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Abstract

Many naturally occurring RNA structures contain single mismatches, many of which occur near
the ends of helices. However, previous thermodynamic studies have focused their efforts on
thermodynamically characterizing centrally placed single mismatches. Additionally, algorithms
currently used to predict secondary structure from sequence are based on two assumptions to
predict stability of RNA duplexes containing this motif. It has been assumed that the
thermodynamic contribution of small RNA motifs is independent of both its position in the duplex
and identity of the non-nearest neighbors. Thermodynamically characterizing single mismatches
three nucleotides from both the 3" and 5’ ends (i.e., off-center) of an RNA duplex and comparing
these results to those of the same single mismatch-nearest neighbor combination centrally located
has allowed for the investigation of these effects. The thermodynamic contribution of 13 single
mismatch-nearest neighbor combinations are reported but only 9 combinations are studied at all
three duplex positions and are used to determine trends and patterns. In general, the 5 and 3’
shifted single mismatches are relatively similar, on average, and more favorable in free energy
than centrally placed single mismatches. However, close examination and comparison shows there
are several associated idiosyncrasies with these identified general trends. These peculiarities may
be due, in part, to the identities of the single mismatch, the nearest neighbors, and the non-nearest
neighbors, along with the effects of single mismatch position in the duplex. The prediction
algorithm recently proposed by Davis and Znosko (Biochemistry 47, 10178-10187) is used to
predict the thermodynamic parameters of single mismatch contribution and is compared to the
measured values presented here. This comparison suggests the proposed model is a good
approximation but could be improved by the addition of parameters which account for positional
and/or non-nearest neighbor effects. However, more data is required to better understand these
effects and to accurately account for them.

The known functions and roles of RNA in nature are vast. Similarly, the types of secondary
structure motifs present in RNA are also diverse. These include canonical helices and non-
canonical regions, such as internal, bulge, hairpin, and multi-branch loops. Single
mismatches, or 1x1 internal loops, are the most frequently occurring secondary structure
motif in ribosomal RNA (1) and often times serve integral structural and/or functional roles
(2-12). Consequently, single mismatches have been utilized in therapeutic techniques as a
target (13-16), an aptamer drug (17,18), and a probe (19-22).
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A table demonstrating the correlation between the number of G-C nearest neighbors and the free energy contribution of the single
mismatch to duplex stability is provided. This material is available free of charge via the Internet at http://pubs.acs.org.


http://pubs.acs.org

1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Davis and Znosko

=] o o
AG 37,single mismatcthG 37,mismatch m+AG

Page 2

One example of a therapeutic technique utilizing this secondary structure motif is
demonstrated by recent studies examining the positional effect of single mismatches on the
efficacy of RNA interference (RNAI) activity by placing mismatches at the center and the 5’
and 3’ ends of the sense stranded-small interfering RNA (ss-siRNA) component (19-22).
SiRNA duplexes with single mismatches placed at the 3’ terminus of the sense strand
showed increased RNAI activity when compared to perfectly matched siRNA duplexes or
those containing mismatches at the center or 5’ end. These enhanced siRNAs are known as
‘fork-siRNA duplexes’ (19,22). Furthermore, the activity of short hairpin RNAs (ShRNAS)
has also been shown to be increased by the incorporation of 3’ terminal single mismatches
and a decreased overall thermodynamic stability (AG). Westerhout and Berkhout further
demonstrated ShRNAs were most effective if they possessed a free energy value within a
defined window, while also containing 3' terminal mismatches (21). Synthetic fork-siRNAs
and shRNAs are effective therapeutics to suppress gene expression by interacting with the
RNA-induced silencing complexes (RISCs) and thereby invoking sequence-specific RNAI
activity. 3’ terminal mismatches allow for recognition and duplex unwinding by the RISC
helicase activity (23-27). It has been proposed they also minimize off-target gene silencing
by resulting in direction specific disassociation of the sSiRNA and act as sequence specific
RNAI mediators in RISC (19).

The algorithms most commonly used to predict secondary structure from sequence are based
on free energy minimization (28-34) using nearest neighbor parameters and have been
incorporated into user-friendly, computer programs. In this method, a given sequence is
folded into possible conformations. The total free energy values for each conformation are
calculated by summing together the free energy parameters of all secondary structure motifs
(experimental or predicted). This results in an optimal structure and a series of suboptimal
structures. The optimal structure has the lowest free energy and is predicted to be the
predominate structure in solution. These prediction algorithms utilize two methods when
assigning free energy parameters to non-canonical regions. If thermodynamic parameters for
a given motif are available, the experimentally determined free energy value is assigned. If
such parameters have not been experimentally determined, a predicted free energy value is
assigned.

Much work has been done to thermodynamically characterize single mismatches placed in
the center of a duplex (1,35-37). These studies have shown the contribution of single
mismatches to duplex thermodynamics to be dependent on the identity of the nearest
neighbors and the identity of the mismatched nucleotides (1,35-37). For example, we (36)
recently proposed a single mismatch specific algorithm which utilizes three parameters
consisting of a total of nine variables. The free energy of an RNA duplex containing a single
mismatch which has not been thermodynamically characterized can be calculated by:

+AG” +AGO}7.GU (1)

37,mismatch-NN interaction 37,AU

Here, AG°37 mismatch nt IS —0.3, —2.1, and —0.6 kcal/mol for A-G, G-G, and U-U mismatches,
respectively; AG°37 mismatch-NN interaction 1S 0.6, 0.0, 0.6, —0.5, and —0.9 kcal/mol for

5 YBR3 s’ RXY’) 5 YXR? s’ YBY’» 5 RBY?»

* RRY’ P YYR® SRYY’ *RYR® | and| * YYR® |mismatch and
nearest neighbor combinations, respectively, when A and G are categorized as purines (R)
and C and U are categorized as pyrimidines (Y); AG°37 au is a penalty of 1.1 kcal/mol for
replacing a G-C closing base pair with an A-U base pair; and AG°37 gy is a penalty of 1.4
kcal/mol for replacing a G-C closing base pair with a G-U base pair. All other combinations
of single mismatch nucleotides and nearest neighbors are assumed to contribute no favorable
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or unfavorable contributions to duplex stability and are assigned a free energy value of zero
(36).

In addition to the identity of the nearest neighbors and mismatched nucleotides, it is
important to note studies have reported the dependence of the thermodynamic stability of
small RNA motifs on the duplex position and the identity of non-nearest neighbors (37-42).
An example of the thermodynamic dependence on the motif’s duplex position was
demonstrated by Kierzek and coworkers investigating the thermodynamics of single
mismatches (37). A-A and U-U single mismatches had increased stability the closer they
were placed towards the end of the duplex, while G-G single mismatches were unaffected by
position in the duplex (37). An investigation of bulges of one nucleotide (38) demonstrated
thermodynamic dependence on the identity of non-nearest neighbors and further showed a
clear and direct relationship between the thermodynamic stability of the parental duplex and

s geu?

the thermodynamic contribution of the bulge. For example, the bulge[ CA }was
placed in the center of two different duplex sequences and a 3.0 kcal/mol difference in free
energy contribution between the two duplexes was obtained (38). Similarly, a recent
thermodynamic study on 1x2 loops (43) showed a strong dependence on the identity of non-

5 C g CSI

nearest neighbors. Placing the 1 x 2 Ioop[ ¥ GAUG’ } in the center of two different duplex
sequences resulted in a difference in free energy contribution of 2.8 kcal/mol (43,44).
Additionally, for tetraloops, or hairpins of four, non-nearest neighbor effects were observed
when comparing the thermodynamics of tetraloop contribution to duplex stability when
placed in the sequences ®>GCCNNNNGGC? and *GGCNNNNGCC3'. When tetraloops are
placed in the latter stem sequence, they were, on average, 0.6 kcal/mol more stable than in
the former sequence (44). Because current secondary structure prediction algorithms assume
the thermodynamic contribution of small RNA motifs is independent of both its position in
the duplex and identity of the non-nearest neighbors, these results suggest a better
understanding of positional and non-nearest neighbor effects may lead to improved
algorithms to predict secondary structure from sequence.

This work investigates the positional and non-nearest neighbor effects on the
thermodynamic contribution of single mismatches by thermodynamically characterizing the
same single mismatch-nearest neighbor combinations at three duplex positions within the
same stem. Results show positional and/or non-nearest neighbor effects play a role in
defining the thermodynamic contribution of single mismatches to duplex stability.

MATERIALS AND METHODS

Sequence Design

Single mismatches chosen for this study were those which occur frequently in nature (35).
5 AéG"‘)
3 UACS

Two single mismatches outside the 30 most frequently occurring, and

1

uce? , were also chosen to allow at least one example of each of the seven
combinations of single mismatches to be represented. Single mismatches and nearest
neighbors were placed in three different positions within the same stem (Figure 1). The
single mismatches were either placed in the center or off-center (both 5'- and 3'-shifted).
Although the identity of the single mismatch and nearest neighbors are held constant,
moving the single mismatch-nearest neighbor combination between the three duplex
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positions changes the mismatch’s non-nearest neighbors. Further details for the design of
sequences were described previously (35,43).

RNA Synthesis and Purification

Oligonucleotides were ordered from Integrated DNA Technologies (Coralville, 1A). The
synthesis and purification of the oligonucleotides followed standard procedures and have
been previously described (35,45).

NMR Sample Preparation

Five representative duplexes,
S GACUUGCUG® | | ¥ GAucaccuG®
YcuGceucGac® || ¥ cuUGUGGACY

5'G AAG ACCUG®

,and| * CUACUGGAC’ | were studied by NMR spectroscopy. NMR was used to
confirm the formation of the single mismatch containing duplex conformation as the
predominate structure in solution. The total concentration of each single strand was
calculated from the extinction coefficient and the measured absorbance at 280 nm at 25 °C
using Beer’s Law. An equal molar ratio of non-self-complementary strands was mixed to
form a duplex containing a single mismatch, and the total duplex concentration was
calculated using the same method previously described for calculating single strand
concentrations (35,43). All duplex concentrations were 1-2 mM. The resulting duplexes
were lyophilized and redissolved in 225 pL of 80 mM NaCl, 3 mM NaH,POy4, 7 mM
NaoHPO4, 0.5 mM EDTA at pH 7.0 and 25 puL 99.9 % D,0 (Sigma Aldrich, St. Louis, MO)
for exchangeable proton NMR experiments.

5 GACCU GCU G¥
¥ CUGGA CAA C°

5'GGCU ACCUG®
¥ CCAA UGGACS

NMR Spectroscopy

All spectra were collected on a Bruker Avance I11 400 MHz NMR spectrometer with a 5
mm broadband probe, two rf channels with pulse field gradient waveform generators, and a
digital variable temperature control unit. Exchangeable proton spectra were collected using a
jump-and-return pulse sequence (46) optimized for water suppression and for maximum
peak intensity of the imino proton resonances. Experiments were collected at five degree
intervals, with temperatures ranging from 0-45 °C. The data were processed using the
TOPSPIN software package (Bruker BioSpin, Bellerica, MA).

Optical Melting Experiments and Thermodynamics

The methods used to determine the concentration of the single strands and to form duplexes
from the single strands are standard and were described previously (35,43). Optical melting
experiments were performed in 1 M NaCl, 20 mM sodium cacodylate, and 0.5 mM
Na,EDTA (pH 7.0). Melting curves (absorbance versus temperature) were obtained, and
duplex thermodynamics were determined as described previously (35). The thermodynamic
contributions of single mismatches to duplex thermodynamics (AG°single mismatch, AH
®single mismatch» @1d AS®single mismatch) Were determined by subtracting the canonical Watson-
Crick contribution from the measured duplex thermodynamics. This type of calculation has
been described previously (35). To explicitly demonstrate this type of calculation, the
following explanation and examples are given. The total free energy change for duplex
formation can be approximated by a nearest neighbor model (47) that is the sum of energy
increments for helix initiation, nearest neighbor interactions between base pairs, and the
single mismatch contribution. For example:
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Here AG°37,; is the free energy change for duplex initiation, 4.09 kcal/mol (47); AG

5 GUAC ACCUG?
3 CAGG UGGAC?
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(2)

°37,single mismatch 1S the free energy contribution from the single mismatch, and the remainder
of the terms are individual nearest neighbor values (47). Therefore, rearranging eq 2 can

solve for the contribution of the single mismatch to duplex stability:

o
AG 37,single mismatch
=AG®y

- AG®37;

—AG®y GU

~ G| A

_age| A€

CcC
GG

CU
GA

- AG®3;

- AG®3

- AG®3;

- 5 GUAC ACCUG?

CA |
GU |

UG |

UG |
AC |

5 GUAC ACCUG?
¥ CAGG UGGAC®

(3)

A v . . . . .
Here, K CAGG UGGAC’ |is the value determined by optical melting experiments;

AG°37 is the free energy change for duplex initiation, 4.09 kcal/mol (47); and AG
°37,single mismatch 1S the free energy contribution of the mismatch. More explicitly:

AG®37 single mismatch= — 9.74 — 4.09 — (=2.24) — (=2.11) — (=2.24) — (=3.26) — (=2.08) — (=2.11)
=0.21 kca/mol
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A second example of this type of calculation when the same single mismatch-nearest
neighbor sequence combination is placed in the center of the duplex is as follows:

5 GACUAC CUG®
3 CUG AGG GAC?
=AG37;

AG°3;

GA |
CU |
CAC ]
,UG_
CU |
GA |

+AG°37
+AG°37

+AG°37

+AG037.sing]e mismatch
CC |
GG |
CU
L GA J
UG ]
| AC ] ®)

+AG°37

+AG°37

+AG037

AGO37.single mismatch
. | ¥eacuaccuc®
=AG 37 3 - 5’
> CUGAGG GAC’
- AG®37;5

GA |
CU |
AC |
UG
CU |
GA

CC
GG

cu
GA

UG |
AC | (6)

- AG®3

- AG3

- AG®y

- AG°3;

- AG’y

- AG®3

AG®37 gingle mismatch= — 10.67 — 4.09 — (=2.35) — (=2.24) — (-2.08) — (=3.26) — (=2.08) — (=2.11)
= — 0.64 kcal/mol (7)

It is important to note that in these examples, the stem sequence remains constant. However,
by moving the single mismatch and nearest neighbors from the 5'-shifted position to the
central position, some of the individual nearest neighbor combinations within the stem
change. This change in nearest neighbor combinations in the stem is accounted for by
subtracting the free energy contribution of each nearest neighbor combination from the raw
data for the entire duplex while calculating the single mismatch free energy contribution.
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Errors in these single mismatch contributions (Table 2) were propagated from the errors for
the measured duplex (obtained from the analysis of the Ty, dependence of the melting
curves)(Table 1) and the errors reported for the nearest neighbor parameters (47).

RESULTS

Confirmation of Single Mismatch Formation by NMR
Five representative duplexes were studied by NMR. The thermodynamics of the first duplex,
5 GAC UUG CUG?

? CUGGUCGAC’ | \yere studied previously (35), but the data was not used in the
previous study to determine averages, trends, etc. due to possible formation of a competing
structure. The NMR data collected here confirms the presence of a competing structure. The
imino proton region of the NMR spectrum contains more resonances (at least 14) than
expected (11, one from each Watson-Crick pair, two from the G-U pair, and two from the
two uracils in the mismatch) if the duplex containing the single mismatch was the sole
conformation in solution (Figure 2a). The spectra for the other four duplexes studied,
however, are suggestive of single mismatch formation (Figure 2b—e).

5'GAUC ACCUG®

Forl * CUUGUGGAC’ | gight hydrogen bonded imino resonances are expected and all
eight are observed. In addition, two upfield imino resonances from the two uracils of the

5' G GCU ACCUGY }

mismatch are also expected and both are observed (Figure 2b). For[ ? CCAAUGGAC
eight hydrogen bonded imino resonances are expected and all eight are observed, with two
resonances overlapping at 12.6 ppm. No imino resonances are expected from the A-C

S GACCU GCU G

mismatch, and none are observed (Figure 2c). Forl > CUGGACAAC® | gjght hydrogen
bonded imino resonances are expected. Only seven are observed (with two overlapping at
13.3 ppm). It is likely one of the terminal imino protons is exchanging rapidly with the
solvent, and this resonance has broadened into the baseline (Figure 2d). Similarly, eight

5'G AAG ACCUGY

hydrogen bonded imino resonances are expected for| * CUACUGGAC® | however, only
seven are observed. Again, it is likely one of the terminal imino protons is exchanging
rapidly with the solvent, and this resonance has broadened into the baseline (Figure 2e). The
number of imino proton resonances in these spectra suggest the duplex with the single
mismatch is the predominate structure in solution.

Thermodynamic Parameters

The thermodynamic parameters for duplex formation, which were obtained from fitting each
melting curve to the two-state model and from the van’t Hoff plot of Ty, 1 versus log (Cy/
4), are shown in Table 1. Data for 38 duplexes containing 13 single mismatch-nearest
neighbor sequence combinations are shown because most combinations were melted at three
duplex positions. One central single mismatch nearest-neighbor combination, | * GCC’
with the same stem was studied twice by melting the same duplex sequence from two

5 GAC CAC CUG? S GACCU CAC G?
separate samples. Two duplexes, | * CUG GGG GAC® * CUGGAGGGC

and
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melted in a non-two-state manner. Non-two-state melting was determined when the enthalpy
values resulting from the two methods used to analyze the melting curves did not agree
within 10% (48,49). It is interesting to note both of these duplexes contain the same single
mismatch-nearest neighbor combination but at different duplex positions. The non-two-state
melting observed here may be due to the formation of a guanine tetraplex or aggregation,
which is a result of having three or more consecutive guanine residues (50). The melt

[ s AAG3/

transitions of all other duplexes are most likely two-state. Two combinations, ¥ UQCS’
S ACGY

and| ¥ UCC’ , were only studied at the 5'-shifted and central positions because if the

mismatch was placed at the 3'-shifted position, multiple structures were likely to compete
with the formation of the single mismatch structure (28-30). Lastly, as suggested by NMR

5 CAG CUG GUCY
data,| * GUCGUUCAG’ | may not be the only conformation in solution. Perhaps the

bimolecular association of the top strand with itself is a competing structure. The resulting
5 GAC CAC CUG>

data from those sequences which melted in a non-two-state manner, ¥ CUG GGG GAC®

5 GACCUCAC G*

¥ CUGGA GGG C* , and the duplex sequence possibly forming multiple
5 CAG CUG GUCY

and

conformations, [ ? GUCGUU CAG’ ] were not included in trends or averages and are
denoted in Table 1. Taken together, there are four single mismatch-nearest neighbor
combinations which do not provide viable thermodynamic data at each duplex position and,
therefore, are not included trends or averages. Consequently, 9 of the 13 single mismatch-
nearest neighbor sequence combinations investigated here have viable thermodynamic data
at each of the three duplex positions and are used to determine trends and averages.

Contribution of Single Mismatches to Duplex Thermodynamics

The contributions of the 13 single mismatch-nearest neighbor sequence combinations to
duplex stability at the three duplex positions are listed in Table 2. For the nine complete sets,
single mismatches placed at the 5'-shifted, central, and 3'-shifted positions contribute an
average of 0.4 (range of —0.8 to 1.6 kcal/mol), 0.8 (range of —0.6 to 2.3 kcal/mol), and 0.5
(range of —0.2 to 1.6 kcal/mol) kcal/mol to duplex stability, respectively (Table 3). The
corresponding entropy and enthalpy averages and ranges are shown in Table 3. These
experimental free energy values are compared to those obtained by a predictive model (36)
(Tables 2 and 4), resulting in average absolute free energy differences of 0.8, 0.4, and 0.7
kcal/mol, for the 5'-shifted, central, and 3'-shifted positions, respectively.

DISCUSSION

Kierzek and coworkers did examine the positional effects on the stability of three single
mismatch types (37); however, their investigation and other previous thermodynamic studies
have mainly focused their efforts on characterizing single mismatches placed at the center of
an RNA duplex (1,35-37,50-52). However, the analysis of the secondary structures of
rRNA and group I introns (37,53-61) reveals many single mismatches do not occur toward
the center of the duplex but are preferentially found near the ends of duplex regions.
Additionally, characterization of this small motif at various duplex positions may be
beneficial in the rational design of several types of therapeutic agents, such as fork-siRNAs
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and shRNA, which have both been found to have enhanced RNAI activity when single
mismatches are placed at the 3’ end of ss-RNA (19-22). However, algorithms used to
predict RNA secondary structure from sequence assume the thermodynamic contribution of
a single mismatch is independent of its position within the duplex and independent of its
non-nearest neighbors (28-31). Thirteen single-mismatch nearest neighbor combinations
have been thermodynamically characterized at three duplex positions, the center and two
off-center positions (5'- and 3’-shifted). The resulting data are analyzed and compared to
investigate the effects of duplex position and non-nearest neighbor identity on the
thermodynamic contribution of the single mismatch to duplex stability.

Thermodynamic Contributions of Single Mismatches to Duplex Thermodynamics

Free energy minimization algorithms used to predict RNA secondary structure from
sequence (28-34) utilize a measured value or an average of measured values if the
thermodynamic parameters of a single mismatch have been experimentally determined. This
study has thermodynamically characterized two previously unstudied single mismatch-

s AAG3’ [ 5 AEGSI :|
nearest neighbor sequence combinations, | *> UAC® |and| * UCC> | enabling the use of

measured thermodynamic parameters instead of predictive values, which may help improve
the accuracy of such predictive algorithms.

Assessment of the data in Tables 1 and 2 reveals a large variance in the obtained
thermodynamic parameters. Table 3 compiles this data and shows, on average, the
thermodynamic contributions of 5'-shifted single mismatches are relatively similar to the
thermodynamic contributions of 3'-shifted single mismatches. Table 3 also shows, on
average, the thermodynamic contributions of the off-center single mismatches are different
from the central single mismatches and are less favorable enthalpically and more favorable
in both entropy and free energy.

Although Table 3 identifies these general trends, Table 5 shows there are idiosyncrasies
associated with these general trends. For example, Table 3 identifies the general trend in
similarity of the thermodynamic contributions of 5’- and 3’-shifted single mismatches.
However, Table 5 shows the contribution of 5'-shifted single mismatches is not always
s UéG?’
comparable to the 3"-shifted single mismatches. For example, 5'-shifted| > AGC® [js 1.7
kcal/mol more stable than when the same mismatch is 3'-shifted. On the contrary, 3'-shifted

SUAUY
3 AGA® is 0.9 kcal/mol more stable than when the same mismatch is 5’-shifted. Table 3

also shows, on average, a central single mismatch is 0.4 kcal/mol less stable than an off-
center single mismatch. However, individual examples in Table 5 reveal a central

5 UAG N

P AGC” |js 2.1 kcal/mol less stable than the same mismatch 5'-shifted, and a central
[ 5’ GEUSI :|
P CAA” |is 0.5 kcal/mol more stable than the same mismatch 3'-shifted. In summary,

Table 3 identifies some general trends associated with the effect of duplex position on the
thermodynamic contribution of a single mismatch, but Table 5 reveals some idiosyncrasies
which are unexpected based on the general trends.
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Effect of Single Mismatch Identity and Duplex Position on the Free Energy of Single

Mismatches

Previous studies have found the stability of a single mismatch to be dependent upon the
identity of the nucleotides involved in the mismatch and the duplex position (1,35-37). For
example, U-U and A-A mismatches are found to be more stable when placed closer to the
duplex terminus than when in the center of the duplex; however, G-G mismatches are found
to be insensitive to positional effects (37), which is in accordance with the results found here
(Tables 2 and 5).

To further compare these findings to the data presented here for the nine complete sets, the
single mismatches were grouped by type of mismatch (data not shown), and the average free
energies at each of the duplex positions were derived. The type of mismatch is defined by
purine-purine (R'R; including A-G, G-G, and A-A), pyrimidine-pyrimidine (Y-Y; including
C-C, C-U, U-U), and purine-pyrimidine (R-Y; including A-C) single mismatches. For 5’-
shifted single mismatches, average free energy values of 0.3, 0.5, and 0.4 kcal/mol were
obtained for the R-R, Y'Y, and R-Y mismatches, respectively. For the centrally placed single
mismatches, average free energy values of 0.9, 1.3, and 0.2 kcal/mol were obtained for R-R,
Y-Y, and R-Y mismatches, respectively. For the 3'-shifted single mismatches, average free
energy values of 0.6, 0.6, and 0.3 kcal/mol were obtained for the R'R, Y'Y, and R-Y
mismatches, respectively.

Regardless of duplex position, Y-Y mismatches are on average the most destabilizing, while
R-Y mismatches are on average the least destabilizing. Additionally, centrally placed R-R
and Y'Y single mismatches are the most destabilizing to duplex thermodynamics, while
centrally placed R-Y single mismatches are the least destabilizing to duplex
thermodynamics. These results are in concordance with our initial hypotheses; R-Y
mismatches would be the least destabilizing to duplex thermodynamics overall and, of the
three positions studied, R-R and Y'Y single mismatches would be the most destabilizing in
the center of the duplex. This can be explained by realizing R-Y mismatches are similar in
size to a canonical base pair since they are comprised of one purine and one pyrimidine;
therefore, R-Y single mismatches are not likely disrupting the duplex backbone. R:R and
Y-Y single mismatches are likely to disrupt the duplex backbone by causing the backbone to
bulge-out or —in, respectively, to accommodate the mismatched nucleotides; however, it is
unclear why Y'Y single mismatches are more destabilizing than R:R single mismatches. It is
likely the duplex can better accommodate single mismatches near the end of the duplex than
in the center. These results suggest the thermodynamic stability of a single mismatch is
dependent upon the identity of the mismatched nucleotides and duplex position.

Effect of Nearest Neighbor Identity on the Free Energy of Single Mismatches

It is interesting to note previous studies on various small RNA motifs, such as 1x2
(39,43,62), 1x3 (39), 2x3 (39), and 2x2 (50,51,63-67) centrally placed internal loops, have
shown a thermodynamic dependence on the identity of the nearest neighbors. Specifically
for single mismatches, previous thermodynamic investigations have demonstrated a
correlation between the number of G-C base pairs adjacent to the single mismatch and the
thermodynamic contribution of the single mismatch to duplex stability was identified
(decreasing in thermodynamic stability: two G-C nearest-neighbors > one G-C nearest
neighbor > no G-C nearest neighbor) (35,36). A similar correlation is found for the single
mismatches placed at each of the three duplex positions characterized in this work. These
relationships are further defined in Table S1. It is interesting to note the central single
mismatches have the most unfavorable average free energy contribution, when compared to
the average free energy values for the off-center positions (Table S1).
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Kierzek and coworkers (37) investigated the thermodynamics of single mismatches and
demonstrated the orientation of nearest neighbors can affect the thermodynamic contribution
of the mismatch to duplex stability. Specifically, comparing the two nearest neighbors,

6 Lol v |

PCXG’ |and| * GXC* | where the two X’s are either both uracil (U) or both adenine
(A) involved in a U-U or A A single mismatch, respectively. For each case, the former set of
nearest neighbors were found to have the most favorable free energy value. Comparing the
5 Uéc'i s UAGK
two single mismatch-nearest neighbor combinations, | > AGG” | and| * AGC’

of the three duplex positions measured, on average the former is 0.7 kcal/mol more
favorable.

, at each

Effect of Non-Nearest Neighbor Identity on the Thermodynamics of Single Mismatches

To further investigate the wide range of differences in single mismatch thermodynamics, the
free energies of the mismatch placed at the 5’-shifted and 3'-shifted duplex positions were
examined. The average difference between the 5'- and 3'-shifted contribution is —0.14 + 0.86
kcal/mol (Table 5); however, there are idiosyncrasies. For example, there is a —1.69 kcal/
5'UAG3
3 AQCS

mol difference between the 5'- and 3'-shifted single mismatch. The only
s UAG'% s UAG}

difference between[ P AGC? th the 5-position and[ ? AGC? Lt the 3’-position is the
identity of the non-nearest neighbors, which suggests they are the origin of the observed
idiosyncrasies between the same mismatch at these two duplex positions. However, the
effect of non-nearest neighbors is not well understood and cannot be accounted for with the
current size of the dataset. Studies are currently underway to investigate this imperative
research question.

Single Mismatch Specific Prediction Algorithm

The work recently published by Davis and Znosko (35,36) proposed a single-mismatch
specific algorithm for predicting the thermodynamic contribution to duplex stability. To
allow for the comparison of the recently proposed predictive model (35,36) and the data
obtained here (Table 2), the average absolute difference of the predicted and measured
thermodynamic contributions of the nine complete sets of single mismatch-nearest neighbor
sequence combinations are listed in Table 4. It is apparent centrally placed single
mismatches are predicted most accurately, with a AAG°37 of 0.4 kcal/mol. Yet when
considering the AAG°®37 values along with their standard deviations, 0.4 + 0.5 kcal/mol for
central single mismatches and 0.8 + 0.5 kcal/mol for off-center single mismatches, it appears
as if the previously proposed predictive model (35) works just as well for off-center as it
does for central single mismatches. However, the data presented here suggests the addition
of parameters which account for positional and/or non-nearest neighbor effects may improve
prediction. A better understanding, along with more data, is required to accurately account
for these observed effects in predictive models.

CONCLUSIONS

The effects of duplex position and identity of non-nearest neighbors were investigated for
thirteen single mismatch-nearest neighbor sequence combinations. Nine of these thirteen
single mismatches produced viable thermodynamic data at the three duplex positions
studies, 5’-shifted, central, and 3'-shifted. It was found, on average, the thermodynamic
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contributions of 5'-shifted single mismatches are relatively equivalent to the thermodynamic
contributions of 3'-shifted single mismatches. Additionally, on average, the thermodynamic
contribution of the off-center single mismatches are quite different from the centrally placed
single mismatches and are less favorable enthalpically and more favorable in both entropy
and free energy. However, it is important to note there are several idiosyncrasies associated
with these general trends when comparing the thermodynamic contributions of single
mismatches on an individual basis. Overall, the stability of a single mismatch is dependent
upon the identity of the mismatched nucleotides, the identity and orientation of the nearest
neighbors, the identity of non-nearest neighbors, and duplex position. The effects of non-
nearest neighbors and duplex position are not fully understood and work is currently
underway to further investigate them.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Abbreviations

R purine nucleotides

RISC RNA-induced silencing complexes

RNAI RNA interference

ShRNA short hairpin RNA; ss-siRNA

SM single mismatch

A sense stranded-small interfering RNA

Y pyrimidine nucleotides
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YGIUAC|ACCUG?
SCIAGG|UGGAC?

() | GAC|UAC|CUG”
*CUG|AGG|GAC®

(¢) >GACCU|[UACG®
YCUGGA|AGGI|C?

Figure 1.

Three duplexes each containing the same single mismatch-nearest neighbor combination
(boxed) at three different duplex positions: (a) 5’-shifted, (b) central, and (c) 3'-shifted. All
three duplexes contain the same stem sequence but when shifted between the three different
positions, the singe mismatch has different non-nearest neighbors.
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Imino proton region of the one-dimensional NMR spectra of duplexes studied here. (a) This

spectrum suggests the duplex containing the single mismatch was not the sole conformation

in solution. (b—e) These spectra are suggestive of single mismatch formation. Spectra a—d

were collected at 10 °C and e was collected at 0 °C.
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Table 3

Averages and Ranges of Thermodynamic Parameters for Single Mismatch-Nearest Neighbor Sequence

Combinations?

sm positionb AH°gy (kcal/mol)  AS°gy (cal/K-mol)  AG°37.5 (kcal/mol)

center average -12.5 —43.0 0.82
range (-23.8--22) (-745-8.1) (—0.64 — 2.26)

off-centerC  average -4.6 -16.3 0.45
range (-17.4-7.6) (-54.0-23.5) (-0.79-1.61)

5'-shifted average —4.1 -14.3 0.36
range (-17.4-6.4) (—54.0-18.2) (-0.79 - 1.58)

3'-shifted average =51 -18.2 0.54
range (-15.7-7.6) (-50.2-23.5) (-0.16 — 1.61)

alAverages and ranges are based on the data obtained from TM_1 vs. In(CT/4) plots of the nine complete sets of data as described in the Materials
and Methods. Errors associated with the individual AH°S\M, AS°SM, and AG°37,5\M values used to calculate the average values listed here are

approximately + 6.3 kcal/mol, + 19.4 cal/K-mol, and + 0.31 kcal/mol, respectively.

bThe duplex position of the single mismatch as described in Materials and Methods.

c . . .
The off-center values are an average of the 5'- and 3'-shifted single mismatch data.
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Table 4

Averages of the Absolute Difference between Predicted and Measured Single Mismatch Thermodynamic
Parameters?

sm positionb AAHCgy (kcal/mol)  AAS°gy (cal/K-mol)  AAG®37 g (kcal/mol)
center average® 6.8 19.7 0.43
stdv 6.1 146 0.50
off-centerd  average® 6.5 253 0.76
stdv 43 226 0.53
5'-shifted average® 5.2 234 0.80
stdv 3.0 18.4 0.58
3'-shifted average® 7.8 271 0.73
stdv 51 27.2 0.51

aAverages and standard deviations are based on the data obtained from T|\/|_l vs. In(CT/4) plots of the nine complete sets of data as described in
the Materials and Methods.

The duplex position of the single mismatch as described in Materials and Methods.

o . . . . . .
The average of the absolute difference between the predicted and measured thermodynmic values. Predicted values are calculated using the single
mismatch specific algorithm (36).

d . . .
The off-center values are an average of the 5'-and 3'-shifted single mismatch data.
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Table 5

Comparison of the Free Energy Contributions of the 13 Single Mismatch-Nearest Neighbor Sequence
Combinations at Three Helical Positions?

AG°37 (kcal/mol)

sequence? mismatch®  measuredd  [AGend sm - AGcenter sml®  [AGs: sm - AGg: sl
G UAC ACCUG 0.21 0.85

C AGG UGGAC

GAC UAC CUGY UAC —0.64 037
CUG AGG GAC AGG '
GACCU UAC G -0.16 0.48

CUGGA AGG C

G CAC ACCUG -0.19 (~0.40)

C GGG UGGAC

GAC CAC cuGo:h CAC (0.21) (0.66)
CUG GGG GAC GGG :
CUGGA GGG C

G UAG ACCUG -0.79 —2.05

C AGC UGGAC

GAC UAG CUGY UAG 1.26 169
CUG AGC GAC AGC ‘
GACCU UAG G 0.90 -0.36

CUGGA AGC C

G UAU ACCUG 1.39 -0.53

C AGA UGGAC

GAC UAU CUGY UAU 1.92 0.90
CUG AGA GAC AGA :
GACCU UAU G 0.49 -1.43

CUGGA AGA C

G UUG ACCUG 0.44 (3.26)

C GUC UGGAC

GACUUG CUGYI  UUG (-2.82) (-1.07)
CUG GUC GAC GuC .
GACCU UUG G 151 (4.33)

CUGGA GUC C

G AUC ACCUG -0.65 -0.98

C UUG UGGAC

GAC AUC CUGY AUC 0.33 ~0.85
CUG UUG GAC uuG ’
GACCU AUC G 0.20 -0.13

CUGGA UUG C

G GCU ACCUG 0.70 053

C CAA UGGAC

GAC GCU CUGY GCU 0.17 020
CUG CAA GAC CAA '
GACCU GCU G 0.50 0.33

CUGGA CAAC
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AG°37 (kcal/mol)

sequence? mismatch®  measuredd  [AGend sm - AGcenter sml®  [AGs: s - AGg: sl
G CAG ACCUG 0.37 0.05

C GCC UGGAC

GAC CAG CUGY: CAG 0.32 0.42
CUG GCC GAC GCC '
GACCU CAG G -0.05 -0.37

CUGGA GCC C

G AAG ACCUG 0.65 -0.86

C UCC UGGAC AAG

GAC AAG CUGY uce 151 -
CUG UCC GAC

G UCU ACCUG 1.58 -0.68

C AUA UGGAC

GAC UCU CUGY ucy 2.26 0.67
CUG AUA GAC AUA .
GACCU UCU G 0.91 -1.35

CUGGA AUA C

G AAG ACCUG 073 ~1.04

C UAC UGGAC

GAC AAG CUG AAG 1.77 —0.88
CUG UAC GAC UAC :
GACCU AAG G 161 -0.16

CUGGA UAC C

G AGG ACCUG —0.14 -0.13

C UGC UGGAC

GAC AGG CUGY AGG ~0.01 —0.41
CUG UGC GAC UGC .
GACCU AGG G 0.27 0.28

CUGGA UGC C

G ACG ACCUG 0.48 -1.76

C UCC UGGAC ACG

GAC ACG CUG ucc 2.24 -
CUG UCC GAC

aCaIcuIations were based on the data obtained from T\~

vs. In(CT/4) plots. Values in parenthesis may not be accurate due to non-two-state

melting, or a himolecular association of one of the strands with itself may be a competing structure.

bSingle mismatch is identified by bold letters. The mismatch and nearest neighbors are set apart for easy identification. The top strand of each
duplex is written 5’ to 3’ and each bottom strand is written 3' to 5.

The mismatch and nearest neighbors common for each set of duplexes is indicated and is written as described in footnote b.

Measured values were calculated by subtracting the nearest neighbor contribution for the canonical base pairs (67) from the optical melting data
resulting from duplex formation.

e_. . T . . . . .
Difference in free energy contribution of the single mismatches at either the 5'- or 3'- shifted position and the center of the duplex.

Difference in single mismatch free energy contribution at the 5'- and 3'-shifted positions.

9Ref. (35).
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h . . .
Data derived from non-two-state melts and not included in trends and averages.
Duplex not included in trends and averages because a bimolecular association of one of the strands with itself may be a competing structure.

JDuplex sequence was measured twice and the resulting thermodynamic parameters were averaged.
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