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Abstract
The epidermal growth factor receptor (EGFR) is a member of the ErbB family of receptor tyrosine
kinases. This family includes EGFR/ErbB1/HER1, ErbB2/HER2/Neu ErbB3/HER3, and ErbB4/
HER4. For many years it was believed that EGFR plays a minor role in the development and
progression of breast malignancies. However, recent findings have led investigators to revisit these
beliefs. Here we will review these findings and propose roles that EGFR may play in breast
malignancies. In particular, we will discuss the potential roles that EGFR may play in triple-
negative tumors, resistance to endocrine therapies, maintenance of stem-like tumor cells, and bone
metastasis. Thus, we will propose the contexts in which EGFR may be a therapeutic target.
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1. Introduction
The study of breast cancer has provided opportunities to test concepts emerging from basic
studies of cell proliferation, signal transduction and developmental biology. One subject of
these basic studies is the epidermal growth factor receptor (EGFR) or ErbB family of
receptor tyrosine kinases. This family includes EGFR/ErbB1/HER1, ErbB2/HER2/Neu
ErbB3/HER3, and ErbB4/HER4. These receptors play distinct roles in breast malignancies
[1–15]. ErbB2 is a therapeutic target in breast tumors that overexpress the receptor. In
contrast, the roles that ErbB4 plays in breast malignancies remain a subject of opposing
views. For many years it was believed that EGFR plays a minor role in the development and
progression of breast malignancies. However, recent findings have led investigators to
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revisit these beliefs. Here we will review these findings and propose roles that EGFR may
play in breast malignancies. Thus, we will propose the contexts in which EGFR may be a
therapeutic target.

1.1. EGFR Ligands and Signaling
EGFR signaling is stimulated by members of the epidermal growth factor (EGF) family of
peptide growth factors, whose roles in stimulating ErbB receptor signaling and coupling to
biological responses have been intensively studied [2,12,16,17]. EGFR agonists include the
epidermal growth factor (EGF), transforming growth factor alpha (TGF-α), heparin-binding
EGF-like growth factor (HB-EGF), amphiregulin (AREG), epiregulin (EPI), epigen (EPG),
betacellulin (BTC) and neuregulin (NRG) 2β. These agonists are expressed as integral
membrane proteins and are cleaved by metalloproteinases to release soluble, mature ligands.
These metalloproteinases are typically members of the ADAM (a disintegrin and
metalloproteinase) family of membraneous proteases. For example, ADAM17 (tumor
necrosis factor α converting enzyme - TACE) cleaves AREG, EPR, HB-EGF and TGFα
[18–22].

Because cleavage of the ligand precursors is required for release of soluble, mature ligands,
ligand cleavage represents a potential point in which agonist-induced EGFR signaling can
be regulated. However, the transmembrane ligands stimulate EGFR signaling on adjacent
cells, apparently through a juxtracrine signaling mechanism that may mediate the stromal-
epithelial interactions characteristic of the breast [23–25].

The mechanisms by which EGFR signaling is stimulated by agonist binding have been
extensively studied [16,17,26,27]. To summarize, EGFR consists of an extracellular domain,
a hydrophobic transmembrane domain, an intracellular catalytic tyrosine kinase domain, and
several intracellular tyrosine residues whose phosphorylation is responsible for coupling to
downstream effectors. Ligand binding to the extracellular domain stabilizes the EGFR in an
extended conformation that is competent for receptor dimerization. Dimerization then
enables the cytoplasmic domain of one receptor monomer (the regulatory monomer) to
stabilize the tyrosine kinase domain of another monomer (the catalytic monomer) in the
active conformation and presents the tyrosine residues of the regulatory monomer to the
catalytic site of the catalytic monomer. In this manner EGFR dimerization enables its
tyrosine phosphorylation.

Approximately 10 EGFR tyrosine residues are phosphorylated following ligand engagement
and receptor dimerization [17,28]. These phosphorylation sites bind adapter proteins and
other signaling molecules that possess SH2 (Src-homology domain 2) or PTB (phospho-
tyrosine binding) motifs. Several of phosphorylated tyrosine residues can bind unique
effectors and each EGFR agonist is likely to stimulate EGFR phosphorylation at a unique
subset of tyrosine residues. Thus, EGFR agonists typically stimulate EGFR coupling to
multiple effectors, including Ras, MAPK, Src, STAT 3/5, PLCγ, PKC, and PI3 kinase
[17,29]. These effectors are typically coupled to increased survival, proliferation, motility
and invasiveness displayed by malignant tumor cells.

In contrast, some EGFR agonists also stimulate coupling to downstream molecules that
negatively regulate the receptor. For instance, phosphorylation of EGFR Tyr974 triggers
EGFR endocytosis and phosphorylation of EGFR Tyr1045 triggers Cbl-dependent EGFR
ubiquitination and proteosomal degradation [17,30]. EGFR phosphorylation also triggers
EGFR binding to SHPTP protein tyrosine phosphatases, in which in turn dephosphorylate
EGFR [17,31,32]. Thus, EGFR agonists also stimulate pathways that negatively regulate
EGFR coupling to malignant phenotypes and the balance between these positive and
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negative regulation of EGFR coupling to malignant phenotypes may be altered in tumor
cells.

1.2. EGFR Signaling Specificity
Several factors contribute to EGFR signaling specificity. One is the presence of other ErbB
family receptors. For example, ErbB2 can stabilize EGFR in a conformation that is
competent for dimerization and tyrosine phosphorylation even in the absence of ligand
binding, thereby contributing to ligand-independent EGFR signaling and increased ligand
affinity for the EGFR [16,33,34]. Furthermore, ErbB2 and ErbB4 heterodimerize with
EGFR upon agonist binding to EGFR. This results in phosphorylation of the
heterodimerization partner (ErbB2 or ErbB4) and may result in phosphorylation of a
different set of EGFR tyrosine residues [16,33]. The latter mechanism may account for the
observation that heterodimerization of ErbB2 with EGFR alters EGFR endocytosis and
intracellular trafficking [35–37]. In any event, agonist-induced heterodimerization of EGFR
with a partner ErbB receptor alters the consequences of stimulation with a given EGFR
ligand by coupling to different signaling pathways and biological responses than EGFR
homodimers.

Numerous studies indicate that different EGFR ligands induce distinct biological responses
and patterns of EGFR coupling to signaling pathways. For example, TGFα and AREG are
more effective stimuli of EGFR coupling to biological responses associated with tumor cell
metastasis (motility, invasiveness, etc.) than is EGF. These biological differences appear to
be due to differences in the sites of agonist-induced EGFR tyrosine phosphorylation. EGF
stimulates greater phosphorylation of EGFR Tyr1045 than does AREG. Thus, EGF
stimulates greater EGFR ubiquitination and turnover than does AREG, presumably because
of increased EGFR coupling to the ubiquitin ligase c-Cbl. Moreover, the duration of EGFR
coupling to MAPK and PLCγ signaling is greater following stimulation with AREG than
with EGF [38–43].

The mechanism by which different ligands cause phosphorylation of distinct sets of EGFR
tyrosine residues is unclear. However, the crystal structure of the EGFR extracellular
domain dimer when bound with EGF is distinct from the crystal structure of the EGFR
extracellular domain when bound with TGFα. Thus, ligand-specific differences in the
juxtapositioning of the receptor monomers within the receptor dimer may lead to differences
in receptor tyrosine residue availability to the receptor kinase domain for phosphorylation
[17].

2. Manuscript Body
2.1. EGFR and Primary Breast Tumors

The roles that EGFR and its ligands play in breast cancer have been a subject of intensive
study and controversy. Some retrospective immunohistochemical studies have indicated that
EGFR overexpression in primary tumors is an indicator of poor prognosis [44–47], whereas
other similar studies have failed to establish such a link [10,48]. Collectively, these studies
suggest that EGFR is expressed in 18–35% of breast cancers but is not overexpressed
relative to the normal breast epithelia [49]. Of course, because increased EGFR signaling is
commonly associated with increased EGFR turnover, immunohistochemical analyses of
EGFR protein expression may not be ideal for evaluating the role that EGFR may be playing
in breast malignancies.

Initial studies have suggested that expression of EGF, TGFα or AREG is associated with
larger and more aggressive tumors [9,50,51]. However, more extensive studies have failed
to link ligand expression to prognosis [49,52]. This apparent dichotomy may be explained
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by the fact that immunohistochemical analyses of ligand expression in tumor samples
primarily detects the immature, transmembrane form of the ligand, whereas signaling might
be driven largely by the mature soluble form of the ligand.

2.1.1. Triple-Negative, Basal Breast Tumors—The development of platforms capable
of simultaneously evaluating gene expression from a large portion of the genome has led to
the identification of gene expression profiles that classify breast cancers. This has yielded
further insights into the roles that EGFR and EGFR ligands may play in breast cancer.
Basal-type breast cancers express markers frequently found in cells that are in contact with
the basement membrane. Such markers include keratin 5 and 17 (basal keratins), P-cadherin,
and troponin [53–56]. Basal-type breast cancers are associated with large size, high tumor
grade, poor survival, and increased frequency of distant metastases [56]. These tumors
typically lack expression of the estrogen receptor-alpha (ERα), progesterone receptor, and
ErbB2. Thus, basal tumors are frequently referred to as “triple-negative” breast tumors [57].
Given the relative aggressiveness of these tumors and the absence of targeted therapeutics
for treating these tumors, the identification of targets for treating these tumors is a priority.

Gene expression profiling and immunohistochemical studies have indicated that 50 to 70%
of basal breast tumors exhibit EGFR expression [58]. Moreover, our preliminary analyses of
breast cancer transcriptome datasets GSE2034 [59], GSE2603 [60], and GSE12276 [61]
from the NCBI Gene Expression Omnibus reveal that the EGFR ligand TGFα and the
EGFR/ErbB3/ErbB4 ligand NRG2β are expressed at significantly higher levels in ERα-
negative tumors than in ERα-positive tumors. Likewise, the expression of ADAMs and
MMPs responsible for maturation (cleavage) of EGFR ligands is higher in ERα-negative
tumors than in ERα-positive tumors. A low level of EGFR expression in basal tumors
correlates with a reduced incidence of metastases [62]. Similarly, EGFR expression in basal
tumors correlates with TGFα and ADAM-17 expression [63]. Thus, a sizable fraction of
basal breast cancers appear to exhibit autocrine TGFα-EGFR signaling and this may account
for the poor prognosis associated with these tumors [63].

In contrast, ERα-positive tumors tend to exhibit elevated AREG expression but no increase
in EGFR expression [59–61]. This pattern of expression is similar to that exhibited by the
normal mammary epithelia, in which ERα-positive cells exhibit little EGFR expression but
do express AREG [64]. The AREG findings are consistent with previous reports from breast
cancer cell lines that indicate this ligand is an estrogen regulated gene, but can be activated
by several other pathways present in both ERα-positive and negative cancers [65,66]. One
possible interpretation of the molecular profile data is that ERα-positive breast cancer would
lack high levels of autocrine EGFR signaling, but could engage in paracrine EGFR signaling
with fibroblast-like cells in the microenvironment through AREG.

2.1.2. Resistance to Antiestrogens—The estrogen receptor partial agonist tamoxifen
(Tam) is commonly used to treat ERα-positive breast cancer in both pre- and post-
menopausal women. However, a significant fraction of ER+ tumors exhibit intrinsic
resistance to Tam and in many patients responsiveness of ERα-positive tumors to Tam is of
limited duration due to acquired resistance [67,68]. Indeed, many ERα+ tumors acquire
complete resistance to Tam, resulting in a restoration of tumor growth and metastasis
[67,68].

Tam resistance may arise through overexpression or phosphorylation of the ERα co-
activator AIB1/SRC-3 (amplified in breast cancer 1/steroid hormone receptor co-activator 3)
[67,68]. This alters the effects of Tam on ERα-mediated gene expression, leading to Tam
stimulation of mitogenic signaling pathways [67,68]. Signaling pathways downstream of
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several different tyrosine kinases induce phosphorylation of AIB1, suggesting that EGFR
signaling may cause Tam resistance via this mechanism [67–69].

Tyrosine phosphorylation of ERα causes tamoxifen resistance by enabling estrogen-
independent ERα-mediated gene expression [69]. A number of different tyrosine kinases
may catalyze ER tyrosine phosphorylation, including ErbB2 [68,69]. Because ErbB2 is a
common heterodimerization partner of EGFR, ligand-induced EGFR signaling may
contribute to ER tyrosine phosphorylation and tamoxifen resistance.

Fulvestrant (Faslodex®; ICI 182,780) triggers rapid ERα degradation via the proteasome
and is frequently used to treat receptor positive, tamoxifen-resistant tumors [68]. However,
acquired resistance frequently arises, limiting the utility of this approach [68]. Chronic
treatment of ERα-positive breast tumor cell lines with fulvestrant leads to clones that display
resistance to fulvestrant. These models of acquired resistance typically display a loss of
ERα-expression and elevated EGFR or ErbB2 expression and receptor tyrosine
phosphorylation [70,71]. These cell lines also display elevated TGFα expression and retain
AREG expression [70,71]. These data suggest that enhanced autocrine EGFR/ErbB2
signaling may compensate for the loss of ER expression and signaling in fulvestrant-
resistant breast tumors. However, this hypothesis has yet to be tested in breast cancer patient
samples.

2.1.3. Breast Cancer Stem Cells—Solid tumors typically consist of a heterogeneous
mix of cellular phenotypes that include poorly differentiated cells that undergo rapid cell
division, differentiated cells that are incapable of cell division, and quiescent cells that
possess the capacity for self-renewal and can give rise to the other types of tumor cells. This
self-renewal and pluripotency have led this category of cells to be called cancer stem cells or
stem-like cancer cells [72,73].

Breast cancer cells that have been isolated from pleural effusions exhibit a high level of
CD44 expression and a low level of CD24 expression [74]. While these cells display a
homogenous phenotype, they are extraordinarily efficient at forming phenotypically
heterogeneous tumors in immunocompromised mice. Moreover, these cells readily form
colonies in suspension cultures and exhibit very aggressive behaviors in metastasis and
invasion assays [74]. Thus, these CD44+/CD24− breast tumor cells exhibit characteristics of
tumor stem cells. ALDH1 has also emerged as a marker of tumor cells that exhibit stem-like
characteristics [75,76].

There is no direct evidence indicating that EGFR and its ligands are involved in the
establishment or maintenance of breast tumor stem cells. However, stem-like tumor cells are
much more rare in ERα-positive breast tumors and breast cell lines (which typically have
little EGFR and ErbB2 expression) than in triple-negative breast tumors and breast cell lines
(which typically exhibit elevated EGFR expression) [76]. Ligand-induced EGFR signaling is
required for stem-like breast tumor cells (including those derived from DCIS tumors) to
form colonies in semi-solid medium [77]. Overexpression of ErbB2 in mammary epithelial
cells and breast cancer cell lines increases the fraction of cells that display stem-like
properties [78]. Finally, a preliminary report from a small clinical trial indicates that the dual
specificity EGFR/ErbB2 tyrosine kinase inhibitor lapatinib reduces the number of CD44+/
CD24− cells found in breast tumor specimens [79]. These reports provide intriguing hints
that the ligand-induced EGFR/ErbB2 signaling may play a substantial role in establishing
and maintaining breast cancer stem-like cells. Nonetheless, additional direct experimentation
is necessary to evaluate this hypothesis.
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2.2. EGFR and Bone Metastasis
The most common metastasis site of breast cancer is the bone [80]. Nearly 70% of invasive
breast cancer cases result in metastasis to the bone and generate severe pain and disability in
the patient [80]. Destruction of bone matrix is responsible for the fractures and bone pain
associated with advanced breast cancer [81]. The majority of tumors that metastasize to
bone are ERα-positive [82], but there are a fraction of ERα-negative tumors that also
metastasize to this location [83]. Bone metastases were largely refractory to the traditional
systemic approaches (radiation therapy and chemotherapy) used to treat advanced breast
cancer [80,81,84]. Recently, the integration of the fields of basic bone cell biology and
cancer biology has produced insights that have generated new and partially effective
therapeutic approaches to this devastating form of metastasis. Agents such as
bisphosphonates reduce bone destruction and tumor growth by targeting the bone
microenvironment rather than the tumor [84]. Recently, EGFR signaling has come into
focus as a potential microenvironment target that could be exploited to reduce the morbidity
associated with this form of metastasis.

Metastasis to any organ features invasion of cancer cells through normal tissue into the
blood stream (initiation), extravasation and infiltration of a distant tissue (progression), and
growth of a destructive colony within the new context (virulence) [85]. The genes that
mediate these events are likely to be dispensable for primary tumor initiation and growth
and may or may not be part of gene expression profiles exhibited by the primary tumor [85].
We have analyzed breast cancer transcriptome datasets from the NCBI Gene Expression
Omnibus to compare the patterns of ErbB receptor and ligand in primary tumors that
ultimately produced bone metastasis to the patterns found in tumors that failed to
metastasize or produced metastases to other sites [59–61]. We have also compared ErbB
receptor expression in a small set of bone metastasis samples with ErbB receptor expression
in breast cancer samples removed from the lung, brain and liver [83]. ErbB2 expression was
lower in those ERα-negative tumors that produced bone metastases than in tumors that did
not metastasize to bone, which suggests that tumors that overexpress ErbB2 typically
metastasize to visceral sites [86]. Surprisingly, AREG expression was significantly lower in
ERα-negative tumors that ultimately metastasized to bone than in other ERα-negative
tumors. However, we found little additional evidence for differential expression of ErbB
family receptors. These findings suggest that EGFR signaling may be dysregulated in bone
metastases through post-transcriptional events. As indicated below, several emerging lines
of evidence involving ligand-activating proteases support a role for the EGFR signaling in
bone metastasis.

2.2.1. Latent Bone Colonization by Breast Tumor Cells—Frequently, bone
metastasis arise in breast cancer patients years after the identification and treatment of the
primary tumor [87]. This implies that breast cancer cells remain dormant or indolent within
the body. Over the past two decades methodology has been developed to identify dormant/
latent tumor cells within patients. Individual or small groups of tumor cells found in the
bone marrow of patients who lack discernable bone metastases are termed disseminated
tumor cells (DTCs) [87]. The presence of DTCs in the bone marrow is predictive of
metastatic disease both in the bone and at other sites [87–89]. The vast majority of DTCs
present in the bone marrow of breast cancer patients are CD44+/CD24−, making them
reminiscent of stem-like breast cancer cells [90]. However, elevated EGFR and ErbB2 are
also markers for DTCs [91,92]. This suggests that ErbB receptors play a role in the
establishment or maintenance of stem-like breast cancer cells, but there is no further
information regarding potential function of ErbB receptors in the infiltration of breast cancer
cells into of bone, or regarding their possible impact on latency/indolence [93].
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2.2.2. Bone Metastasis: A Vicious Cycle—Much of the advances in the understanding
of breast cancer colonization of bone has stemmed from studies of the MDA-MB-231 ERα-
negative breast cancer cell line in bone xenografts. MDA-MB-231 cells possess a basal
phenotype [94] and various bone-seeking sublines have been developed to dissect the
molecular and cellular regulators of osteolytic growth of this cell line [95,96]. On the basis
of these studies, the concept of “the vicious cycle” of tumor cell growth linked to bone
destruction has been developed [96]. This model holds that breast cancer cells direct the
resident cells of bone to uncouple the physiological linkage between bone matrix destruction
and new bone formation [96]. The MDA-MB-231 cells produce cytokines and growth
factors that engage in paracrine signaling with osteoclasts, cells that dissolve bone matrix,
and osteoblasts, which are responsible for bone formation [96,97]. Osteoclast formation is
mediated mainly through RANK (receptor activator of nuclear factor β-ligand) and its
agonist RANKL (RANK ligand), the latter of which is produced by osteoblasts and bone
marrow stromal cells [93,96]. Osteoblastic cells also produce a soluble RANKL sink called
osteoprotegrin (OPG) [80,93]. Thus, osteoclast formation is influenced by the balance
between RANKL and OPG in the bone microenvironment [96]. In addition, osteoblasts
produce colony-stimulating factor (CSF-1), which recruits monocytes from bone marrow
progenitors that ultimately can be differentiated into osteoclasts in the presence of high
levels of RANKL [96] [98,99]. In the MDA-MB-231 xenograft models, the breast cancer
cells produce several growth factors and cytokines that perturb the RANKL/OPG ratio and
increase the number of monocytes that can be differentiated to osteoclasts [95,97,99]. The
osteoclast-mediated destruction of bone releases growth factors embedded in the bone
matrix. These stimulate their cognate receptors on the cancer cell, resulting in increased
tumor cell proliferation and production of cytokines that skew the RANKL/OPG ratio
toward increased osteoclastogenesis, thereby propagating a vicious cycle of tumor cell
proliferation and bone destruction [97,100]. It should be noted that this model is based on
the activities of the ERα-negative MDA-MB-231 breast tumor cell line, and it is unclear
whether all of the specific molecules and cellular interactions apply to the more common
form of disease progression that arise from ERα-positive breast tumors.

2.2.3. EGFR and Osteolysis—There is growing evidence suggesting that EGFR
signaling in osteoblasts directly contributes to osteolysis or bone resorption. EGFR is
expressed by cultured osteoblasts, but not osteoclasts or monocytes [101,102]. Furthermore,
EGF, TGFα, and MDA-MB-231 cells (which express various ErbB ligands) stimulate bone
turnover and osteoclastogenesis in various model systems [103–106]. This
osteoclastogenesis is accompanied by decreased OPG expression and minimal change in
RANKL expression by the bone cells [106]. EGFR TKIs inhibit CSF-1 and RANKL
production from human bone marrow stromal cells and osteoclast formation in vitro [107].
These studies clearly support the concept that EGFR signaling within the osteoblast
promotes osteoclastogenesis through perturbation of the RANKL/OPG balance.

2.2.4. EGFR and Osteoblast Function—Studies of bone biology suggest additional
roles for EGFR ligands in the pathogenesis of osteolytic lesions. Parathyroid hormone
(PTH), the main serum calcium regulator, stimulates AREG gene transcription 10 to 20-fold
and stimulates more modest increases in transcription of the TGFα and HB-EGF genes
[108,109]. The PTH receptor, like other serpentine G-protein-coupled receptors (GPCRs),
appears to be coupled to proteases (such as ADAM-17) that cleave ErbB receptor ligand
precursors and enable the release of the mature, soluble ligands [110].

Exogenous EGFR ligands stimulate the proliferation of osteoblasts, inhibit their
differentiation, and decrease their mineralization [109]. Moreover, 4-week-old transgenic
mice lacking AREG expression exhibit less trabecular bone in the tibia than do wild-type
littermates [109]. Thus, EGFR signaling may mediate the impact of PTH on the recruitment
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and expansion of cells committed to the osteoblast lineage, whereas excessive ligand
signaling could prevent these cells from undergoing terminal differentiation and forming
mineralized bone [109]. The uncoupling of bone formation from the accelerated bone
resorption would be a key feature of disease states like breast cancer-induced osteolysis.

2.2.5. EGFR and PTHrP—In the MDA-MB-231 model, PTH receptor signaling is one of
the key events in regulating the vicious cycle of breast cancer osteolysis and colonization
[111]. MDA-MB-231 cells express parathyroid hormone-related peptide (PTHrP), another
PTH receptor agonist that stimulates RANKL expression and inhibits OPG expression in
cells of the osteoblast lineage [111]. The pattern of PTHrP expression by breast cancers at
various stages of progression resembles that displayed by metastasis virulence factors [85].
PTHrP expression is lower in primary breast cancers that ultimately metastasize to bone than
in other primary breast tumors; however, PTHrP expression is very high among metastatic
tumor cells within the bone microenvironment [112–115]. PTHrP gene expression in these
metastatic tumor cells appears to be stimulated by TGFβ released from the bone matrix via
osteoclast activity [96,100]. Nonetheless, the signaling between the PTHrP and the EGFR
system is not simply directed from cancer cell to the microenvironment. In many epithelial
cells EGFR is coupled to PTHrP gene expression [116–118]. In fact, an autocrine loop of
AREG-EGFR signaling activates PTHrP transcription in the MDA-MB-231 line in vitro
[119]. Thus, autocrine EGFR stimulation in breast cancer cells may contribute to the release
of cytokines, such as PTHrP, that directly perturb the RANK/OPG balance and indirectly
stimulate EGFR signaling within cells of the osteoblast lineage.

2.2.6. EGFR Ligands and Activating Proteases as Bone Metastasis Virulence
Factors—Analysis of MDA-MB-231 subclones identified 11 genes whose overexpression
is specific to clones that readily colonize the bone and form aggressive osteolytic lesions
[95]. Moreover, combinations of 3 of these genes are sufficient to induce osteolytic growth
by parental MDA-MB-231 cells. Thus, these 11 genes appear to influence distinct events in
the process of bone metastasis. These 11 genes include IL-11, which alters the RANKL/
OPG balance, and connective tissue factor, which stimulates osteoblast proliferation. These
11 genes also include the proteases MMP1 and ADAMTS-1 (a disintegrin and
metalloproteinase with thrombospondin motifs), whose roles in bone metastasis were not
readily apparent [95].

Overexpression of MMP1 and ADAMTS-1 in MDA-MB-231 cells dramatically increased
AREG shedding and resulted in a cell line that formed more aggressive osteolytic lesions in
the bone. Conditioned medium from the MDA-MB-231/ADAMTS-1/MMP1 cells altered
the RANKL/OPG balance in a primary mouse bone cell culture and enhanced
osteoclastogenesis. This enhanced osteoclastogenesis could be inhibited by the EGFR TKI
gefitinib or by the anti-EGFR antibody cetuximab. Moreover, these agents (gefitinib 100
mg/kg daily or cetuximab 100 mg/kg weekly) prevented MDA-MB-231/ADAMTS-1/
MMP1 cells from stimulating the formation of osteolytic lesions in the bone of
immunocompromised mice injected with these cells [120]. These findings suggest that
EGFR ligands or the proteases that regulate their availability can serve as breast cancer
metastasis virulence factors and that metastasis could be blocked by EGFR antagonists that
have no apparent direct effect on the breast tumor cells themselves.

This finding that AREG expression is necessary but not sufficient for MDA-MB-231 cells to
colonize the bone is consistent with the observation that AREG expression is lower in ERα-
negative breast tumors that ultimately metastasized to bone than in ERα-negative breast
tumor that failed to metastasize to bone. Presumably, differences in the ability of breast
tumor cells to colonize bone is regulated by proteases cleave AREG and enable it to
stimulate EGFR signaling. Indeed, elevated expression of ADAMTS-1 and MMP1 is

Foley et al. Page 8

Semin Cell Dev Biol. Author manuscript; available in PMC 2011 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



observed in primary breast cancer tumors that ultimately metastasize to bone [63].
Furthermore, given that various GPCRs are coupled to increased activity of MMPs and
ADAMs, we speculate that increased signaling by GPCRs on tumor cells in the bone
microenvironment may contribute to bone colonization by coupling to increased activity
MMPs and ADAMs [121,122].

To summarize, the complex post-transcriptional regulation of EGFR ligand processing and
receptor interactions provides mechanisms through which EGFR coupling to bone
colonization may be enhanced. Thus, numerous gene products that contribute to EGFR
signaling in breast tumor cells or osteoblasts may function as bone metastasis virulence
factors. (1) The combination of an EGFR ligand (such as AREG) and an active shedding
protease (such as MMP1 or ADAMTS-1) in breast tumor cells could activate paracrine
EGFR signaling in osteoblasts, resulting in reduced OPG expression, increased
osteoclastogenesis and decreased bone mineralization. (2) Autocrine EGFR signaling in the
tumor cell could couple to PTHrP expression and release by tumor cells, leading to
increased RANKL and decreased OPG expression in osteoblasts. (3) PTHrP released by
tumor cells could also stimulate AREG expression and ADAM17 activity in osteoblasts,
leading to increased EGFR signaling in the osteoblasts. Thus, PTHrP could play a central
role in two pathways that independently lead to a robust alteration of the RANKL/OPG
balance to favor osteoclast formation and osteolytic activity.

The multiple mechanisms by which MDA-MB-231 cells can stimulate EGFR coupling to
osteolytic effects in the bone microenvironment indicate that this pathway may be a major
component of the pathogenesis of osteolytic lesions triggered by this ERα-negative breast
cancer line. Moreover, AREG transcription is positively regulated by ERα in the mouse
mammary gland and breast cancer cells [64,66]. Thus, deregulated signaling through the
AREG-EGFR pathway may be a general mechanism by which multiple types of breast
cancer form osteolytic bone metastases.

Small-molecule EGFR tyrosine kinase inhibitors and antagonistic anti-EGFR antibodies
have exhibited little effect on primary tumor growth or patient outcome in breast cancer
monotherapy clinical trials. One possibility is that anti-EGFR agents will be effective
against bone metastases, but will have little effect on the primary tumor [97,120,123–125].
The other possibility is that these agents may be effective only as part of combination
therapy regimens. Indeed, emerging data appear to support this possibility, particularly in
advanced ERα-positive breast cancers [126–128].
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OPG Osteoprotegrin

PTH Parathyroid hormone

PTHrP Parathyroid hormone-related protein

RANK Receptor activator of nuclear factor β-ligand

RANKL RANK ligand

TACE Tumor necrosis factor alpha converting enzyme
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Figure 1. The liganded EGFR homodimer possess multiple sites of tyrosine phosphorylation and
couples to multiple signaling effectors
A schematic representation of the liganded EGFR homodimer is shown. The light blue
hexagons represent the ligand. EGFR is depicted by a black line. Red and blue overlays
represent the transmembrane and juxtamembrane domains, respectively. Green boxes
represent the tyrosine kinase domains. Sites of cytoplasmic tyrosine (Y) phosphorylation are
indicated, as are cytosolic effector proteins that bind to these phosphorylated tyrosine
residues and some of the effector signaling pathways.
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Figure 2. Complex interactions of tumor and bone cells regulate bone biosynthesis and
breakdown
Breast cancer cells express PTHrP, IL-11, and CTGF, which stimulate RANK ligand
(RANKL) expression by cells of the osteoblast lineage. RANKL binding to RANK on
monocytes stimulates their differentiation to active osteoclasts and consequent bone
breakdown. Breast cancer cells also express IL-8, which directly stimulates monocyte
production and leads to increased osteoclast formation. Breakdown of the bone matrix by
osteoclasts releases TGFβ and IGFs, which stimulate tumor cell survival, proliferation, and
release of osteolytic factors. Both breast cancer cells and cells of the osteoblast lineage
express EGFR and the EGFR ligand AREG.
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Figure 3. EGFR may play multiple roles in breast cancer-induced osteolysis
(A) In normal bone RANKL stimulation of osteoclast-mediated bone turnover and is
balanced by the OPG antagonist of RANKL. (B) An EGFR ligand (light blue hexagon)
expressed and shed by tumor cells may stimulate paracrine signaling by EGFR (double
black bars) expressed by osteoblasts. This would inhibit OPG expression by osteoblasts,
leading to increased RANKL stimulation of RANK expressed by osteoclasts and increased
osteoclast-mediated bone turnover. (C) An EGFR ligand expressed and shed by tumor cells
may stimulate autocrine signaling by EGFR expressed by the tumor cells, leading to PTHrP
expression by these tumor cells. This stimulates RANKL expression and inhibits OPG
expression by osteoblasts, again leading to increased RANKL stimulation of RANK
expressed by osteoclasts and increased osteoclast-mediated bone turnover. (D) PTHrP
expressed by tumor cells can also stimulate expression of an EGFR ligand by osteoblasts,
leading to autocrine EGFR signaling and coupling to increased RANKL expression and
decreased OPG expression in osteoblasts. Again, this leads to increased RANKL stimulation
of RANK expressed by osteoclasts and increased osteoclast-mediated bone turnover.
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