signals are not 
present, β-catenin is kept in low concentrations via the degradation 
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complex that consists of 4 proteins (GSK-
3, Axin, APC, and β-TrCP/Slimb) and by 
the proteolytic pathway. In the degrada-
tion complex, Axin and APC are the scaf-
folds that bind to both β-catenin and 
GSK-3 to facilitate the phosphorylation of 
β-catenin’s amino terminus by GSK-3, 
facilitating its ubiquitination and degrada-
tion.

Recently, oxidative stress has been 
suggested to be an additional factor con-
tributing to bone cell aging. This again 
occurs through the Wnt pathway, albeit 
indirectly, as reactive oxygen species 
(ROS) activates FoxOs [a series of tran-
scription factors reviewed elsewhere 
(Salih and Brunet, 2008), which in turn 
ties up β-catenin, minimizing its effec-
tive concentration in the cells and 
decreasing the formation of osteoblasts 
(Almeida et al., 2007a). A decrease in 
Wnt signaling by the activation of 
PPAR-γ via ligands generated from lipid 
oxidation also contributes to the age-
dependent decrease in osteoblast forma-
tion (Manolagas, 2010).

Bone Protein Changes 
with Age

The organic matrix of bone consists of 
collagen (mainly type I) and approxi-
mately 5% (by weight) non-collagenous 
proteins. The collagen provides the flex-
ibility (toughness) to the bone structure, 
which provides resistance to impact 
loading, and serves as a template for the 
oriented deposition of mineral crystals. 
Collagen is secreted from the cell as tri-
ple-helical fibrils which self-associate to 
form larger fibrils and then fibers. 
Extensive post-translational modifica-
tions (hydroxylation, glycation) occur 
before the fibrils associate within the 
cell. Once extruded from the cell, globu-
lar domains that help keep the fibrils soluble in the cell are 
cleaved. These fibrils are then stabilized and modified extracel-
lularly by the formation of cross-links, based both on reduction 
of Schiff-bases and aldol condensation products within and 
between the fibrils, and by the addition of sugars to the collagen 
fibrils (advanced glycation end-products) [for review, see Saito 
and Marumo (2010). It is the cross-linking of the collagen fibrils 
that has the greatest impact on the strength of collagen fibrils.

There are two different categories of collagen cross-links, 
and they vary differently with age (Fig. 7). The cross-links that 
are formed enzymatically by lysyl hydroxylase and lysyloxidase 

(enzymatic cross-links) connect the N- or C-terminus of one 
collagen molecule to the helical region of another. They then 
mature, with age, to trivalent pyridinoline (PYD) and pyrrole 
(PYL) cross-links, which connect two terminal regions and a 
helical region, thereby increasing the stiffness of the collagen 
(Vashishth et al., 2001). Those formed by glycation- or oxidation-
induced non-enzymatic processes, advanced glycation end-
products (AGEs), such as glucosepane and pentosidine, increase 
in formation as the collagen persists for longer times in the tis-
sue. Limited numbers of non-enzymatic cross-links were found 
to be structurally related to the morphology of the trabecular 
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bone (Banse et al., 2002). In a study of autopsy samples from 
individuals 54-95 yrs old, Viguet-Carrin et al. (2010) reported 
that the enzymatic cross-links were not correlated with micro- 
architecture, while there was a strong correlation with the non-
enzymatic glycation cross-link, pentosidine, in vertebral 
trabecular bone. The study also reported an increase in the 
amount of pyridinoline but not the other cross-links, a finding 
noted earlier in iliac crest trabecular bone (Bailey et al., 1999). 
Age-dependent increases in both pentosidine and lysyl pyridino-
line cross-links, but not in hydroxylysyl-pyridinoline cross-
links, were found in cortical bone osteons (Nyman et al., 2006). 
This finding led the authors to speculate that the rate of non-
enzymatic cross-linking increases with age, while formation of 
mature enzymatic cross-links may decrease. Such changes 
would result in decreased strength and toughness of the bone 
and, ultimately, decreased resistance to crack propagation. 
Similar findings were also reported for bovine bone (Tang et al., 
2007). Thus, cross-links based on non-enzymatic glycation 
occur to a greater extent with age than do enzymatic cross-links.

Formation of cross-links affects both the way the collagen 
mineralizes and the way micro-damage is propagated. There is 
also evidence to suggest that the accumulation of AGEs within 
bone tissue can be removed only by bone resorption, and their 
presence increases osteoclast activity while decreasing forma-
tion by osteoblasts, thereby contributing to the fragility of bone 
with age (Viguet-Carrin et al., 2010).

Important features of the bone collagen network include  
the orientation of the collagen fibrils and the co-alignment of 
mineral crystals with the fiber axis of the collagen. Collagen 

orientation increases with tissue age, as is seen in images of 
osteons obtained by second-harmonic generation microscopy 
(Fig. 8), where the intensity is proportional to the orientation 
(Campagnola and Loew, 2003). Similar to the accumulation of 
non-enzymatic cross-links, orientation is an age-dependent fea-
ture.

There are also age-dependent changes in the expression and 
relative presence of the non-collagenous proteins (Ikeda et al., 
1995). Such proteins, reviewed in detail elsewhere (Zhu et al., 
2008), are for the most part multifunctional proteins important 
for regulating cell-matrix and mineral-matrix interactions,  
as regulators of mineralization, and for playing a role in signal-
ing. Much of their multifunctionality is related to the extensive 
post-translations they undergo (fragmentation, glycosylation/ 
de-glycosylation, phosphorylation/dephosphorylation). Thus, it 
is important to note that not only do their distributions change 
with age, but also the extent of their post-translational modifica-
tion decreases with increasing age (Plantalech et al., 1991; 
Grzesik et al., 2002).

Decreased protein production with age was reported by 
Grynpas et al. (1994), where a comparison of trabecular bone 
from human femoral necks showed that younger individuals 
(ages 18-37 yrs) had more extracellular bone matrix proteins 
than individuals aged 51-79 yrs, and that there were increased 
bone matrix protein fragments in the older group. This was also 
shown in cultures of undifferentiated osteoblasts (pre-osteo-
blasts) obtained from human trabecular bone from the embryo 
to age 60 yrs (Fedarko et al., 1992). Cell proliferation was great-
est in the 16-18th wks of gestation, declining after birth and then 
continuously with donor age, so that the rate of proliferation in 
the 30-year-old age group was ¼ that of the fetal samples; the 
rates of total protein synthesis mirrored the age-dependent 
changes in proliferation. The relative distribution of the proteins 
expressed in culture was not constant, however, indicating that 
synthesis rates do vary. Of the proteins studied, small proteogly-
can content followed total protein content, but osteonectin, a 
cell-binding protein, increased in the teen years until puberty, 
and then steadily decreased thereafter. Similarly, in the klotho 
knockout mouse, a model of early senescence discussed later in 
this review, comparison of the distribution of proteins in 
6-month-old mutant and wild-type mice of the same sex, back-
ground, and age showed increased histochemical staining for 
dentin matrix protein 1 (DMP1) and osteopontin in the mutant 
mice. DMP1 is a protein relatively specific for osteocytes; 
osteopontin is made by a multitude of cells (Suzuki et al., 2005) 
and functions in cell signaling and control of mineralization, 
among other things. Analysis of the data stresses the alteration 
in protein expression with age in the klotho mice, although the 
effect of genetic manipulation on the expression of these pro-
teins is not known.

Mineral Changes with Age

The mineral content of bone (also referred to as “mineraliza-
tion” or “ash content”) increases with age, and classic studies 
have shown that the breaking stress of bone increases exponen-
tially with ash content, while the toughness of bone (resistance 

Figure 8.  Collagen orientation of osteons obtained by second-harmonic 
generation microscopy, where the intensity is proportional to the 
orientation of the collagen. The orientation increases with tissue age, as 
is apparent in the outer, older rings of the osteon, which have a brighter 
intensity. Image from a 6-year-old baboon courtesy of Jayme Burket.



J Dent Res 89(12) 2010 	 Aging and Bone	   1341

to fracture, or the inverse of 
brittleness) declines as the ash 
content reaches a maximum 
(Currey, 1969). This is seen 
not only in ash weight determi-
nation but also in the areal 
BMD, which is more fre-
quently measured. BMD mea-
surements have been compared 
by a variety of techniques for a 
variety of species, demonstrat-
ing the increase in mineral 
content during growth and 
development, and the decline 
with later aging (Fig. 9).

The mineral found in bone is 
an analogue of the natural occur-
ring mineral, hydroxyapatite 
[Ca10(PO4)6(OH)2]. Bone min-
eral crystals are nano-crystals of 
approximate dimensions (1-1.5 
nm thick x 5-25 nm wide x 8-40 
nm long) (Eppell et al., 2001; 
Tong et al., 2003; Burger et al., 
2008). They also contain a vari-
ety of inclusions and substitu-
tions that also vary with age. 
Prevalent among these substitu-
ents is carbonate, which substi-
tutes for hydroxyl and phosphate 
within the apatite surface and 
the crystal lattice (LeGeros, 
2002). The most comprehensive 
report describing how normal 
human bone mineral changes in 
composition and crystal size as a 
function of age was based on x-ray diffraction analyses by Hanschin 
and Stern (1995), who examined 117 homogenized iliac crest biop-
sies from patients aged 0-95 yrs. They found that the bone mineral 
crystal size and perfection increased during the first 25-30 yrs and 
then decreased thereafter, slightly increasing in the oldest individu-
als. Maturation of the mineral, as shown by the line-broadening of 
the x-ray diffraction data, was later also noted in human embryonic 
vertebrae as a function of age (Meneghini et al., 2003). While in 
some of these cases cortical and trabecular bone tissues were exam-
ined separately, there was no attempt to distinguish locations in the 
bone (surface vs. internal) or male and female differences, which 
are known to exist (Tosi et al., 2005).

The same 117 homogenized biopsy samples were analyzed 
by wavelength-dispersive x-ray fluorescence to quantify the 
carbonate substitution in the hydroxyapatite mineral as a func-
tion of age. Although the changes observed in carbonate substi-
tution were relatively slight (at most 10%), there was a general 
increase from 0-90 yrs that is distinct from the absence of a 
change in crystallinity after age 30 in these samples. The 
increase in carbonate content with age has also been reported 
based on Raman (Tarnowski et al., 2002; Yerramshetty et al., 

2006; Donnelly et al., 2009) and infrared spectroscopy (Miller 
et al., 2007; Kuhn et al., 2008; Gourion-Arsiquaud et al., 
2009b), as well as x-ray diffraction and chemical analyses 
(Pellegrino and Biltz, 1972; Burnell et al., 1980; Rey et al., 
1991a,b) of bones from a variety of animal species.

Combining x-ray diffraction, Fourier transform infrared 
spectroscopy (FTIR), and chemical analysis, Kuhn and co-
workers analyzed mineral crystals in bovine bones at two 
different ages, and reported that the crystals mature with age 
with greater increases of crystal size and Ca/P ratio for the 
cortical as compared with the trabecular bone of younger (1- 
to 3-month-old calves) vs. 4- to 5-year-old animals. The Ca/
[P + CO3] was relatively constant within a given bone type 
and in both bone types in the older animals. Analysis of the 
FTIR data showed that the labile ions decreased with age, to 
a greater extent in cortical in contrast to trabecular bone, but 
in general, similar patterns of maturation were seen for both 
bone types when old and young bones were compared (Kuhn 
et al., 2008). It is important to note that all the x-ray diffrac-
tion data and most of the spectroscopic data came from 
homogenized bone.
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In the homogenized bulk bone samples of all species exam-
ined, parallel to the age-dependent increase in carbonate con-
tent, there is a decrease in acid phosphate content (Rey et al., 
1991a,b) and an increase in the hydroxyl content (Rey et al., 
1995a,b; Loong et al., 2000; Wu et al., 2002). Bone apatite is 
non-stoichiometric, and is both hydroxyl- and calcium-deficient 
(Cho et al., 2003), but these deficiencies decrease with age. 
Whether this is because the crystals are actually perfecting with 
time (which argues against their incorporating carbonate ions) 
or whether, as suggested by in vitro studies showing that osteo-
clasts preferentially resorb older bone (Henriksen et al., 2007), 
the accelerated remodeling of bone leaves behind only the least 
soluble, more perfect crystals, has not been fully established.

To measure actual crystal size, rather than estimating the sizes of 
particles causing the broadening of the x-ray diffraction pattern of 
powdered bone mineral, investigators have used transmission elec-
tron microscopy and atomic force microscopy. These studies con-
firm the sizes suggested by x-ray diffraction, but, to date, perhaps 
because of the amount of work required for each sample, and the 
site-to-site variation that occurs within the bony tissues (Weiner and 
Traub, 1989), there are few reports of the age-dependent variation in 
actual mineral crystal size. However, Eppell’s group studied imma-
ture and mature bovine bone, from which the changes in crystal size 

suggested by the x-ray diffraction discussed above were confirmed 
(Eppell et al., 2001; Tong et al., 2003). There is a TEM study in 
which crystal sizes in lamellar bone of “mature” and “senior” indi-
viduals were compared by TEM, and, similar to the findings above, 
the length and the width of crystal aggregates were significantly 
higher in senile age as compared with the younger “mature” group 
(Denisov-Nikolskii et al., 2002)

A half-century ago, backscattered electron imaging sug-
gested that there was a gradient of mineral density around 
osteons (Jowsey, 1966; Barer and Jowsey, 1967), with the 
youngest bone, closest to the blood vessels (Haversian canals), 
being the least dense. Within cortical bone, a series of almost 
concentric circles surrounds the blood vessel, cutting a cone 
through the bone (see Fig. 1). With the application of infrared 
microspectroscopy and microspectroscopic imaging to bone (for 
review, see Carden and Morris, 2000; Boskey and Pleshko 
Camacho, 2007), this pattern was extended to mineral crystallin-
ity, carbonate content, and acid phosphate content, as well as to 
the maturity of the collagen in osteons (Fig. 10) (Paschalis et al., 
1996; Fuchs et al., 2008; Gourion-Arsiquaud et al., 2009b). Other 
studies scanning across cortical bone, or going from the formative 
surface to the resorptive surface of cortical or trabecular bone in 
rodents (Boskey et al., 2003, 2005b; Ling et al., 2005), canines 
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(Gourion-Arsiquaud et al., 2009a), and humans (Paschalis et al., 
1997, 2003; Boskey et al., 2005a), demonstrated that the changes 
noted as a function of animal age also changed as a function of 
tissue age. The wide range of values (and large coefficients of 
variation) in the whole bone samples noted above could thus be 
partly explained by the relative contributions of younger and 
older bone, or by the relative numbers of new and old osteons 
examined. Similar spatial variations were noted by Raman micro-
spectroscopy (Akkus et al., 2003). Thus, as summarized in the 
Table, there are parallel tissue-age- and animal-age-dependent 
changes in bone mineral composition.

Animal Models of Aging Bone

Much of the information available on age-dependent changes in 
bone has come from animal studies and in particular from mod-
els where there is early senescence. The SAMP6 mouse (Jilka 
et al., 1996), along with the 11 related senescence-accelerated 
mouse strains and the Klotho mouse (Kuro-o et al., 1997; 
Kuro-o, 2009), are examples of such premature aging models. A 
mutation in the klotho gene (co-receptor for FGF-23) leads the 
“klotho” mice to show decreased bone formation and increased 
bone turnover, associated with kidney abnormalities, at an early 
age (Negri, 2005). Knockout of the klotho gene, which is pre-
dominantly expressed in the kidney, leads to premature aging 
starting at about 4 wks of age, while overexpression extends the 
mouse lifetime (Masuda et al., 2005). Overexpression can res-
cue the premature aging changes noted in bones and teeth; hence 
this is an excellent model for studying age-related changes over 
a short time frame. There are also other rodents that undergo 
premature aging, such as the Louvain rat (Luc/c) (Duque et al., 
2009). In this model, rats avoid serious systemic disorders while 
demonstrating low-turnover bone loss, which may allow inves-
tigators to study bone fragility independent of the effects of 
decreased estrogen levels of OVX rats.

Almeida et al. suggested a potential mechanism for the aging 
effects seen in bone. In a study where female and male C57BL/6 
mice were compared as a function of age, the authors found that 
the expected age-related loss of strength in the spine and hind 
limbs was detectable 9 mos earlier than the loss of BMD (Almeida 
et al., 2007b). Suggestive of the mechanism was the finding 
that aging in C57BL/6 mice was associated with an increase in 
adrenal production of glucocorticoids, as well as bone expression 
of 11β-hydroxysteroid dehydrogenase (11β-HSD) type 1, the 
enzyme that activates glucocorticoids. Aging also decreased the 
volume of the bone vasculature and bone fluid transport. These 
changes could be reproduced by pharmacologic hyperglucocorti-
coidism or by preventing cell-specific transgenic expression of 
the enzyme that inactivates glucocorticoids (11β-HSD 2). 
Glucocorticoids suppressed angiogenesis in fetal metatarsals and 
hypoxia-inducible factor 1α transcription and VEGF production 
in osteoblasts and osteocytes. The mechanism suggested for 
increased skeletal fragility in old age is via similar effects associ-
ated with the increases in endogenous glucocorticoids that are 
known to occur with aging in humans (Van Cauter et al., 1996; 
Dennison et al., 1999; Purnell et al., 2004; Reynolds et al., 2005). 
Identical to the way excess glucocorticoids affected the mouse, it 

Table.  Age-dependent Changes in Bone Mineral Composition with 
Increasing Animal or Tissue Age

Increasing mineral content
Increasing carbonate substitution
Decreasing acid phosphate substitution
Increasing hydroxyl content
Increasing Ca/P molar ratio
Increasing crystal size and perfection

is suggested that the age-associated increase in endogenous glu-
cocorticoids decreases the lifespan of osteoblasts and osteocytes, 
the size of the vascular bed in bone, and solute transport through 
the lacunar-canalicular network. These results revealed that 
endogenous glucocorticoids increase skeletal fragility in old age 
as a result of cell-autonomous effects on osteoblasts and osteo-
cytes, leading to interconnected decrements in bone angiogenesis, 
vasculature volume, and osteocyte-fluid flow.

There are also other mechanisms that may account for the 
age-dependent changes in bone properties, since aging mice 
show reduced cell proliferation, apoptosis, and loss of IGF-I-
induced signaling at the receptor level and at key regulatory 
sites along the MAPK (ERK1/2) and PI3K (AKT) pathways 
(Cao et al., 2007). These pathways have been reviewed else-
where (Provot et al., 2008).

Non-human primates have been studied as aging models, 
since they closely resemble changes in humans (Grynpas, 1993a; 
Jayo et al., 1994; Colman et al., 1999; Cerroni et al., 2000; Black 
and Lane, 2002). As discussed earlier, the standard clinical mea-
surement for the assessment of human bone mineral changes is 
dual-photon absorptiometry (DEXA). While this method is not 
sensitive to drug-induced changes, it does show developmental 
changes in the two-dimensional bone mineral densities mea-
sured. For example, BMD in male and female rhesus macaques 
differs with age (Cerroni et al., 2000) (Fig. 9). Females show an 
initial increase with age, with peak bone density occurring 
around age 9.5 yrs, and remaining constant until 17.2 yrs, after 
which there is a steady decline in BMD. Males acquire bone 
mass at a faster rate, showing a higher peak BMD at an earlier 
age than females, and BMD remains constant between ages 7 and 
19 yrs. Older males were not included in that study.

Based on analyses in changes in osteonal mineral and matrix 
properties in baboons of different ages (Havill, 2004), our labora-
tory (Gourion-Arsiquaud et al., 2009b) characterized the mineral 
and matrix changes in these osteons as a function of animal age 
and tissue age from newborn to 33 yrs of age in female animals. 
We found that there was an increase in mineral content, based on 
FTIR analyses of mineral/matrix ratio from age 0 to age 13 yrs, 
in agreement with the data reported by Cerroni et al. (2000), and 
then there was a decrease in mineral content, although the slope 
of the change as a proportion of the osteonal radius (tissue age) 
was similar (Fig. 10). Crystal size and perfection and collagen 
maturity, assessed by FTIR imaging, showed similar patterns, 
with an age-dependent increase up to age 13 yrs, a decrease in 
the global average after that, but similar increases in the carbon-
ate/phosphate ratio in all bones analyzed.
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Is Osteoporosis a Disease of Aging?

Osteoporosis, also known as the “silent disease”, occurs in 
women and men, and is associated with a loss of bone mass and 
increased risk of fracture. As has been pointed out throughout 
this review, with aging there is a loss of bone mass and bone 
strength. But does that mean that osteoporosis is a disease char-
acteristic of aging, or that its incidence increases in old age? It 
is our contention that these are not the same, and for reasons 
discussed below, osteoporosis is not necessarily a disease of 
aging (Carrington, 2005; Blair and Carrington, 2006).

Osteoporotic bone, by definition, is bone that fractures easily. 
Both trabeculae and cortices are often thinner, the mineral content 
per area of tissue is often increased, and the mean crystal size, 
collagen maturity, and carbonate contents are increased relative to 
those of age-matched controls (Gourion-Arsiquaud et al., 2010). 
Further, there is a less broad distribution of the pixel histograms 
describing each of these properties (Boskey et al., 2009). The 
general characteristics are also true, as discussed above, of bones 
in older animals. However, although the incidence of fragility 
fractures and decreased bone strength (Banks et al., 2009) 
increases exponentially with age in males and females (Nieves 
et al., 2009), we suggest that the answer to the question above is 
a definite “no”: Osteoporosis is not a disease of aging; it is only 
age-associated. There are several reasons for this conclusion. 
First, and most obvious, is that not all the elderly, here referring 
to people over age 85 yrs, show signs of skeletal fragility or have 
fractures (Mellibovsky et al., 2007). Second, while there are spe-
cific genes associated with bone loss in rodents and humans 
(Richards et al., 2009), their presence or absence does not offer 
specific protection to any age group, and finally, because osteopo-
rosis does occur in the very young—for example, in idiopathic 
juvenile osteoporosis, a disease of skeletal fragility in teenagers 
(Rauch et al., 2002; Płudowski et al., 2006). To argue against 
osteoporosis being a disease of aging, as opposed to a disease 
which has a greater prevalence in older individuals, we point to 
the case of two centenarians and their relatives (one being 113 
years old) who had no fractures and no genetic abnormalities that 
could be linked to their younger-appearing bone properties 
(Mellibovsky et al., 2007).

Osteoporosis and Oral Bone Loss

As demonstrated by the expression of the intramembranous 
bone-specific marker periostin (Kashima et al., 2009), alveolar 
bone forms through the process of intramembranous ossifica-
tion, i.e., without forming a cartilage model, it too undergoes 
age-dependent bone loss. Interestingly, this loss occurs primar-
ily in the mandibular bone and not in the maxilla (Sarajlic et al., 
2009), although changes in the maxilla have also been reported.

In human studies, significant, moderate correlations were 
found between hip or vertebral BMD and some measure of 
alveolar bone density or quality in most studies (Von Wowern 
and Stoltze, 1978; Kribbs et al., 1989; Krall et al., 1996; 
Taguchi et al., 1999; White and Rudolph, 1999; Jonasson et al., 
2006). However, no other association between osteoporosis and 
oral bone loss in humans has been reported in previous investi-
gations (Daniell, 1983; Mohajery and Brooks, 1992; Mohammad 

et al., 1997; Earnshaw et al., 1998; Southard et al., 2000). These 
variable findings can be attributed to small sample sizes, use of 
different methods of analysis, analysis of different sites within 
the jaw, and failure to account for mechanical factors such as 
missing teeth. Oral hygiene, often not reported, also appeared to 
be a critical factor in predicting oral bone loss (Streckfus et al., 
1999). Additionally, Sanfilippo and Bianchi (2003) reported that 
oral bone loss was due more to alterations in maxillary function, 
which in turn changed the mechanical environment.

Rodent experiments, such as those in ovariectomized rats, 
have similarly reported both positive (Tanaka et al., 2002, 2003) 
and negative (Moriya et al., 1998) associations between osteo-
porosis in long bones and spine and effects in the jawbone. 
Recently, in a study of male mice of different ages, not specifi-
cally treated with any pathogens, there was significant oral bone 
loss from 9 mos to 18 mos, with markers of periodontitis sig-
nificantly elevated in the gingivae but not the spleen of these 
animals, suggesting that mice are subject to age-related bone 
loss (Liang et al., 2010). It is difficult, however, to separate 
which came first, periodontal disease or bone loss. Periodontitis 
is characterized by inflammation of the tissues that support the 
teeth, and it causes resorption of the alveolar bone and the loss 
of the soft tissue attachment to the tooth, hence causing tooth 
and bone loss. The effect of inflammation on oral bone loss, and 
on osteoporosis, has been reviewed previously (Chung et al., 
2009).

A recent study that compared lumbar and mandibular bone in 
ovariectomized monkeys also reported a direct correlation 
between bone BMD and jaw BMD. The monkeys were more 
than 9 yrs old, adults but not elderly, and were examined 76 wks 
after ovariectomy, relative to sham-operated controls of the 
same age (Binte Anwar et al., 2007). Periodontal disease and 
jaw mechanics per se were not noted.

As in the case of osteoporosis, oral bone loss may be age-
associated because of poorer nutrition (Ritchie et al., 2002), 
alterations in dental hygiene, and hormonal changes. However, 
it is thought that aging alone does not cause the loss of periodon-
tal attachment in the healthy elderly (Huttner et al., 2009). Thus, 
because there is only an association, rather than causality, we 
maintain that while oral bone loss may be accelerated in aging, 
in both animals and humans, the loss of bone is not directly 
attributable to aging.

Conclusions

The composition of bone and its mechanical properties vary as 
a function of age. New understanding of the factors controlling 
the aging of the cell in general, and the aging of osteoblasts, 
osteocytes, and osteoclasts in particular, is pinpointing the path-
ways that could be targeted to delay these age-dependent 
changes. But since not all individuals’ bones age similarly, 
whom to target and which specific pathway should be selected 
may become the greatest challenge.
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