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Abstract
Intracerebral hemorrhage (ICH) is one of the most lethal stroke subtypes. Despite the high
morbidity and mortality associated with ICH, its pathophysiology has not been investigated as
well as that of ischemic stroke. Available evidence from preclinical and clinical studies suggests
that inflammatory mechanisms are involved in the progression of ICH-induced secondary brain
injury. For example, in preclinical ICH models, microglial activation has been shown to occur
within 1 h, much earlier than neutrophil infiltration. Recent advances in our understanding of
neuroinflammatory pathways have revealed several new molecular targets, and related therapeutic
strategies have been tested in preclinical ICH models. This review summarizes recent progress
made in preclinical models of ICH, surveys preclinical and clinical studies of inflammatory cells
(leukocytes, macrophages, microglia, and astrocytes) and inflammatory mediators (matrix
metalloproteinases, nuclear factor erythroid 2-related factor 2, heme oxygenase, and iron), and
highlights the emerging areas of therapeutic promise.
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1. Introduction
Intracerebral hemorrhage (ICH) results when a weakened blood vessel ruptures and bleeds
into the surrounding brain. Spontaneous ICH accounts for 15–20% of all strokes and affects
more than 2 million people worldwide each year (Qureshi et al., 2009; Ribo and Grotta,
2006). The prevalence of ICH is higher in certain populations, including blacks and Asians
(Qureshi et al., 2009). Parts of the brain that are particularly vulnerable to ICH include the
basal ganglia, cerebellum, brainstem, and cortex. Most cases of ICH are caused by primary
hypertensive arteriolosclerosis and amyloid angiopathy (reviewed in Mayer and Rincon,
2005; Sutherland and Auer, 2006). Secondary ICH accounts for 15–20% of patients and
usually results from vascular malformation, neoplasia, coagulopathy, and the use of
thrombolysis in ischemic stroke (reviewed in Mayer and Rincon, 2005; Sutherland and
Auer, 2006; Wang and Tsirka, 2005a). No matter the cause, the extravasated blood
compresses the surrounding brain tissue, increasing the intracranial pressure. The prevalence
of ICH is expected to increase slightly as improvements in blood pressure management are
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counteracted by the trends that favor ICH incidence, such as population aging, increasing
use of thrombolytics and anticoagulants, and lack of effective prevention for cerebral
amyloid angiopathy in the elderly.

The incidence of fatality is much higher among individuals who suffer ICH than among
those who experience ischemic stroke. Those who do survive usually experience long-term
physical and mental disability, although some patients can recover most neurologic function.
Treatment for ICH is primarily support and control of general medical risk factors. The
prognosis of ICH depends on the location, amount of bleeding, extent of subsequent brain
swelling, the level of consciousness at admission, concomitant diseases, and the age of the
patient. Interestingly, the data from a recent clinical ICH study indicate that the degree of
perihematomal edema and subsequent edema expansion are positively correlated with the
underlying hematoma size but are not major independent determinants in the outcome
(Arima et al., 2009).

Although ICH research has received far less attention than has ischemic stroke (Donnan et
al., 2010; NINDS ICH Workshop Participants, 2005), during the past few years, progress
has been made toward identifying the roles of inflammatory signaling molecules, cells, and
proteins in initiation and progression of post-ICH inflammation. We and others have
reviewed the roles of cytokines, proteases, and reactive oxygen species (ROS) in ICH-
induced brain injury (Aronowski and Hall, 2005; Wang and Doré, 2007b; Wang and Tsirka,
2005a; Xi et al., 2006). A recent review has highlighted the important functions of
complement activation in ICH (Ducruet et al., 2009). The focus of this review will be
primarily on recent progress made in the use of preclinical ICH models, understanding the
changes in cellular components (leukocytes, microglia/macrophages, and astrocytes) and
inflammatory mediators [matrix metalloproteinases (MMPs), nuclear factor erythroid 2-
related factor 2 (Nrf2), heme oxygenase (HO), and iron toxicity], and emerging
opportunities for novel therapeutic strategies such as stem cell therapy.

2. Preclinical models of ICH
Preclinical studies of ICH have been carried out in many species, but rodents are most
commonly used. Rodent models of ICH are fundamentally different from the human
condition, and the paucity of white matter, lower glia-to-neuron ratio, and differences in
homeostasis limit their clinical relevance. Two main animal models are used to reproduce
the clinical condition of ICH, the whole-blood model and the collagenase model. The whole-
blood model, in which an animal’s own blood or donor blood is injected directly into the
striatum, has been used in various animals (Gu et al., 2009; Koeppen et al., 2004; Okauchi et
al., 2009; Qureshi et al., 2001). Recently this model has been adapted for use in mice
(Rynkowski et al., 2008; Tejima et al., 2007; Wang et al., 2008; Xue et al., 2006; Zhao et al.,
2007b), thereby enabling the use of transgenic or knockout (−/−) mice to study specific
signaling pathways or brain injury mechanisms. The autologous whole-blood model mimics
ICH better than the donor blood model because the latter induces more severe brain edema
(Nakamura et al., 2004b). The advantage of the whole-blood model is that only blood is
introduced into the model system. The drawbacks include: lack of underlying vascular
pathology and rupture; variable lesion size caused by ventricular rupture or backflow of the
injected blood along the needle track and corpus callosum; and potential effects of donor
blood or anticoagulant on inflammation, complement, or the coagulation system. Given the
limited volume of blood that can be infused into the mouse striatum, the technique of blood
injection in mice remains challenging. Because of the shortcomings of the current blood
infusion models, we established a modified double-blood infusion model in mice that does
not use any anticoagulant (Wang et al., 2008). In the modified model, 10 µl of autologous
whole blood is infused into the striatum at a speed of 0.2 µl/min in two phases, with a break
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of 7 min in between. We keep the needle within the injection site for another 20 min after
blood infusion to prevent backflow of blood along the needle track. The hematoma
developed in this model is confined to the ipsilateral striatum and produces the desired brain
injury and neurologic deficits (Wang et al., 2008).

In another model, the proteolytic enzyme collagenase is injected into the striatum, breaking
down the blood-brain barrier (BBB) and resulting in active bleeding (Rosenberg et al., 1990;
Tang et al., 2004; Wang et al., 2003). In this model, the hematoma develops gradually over
4–5 h (Wang and Doré, 2007a). The procedure itself is simple, and it mimics an acute
cerebrovascular injury. Furthermore, the resultant bleed is spontaneous and reproducible in
location and size (Tejima et al., 2007; Wagner, 2007; Wang and Doré, 2007b). These
advantages allow investigation of the collagenase-induced bleeding response and hematoma
expansion. The model is relevant to the clinical condition because continued bleeding occurs
in 14–20% of all ICH patients and lasts for over 6 h in 17% of cases (Brott et al., 1997;
Kazui et al., 1996). Of course the collagenase model does have some drawbacks. There is no
underlying vascular pathology, and bleeding results from the rupture of many vessels,
whereas in humans, rupture of a small, deep-penetrating artery is the primary cause. In
addition, the introduction of bacterial collagenase into the brain could potentially enhance
inflammation, although three in vitro studies, including our own, argue against the
possibility by showing that collagenase alone does not activate microglia, affect
prostaglandin E2 production, or induce cell death (Chu et al., 2004; Matsushita et al., 2000;
Wang et al., 2003). Both models have limitations and reflect only certain clinical features of
ICH, but to our knowledge, these two models are the most useful tools currently available
for the study of ICH. Interestingly, a new mouse model of spontaneous ICH has been
developed in which ICH is induced by acute hypertension (Iida et al., 2005; Wakisaka et al.,
2010); more studies into the pathophysiology of this model are clearly needed. In
translational medicine, testing in multiple related preclinical models and in different
laboratories is strongly encouraged before advancing any novel medicine or therapy to a
clinical trial. Early reviews of preclinical animal models of ICH are available (Andaluz et
al., 2002; Strbian et al., 2008).

3. Inflammation and the cellular response to ICH
ICH can cause primary and secondary brain injury. The immediate effects of ICH, such as
hematoma expansion and the consequent increase in intracranial pressure, lead to primary
injury, whereas subsequent effects, such as inflammation, contribute to secondary injury.
Inflammation is characterized by the accumulation and activation of inflammatory cells and
mediators within the hemorrhagic brain. ICH allows the immediate infiltration of blood
components, including red blood cells, leukocytes, macrophages, plasma proteins, etc, into
the injury site. The inflammatory response that follows this infiltration involves
inflammatory mediator release, protease activation, microglia and astrocyte activation, brain
tissue breakdown, and repair (Wang and Doré, 2007b; Wang and Tsirka, 2005a).
Inflammatory cells include blood-derived leukocytes and macrophages, resident microglia,
astrocytes, and mast cells. Microglia are believed to be the first non-neuronal cells to react to
brain injury; they act as guardians of neuronal survival and function under various
pathologic conditions in the brain (van Rossum and Hanisch, 2004). When fully activated,
phagocytic microglia are impossible to differentiate from infiltrating macrophages.
Increasing evidence suggests that leukocytes/macrophages, activated microglia, and
astrocytes are major cellular mediators of secondary brain damage after ICH based on their
local release of cytokines, chemokines, prostaglandins, proteases, ferrous iron, and other
immunoactive molecules (Aronowski and Hall, 2005; Wang and Doré, 2007b; Zhang et al.,
2009). Interestingly, cerebral mast cells have gained attention lately, as blocking them has
been reported to reduce brain edema and hematoma volume and to improve ICH outcomes
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(Lindsberg et al., 2010; Strbian et al., 2007). A new study suggests that Toll-like receptor 4-
mediated nuclear factor kappa-B signaling mediates the activation and regulation of
inflammatory responses in the hemorrhagic brain and could be a therapeutic target for ICH
(Teng et al., 2009).

Recent preclinical and clinical studies have enabled us to better understand the impact of
post-ICH inflammation. Preclinical studies of ICH rely heavily on animal models, whereas
clinical studies are usually restricted to blood or cerebrospinal fluid sampling. A recent
human ICH study that used microarray analysis demonstrated significant up-regulation of
both pro- and anti-inflammatory genes in the peri-ICH brain tissue (Carmichael et al., 2008),
a finding consistent with the results of a previous animal study (Lu et al., 2006). Little data
regarding ICH pathogenesis have been obtained from postmortem human brain, and more
studies are critically needed. Anti-inflammatory therapies have been tested in preclinical and
clinical studies (Table 1), but as yet, no direct anti-inflammatory treatments have been
approved for clinical use. Therapeutic hypothermia has been extensively studied as a means
to reduce ischemic or hemorrhagic brain injury through its anti-inflammatory effect.
Although therapeutic hypothermia provides considerable protection after ischemic stroke,
evidence for a beneficial effect in ICH is insufficient, and potential complications can arise,
such as infection and increased blood pressure. Thus, its clinical usefulness for ICH is in
question (MacLellan et al., 2009).

3.1. Leukocytes
3.1.1. Preclinical studies—Infiltrating leukocytes are believed to play a role in ICH-
induced secondary brain injury. Preclinical studies of ICH provide substantial
histopathologic evidence for the presence of infiltrating leukocytes in and around the
hematoma (Wang and Doré, 2007a,b; Zhao et al., 2006c). Neutrophils are the earliest
leukocyte subtype to infiltrate into the hemorrhagic brain, and these may damage brain
tissue directly by producing ROS, releasing proinflammatory proteases (Nguyen et al.,
2007), and modulating BBB permeability (Joice et al., 2009). Isolated neutrophils have been
shown to aggravate neuronal cell death induced by excitotoxicity or oxygen–glucose
deprivation (Dinkel et al., 2004). Once they have entered the hemorrhagic brain, leukocytes
will die by apoptosis within two days (Savill and Haslett, 2001). The contents of dying
leukocytes can further damage brain tissue by stimulating neighboring microglia/
macrophages to secrete pro-inflammatory toxic factors. Under a microscope, neutrophils can
be identified easily and specifically by using immunohistochemistry with anti-
myeloperoxidase antibody (Wang and Tsirka, 2005b). We observed in the collagenase-
induced ICH model that infiltrating neutrophils appeared in and around the hematoma of
mice at 4 h (Fig. 1A) (Wang and Doré, 2007a) and that the number of neutrophils peaked at
3 days (Wang and Tsirka, 2005b). This temporal pattern of neutrophil infiltration was
reported to be similar in both ICH models in rat (Peeling et al., 2001b; Xue and Del Bigio,
2000).

It is known that the β2 integrins (CD11/CD18) are expressed in leukocytes. A recent study
that used CD18−/− mice revealed a significant decrease in brain edema and mortality after
collagenase-induced ICH; the attenuation of brain injury in CD18−/− mice was associated
with a concomitant decrease in myeloperoxidase and nitrotyrosine immunoreactivity in the
hemorrhagic brain (Titova et al., 2008). Although neuroprotection can be obtained with anti-
neutrophil strategies in animal models of cerebral ischemia (Zheng and Yenari, 2004), the
beneficial effects have not been observed in an acute human ischemic stroke trial
(Enlimomab Acute Stroke Trial Investigators, 2001). The data for such strategies in
experimental ICH are lacking.
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3.1.2. Clinical studies—Clinical studies further confirm the toxic role of leukocytes in
ICH. In patients with ICH, the number of leukocytes present in the cerebrospinal fluid is
frequently elevated, and elevated peripheral leukocyte counts have been reported to be
positively correlated with hematoma size (Bestue-Cardiel et al., 1999). In fact, a high
peripheral leukocyte count is considered to be an independent predictor of early clinical
worsening in primary ICH (Leira et al., 2004; Silva et al., 2005). To date, three
histopathologic studies have examined leukocyte infiltration in the human ICH brain. The
first study showed infiltration of neutrophils into the hematoma 2–4 days after ICH
(Wisniewski, 1961). Prior to this infiltration, neutrophil accumulation was observed in blood
vessels that bordered the hematoma as early as 6–12 h after ICH. In the second study,
investigators examined the early cellular response in postmortem brain tissue and observed
that leukocyte infiltration in the peri-ICH region appeared as early as 5–8 h and disappeared
by 72 h (MacKenzie and Clayton, 1999). The third study examined inflammatory responses
and neuronal death in the perihematomal tissue obtained during craniotomy. In that study,
infiltration of neutrophils, macrophages, and lymphocytes appeared at 6–12 h and increased
further at 12–24 h; the infiltration of these inflammatory cells was correlated with TUNEL-
positive cells and expression of Bax protein (Guo et al., 2006). Thus, available clinical
evidence supports a role for leukocytes in ICH pathogenesis (Giaume et al., 2010), although
the underlying mechanisms involved remain to be determined.

3.2. Microglia/macrophages
Microglia are the primary immune effector cells in the brain and are often referred to as the
brain’s macrophage. In normal brains, resting microglia exhibit ramified morphology and
constitute approximately 5–20% of the total glial population. The processes and protrusions
of microglia have been observed to interact dynamically with neighboring neurons,
astrocytes, and blood vessels (Nimmerjahn et al., 2005). In response to various types of
brain damage, microglia become activated (also referred to as reactive) and undergo
morphologic and functional transformations. Specifically, the cell body becomes enlarged
with thick processes, pro-inflammatory proteins are upregulated, and the cells become
migratory, proliferative, and phagocytotic (reviewed in Wang and Tsirka, 2005a). Activated
microglia are believed to have both neurotoxic and neuroprotective properties. The overall
effect depends on pathologic conditions and brain injury severity (van Rossum and Hanisch,
2004).

3.2.1. Preclinical studies—Increasing evidence has been obtained from preclinical
studies regarding the role of microglia/macrophages in ICH. Activated microglia/
macrophages can be identified by microscopy. Both resting and activated microglia/
macrophages can be visualized by immunohistochemistry, and activated cells can be easily
identified by their hypertrophic morphology. One should keep in mind that although ED1
antibody is claimed to be specific for activated microglia/macrophages in rats, ED1 is not
expressed in all reactive cells. We and others have used antibody to 5D4 (an epitope of
keratan sulfate proteoglycan) for the detection of activated microglia in mice (Fan et al.,
2007; Miao et al., 2005; Wang and Tsirka, 2005c).

Accumulating evidence indicates that microglia/macrophages are activated early after ICH
and that this activation contributes to ICH-induced secondary brain injury (Gao et al., 2008;
Wang and Doré, 2007b; Wang and Tsirka, 2005a). After ICH, reactive microglia appear rod-
like, spherical, or amoeboid, with short, strong processes, intense immunoreactivity, and a
cell body usually more than 7.5 µm in diameter. In contrast, resting microglia are
characterized by small cell bodies with a diameter less than 7.5 µm, ramified processes, and
mild immunoreactivity (Wang and Doré, 2007a; Wang et al., 2008). Although the major role
for microglia/macrophages after ICH is to clear the hematoma and the tissue debris, reactive
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microglia/macrophages also express and release a variety of potentially toxic factors, such as
cytokines, chemokines, ROS, proteases, cyclooxygenase-2, prostaglandins, and HO-1 and its
metabolites (Wang and Doré, 2007a,b; Wang and Tsirka, 2005a). In addition, the degree of
microglia/macrophage activation has been shown to be greater in aged rats after ICH than in
young rats (Gong et al., 2004; Lee et al., 2009). It remains unclear how to differentiate
activated microglia from macrophages recruited from the circulation.

Many studies have suggested that activated microglia/macrophages contribute to ICH-
induced early brain injury (Aronowski and Hall, 2005; Keep et al., 2005; Wang and Doré,
2007b). We have recently demonstrated that after collagenase-induced ICH, activation of
microglia occurs much earlier than infiltration of neutrophils in and around the hematoma;
the former occurs within 1 h, whereas the latter occurs after 4–5 h (Fig. 1A and Fig. 2F)
(Wang and Doré, 2007a). The early response of microglia after ICH is consistent with the
observation that focal microglia are activated immediately after BBB disruption by laser
lesions (Nimmerjahn et al., 2005). We have reported that reactive microglia are prominent in
the perihematomal region on day 1 after ICH, reach a maximum on day 7, and return to
normal by 21 days (Wang et al., 2003; Wang and Tsirka, 2005c). Similarly, reactive
microglia were observed in the perihematomal regionasearlyas1–4 h after whole blood
infusion into the rat striatum (Zhao et al., 2007b), peaked at 3–7 days, and persisted for 4
weeks (Gong et al., 2000; Xue and Del Bigio, 2000). We have additional data to
demonstrate the presence of reactive microglia/macrophages in the perihematomal region 1–
3 days after intrastrial infusion of autologous whole blood (Wang et al., 2008). A recent ICH
study in rats demonstrated an increase in immunoreactivity of chemokine macrophage
inflammatory protein (MIP)-2 that appeared as early as 2 h and peaked at 2 days; the
changes in MIP-2 level correlated with nuclear factor-κB activation and brain water content
(Wu et al., 2009a).

Therapeutic strategies based on the inhibition of microglial activation have been tested in
preclinical trials. In two of our early studies, we pretreated (2 days before) or post-treated (2
h after) mice with MIF (microglia/macrophage inhibitory factor, tuftsin fragment 1–3, Thr-
Lys-Pro) to inhibit microglial activation (Wang et al., 2003; Wang and Tsirka, 2005c). MIF-
treated mice showed reduced brain injury and improved neurologic function. Similarly,
inhibition of microglial activation with minocycline, which also inhibits MMPs, was shown
to protect the BBB, reduce brain edema (Wasserman and Schlichter, 2007a), and thereby
improve functional recovery in collagenase-induced ICH in rats (Power et al., 2003),
although neuronal loss was not decreased (Wasserman and Schlichter, 2007b).
Neuroprotection conferred by minocycline also was reported in rodents subjected to the
whole-blood model (Wu et al., 2009b; Xue et al., 2010) and will be discussed in depth
below. Interestingly, negative results have also been reported (Szymanska et al., 2006).
Although cumulatively the data suggest that strategies to target early inhibition of microglia/
macrophage activation after ICH could be therapeutic, long-term inhibition may not be fully
beneficial because inhibition could potentially abolish neuroprotective benefits of microglia/
macrophages as phagocytes and suppliers of neuroreactive molecules (Nakajima et al., 2001;
Wang and Tsirka, 2005c).

3.3. Astrocytes
In the human brain, astrocytes are star-shaped glial cells that generally outnumber neurons
by tenfold. Astrocytes are vital for normal brain functions and are considered to be active
elements of the brain circuitry. Calcium signaling in activated astrocytes has been proposed
to trigger the release of gliotransmitters, such as glutamate, ATP, TNF-α, and D-serine,
which can modulate neuronal excitability, synaptic activity, and plasticity (Giaume et al.,
2010). Astrocytes react to many central nervous system injuries and undergo profound
morphologic and functional remodeling that is dependent on the type and timing of injury

Wang Page 6

Prog Neurobiol. Author manuscript; available in PMC 2010 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



and the distance from the injury site. Disturbance of astrocytic function by brain injury or
disease can compromise neuronal functionality and viability. The presence of reactive
astrocytes is a hallmark of various neuropathologic conditions (Anderson et al., 2003;
Miller, 2005). Although astrocytes are recognized to be important in both the initiation and
propagation of secondary ischemic brain injury, their contribution to the process of
hemorrhagic brain injury has not been clearly defined, and very limited data are available
from preclinical or clinical studies.

3.3.1. Preclinical studies—Astrocytes, like microglia, are capable of secreting
inflammatory mediators. After ICH, brain astrocytes become activated in concert with
microglial activation and increase production of glial fibrillary acidic protein (GFAP),
causing a so-called “reactive gliosis.” Reactive astrogliosis after brain injury could inhibit
axonal regeneration. In our two recent studies, we observed a robust activation of astrocytes
in the perihematomal region early after ICH that was greatest in regions closest to the injury
site and gradually decreased with distance (Fig. 3C) (Wang and Dore, 2008;Wang et al.,
2008); this pattern was similar to that of microglial activation. Astrocytes were shown to
participate in the brain inflammatory process by expressing MMPs after ICH in both the
collagenase model (Wang and Tsirka, 2005b) and whole-blood model (Tejima et al., 2007).
Interestingly, the presence of blood plasma proteins seems to be an important mediator for
activation of astrocytes given that the injection of whole blood induces greater activation of
astrocytes than does injection of purified red blood cells (Koeppen et al., 1995). Consistent
with the fact that astrocytes have stronger antioxidative potential than do neurons, cultured
astrocytes are highly resistant to ROS, and we found that astrocytes are more resistant than
neurons to ICH-induced brain injury (Wang and Doré, 2007a). The functional significance
of the astrocytic response surrounding the hematoma is not totally clear at present. Reactive
astrocytes may protect neurons by promoting the secretion of neurotrophic factors
(Brahmachari et al., 2006) or by modulating the expression of microglial inflammatory
mediators (Pyo et al., 2003) and microglial ROS production (Min et al., 2006). However, in
cases of rapid and severe activation, for example early after ICH, astrocytes are more likely
to mediate an inflammatory response to become neurotoxic. Interestingly, reactive
astrocytes and microglia can interact to cause local MMP activation (Rosenberg et al.,
2001). Therefore, controlling microglia–astrocyte interactions could be considered as a
potential means to minimize ICH-induced brain injury (Wang and Doré, 2007b).

3.3.2. Clinical studies—Very few clinical studies have focused on astrocytes after ICH in
the human brain. In one early study, researchers investigated brain biopsy specimens from
six patients with cerebral amyloid anigiopathy-associated ICH. They found that reactive
astrocytes in some patients were labeled with Alzheimer A4 and gamma-trace peptides,
suggesting that astrocytes themselves may have the ability to generate the amyloid peptides
(Yong et al., 1992). In patients with subarachnoid hemorrhage, GFAP concentrations in the
cerebrospinal fluid were found to correlate with secondary brain damage caused by delayed
cerebral ischemia (Petzold et al., 2006). Tejima et al. (2007) demonstrated the astrocytic
induction of MMP-9 in the perihematomal areas in a postmortem human ICH brain, further
supporting the detrimental role of astrocytic overactivation early after ICH. Thrombin, its
endogenous inhibitor protease nexin-1, and water channel protein aquaporin-4 have also
been strongly detected by immunohistochemistry in astrocytes, neurons, and cerebral
vasculature of the ipsilateral hippocampus at 5–96 h post-ICH in postmortem human brain
(Wu et al., 2008).
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4. Inflammatory mediators
4.1. Matrix metalloproteinases

MMPs are a large family of zinc-dependent endopeptidases involved in extracellular
remodeling as well as the neuroinflammatory response. To date, 23 MMPs have been
identified in humans (Gueders et al., 2006). MMPs are normally located in the cytosol in a
pro- or inactivated state; however, under pathologic conditions, they are cleaved by
proteases, such as plasmin, tissue plasminogen activator (tPA), or other MMPs, to their
active state (Wang and Doré,2007b; Xue et al., 2009a). Accordingly, expression of MMPs in
the normal brain is very low, but many MMPs are upregulated and activated in response to
various brain injuries.

4.1.1. Preclinical studies—Preclinical studies of MMPs in ICH have focused on
MMP-2, -3, -9, and -12 (Wang and Doré, 2007b; Xue and Yong, 2008). The first such study,
by Rosenberg and Navratil (1997), demonstrated that gelatinases MMP-2 and MMP-9 were
activated within 24 h of collagenase-induced ICH in rats. Later, using the same model in
mice, we observed a similar increase in gelatinase activity at 24 h post-ICH (Fig. 4A) (Wang
et al., 2003). Extending this work, we demonstrated a dramatic increase in MMP-9 activity
by gel and in situ zymography at 24–72 h post-ICH (Wang and Tsirka, 2005b). Other
investigators observed increases in mRNA levels of MMP-3 and/or -12 (Power et al., 2003;
Wells et al., 2005). Early increases in MMP-9 mRNA, protein, and/or activity have been
confirmed in other ICH studies that have used different animal models (Lee et al., 2003; Lu
et al., 2006; Mun-Bryce et al., 2004; Wu et al., 2010b; Xue et al., 2006). Recently, Xue and
colleagues (Xue et al., 2009a, 2006) observed that human recombinant MMP-3 and -9 can
directly kill human fetal neurons. In support of this finding, mice with genetic deletions for
MMP-3, -9, and -12 were reported to have less hemorrhagic brain injury than wild-type
(WT) mice after ICH (Wells et al., 2005; Xue et al., 2009a, 2006), although contrary results
for MMP-9 were reported in one study (Tang et al., 2004). Furthermore, MMP-3 and -9
were reported to act synergistically with thrombin (Xue et al., 2009a).

Given the proposed detrimental effect of MMP activity early after ICH, several investigators
have used inhibitors to block MMP activity in preclinical studies. Rosenberg and Navratil
(1997) reported that rats treated with BB-1101 (a broad-spectrum hydroxamic acid-based
MMP inhibitor) reduced brain edema and mortality when administrated 6 h after the onset of
ICH. In our own studies, treatment of mice with the broad-spectrum MMP inhibitor
GM6001 attenuated gelatinase activity, neutrophil infiltration, and ROS production, and
thereby decreased early brain injury and improved neurologic function (Wang and Tsirka,
2005b). Neuroprotection conferred by GM6001 was further confirmed in a recent mouse
study that used the whole-blood model of ICH (Xue et al., 2009b). Two early studies
reported that MMP inhibition with BB-94 reduced recombinant tPA-induced hemorrhage
after thromboembolic stroke (Lapchak et al., 2000) and recombinant tPA-related mortality
after middle cerebral artery occlusion (Pfefferkorn and Rosenberg, 2003). In contrast,
Grossetete and Rosenberg (2008) reported that MMP inhibition with BB-94 increased cell
death and hemorrhage volume in a collagenase-induced ICH mouse model.

Minocycline, a semi-synthetic tetracycline, has shown promise as a MMP inhibitor and a
neuroprotectant (Yong et al., 2004). Power et al. (2003) reported that inhibition of MMP-12
with minocycline protected the morphology of neurons and improved functional recovery
after ICH. Although delayed administration of minocycline (6 h post-ICH) failed to reduce
neuronal death or striatal tissue loss at day 7 (Wasserman and Schlichter, 2007b), it did
decrease early upregulation of TNF-α and MMP-12 (Wasserman and Schlichter, 2007a;
Wasserman et al., 2007), thereby protecting the BBB and reducing brain edema (Wasserman
and Schlichter, 2007a). Contrary to these positive results, one study reported that
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minocycline provided neither histologic nor functional protection when administrated 3 h
after ICH, even though the number of microglia/macrophages was reduced in the
perihematomal areas (Szymanska et al., 2006). Together, most of the preclinical findings
support the view that MMP-3, -9, and -12 might play a detrimental role in the
pathophysiology of ICH and that intervention with MMP inhibitors might decrease ICH-
induced early brain injury. However, the timing of MMP inhibition is critical, and long-term
inhibition can be deleterious because MMPs do exert beneficial effects during neurovascular
remodeling (Cunningham et al., 2005; Yong, 2005; Zhao et al., 2006a) and recovery in the
later phases of ICH.

4.1.2. Clinical studies—Several clinical studies have reported that blood MMP-9 levels
are increased in patients with acute spontaneous ICH (Abilleira et al., 2003; Alvarez-Sabin
et al., 2004; Castellazzi et al., 2010; Silva et al., 2005). This increase in blood MMP-9 levels
within 12 or 24 h after stroke onset is associated with subsequent enlargement of the
hematoma (Silva et al., 2005), perihematomal edema, and worsening of neurologic function
(Abilleira et al., 2003). Alvarez-Sabin et al. (2004) systematically investigated the temporal
profile of MMPs and their natural inhibitors in patients with acute ICH and found that an
increase in blood MMP-9 levels correlated with perihematomal edema and neurologic
deterioration during the acute stage, whereas elevated blood MMP-3 levels were associated
with mortality. Moreover, increasing evidence identifies an association between elevated
MMP-9 concentration and subsequent hemorrhagic transformation or thrombolytic-induced
hemorrhage in ischemic stroke patients (Castellanos et al., 2003, 2007; Montaner et al.,
2001a,b, 2003; Ning et al., 2006). In one recent study, investigators observed an association
between plasma levels of MMP-9 and BBB disruption after stroke in humans (Barr et al.,
2010). To date, only two histopathologic studies have been identified in which MMPs were
examined in human ICH brain within the first 6 h after death (Rosell et al., 2006; Tejima et
al., 2007). The results showed that MMP-9 was upregulated in neurons and reactive
astrocytes surrounding the hematoma; brain tissue around the hemotoma had higher MMP-9
levels than did the contralateral hemisphere, supporting a contribution of MMP-9 to
perihematomal edema. We have recently reported in a histopathologic case-control study
(Wu et al., 2010a) that expression levels of MMP-9, nuclear factor-kappa B/p65 subunit, and
macrophage inflammatory protein-2 were each upregulated on the injured side of the
hippocampus at times ranging from 2 h to 5 days post-ICH. Interestingly, the expression of
all three markers was also upregulated on the uninjured side of the hippocampus and in the
cerebellum, although to a lesser extent. Taken together, available clinical data support
detrimental roles for MMP-9 in ICH and hemorrhagic transformation after ischemic stroke;
however, the roles of MMP-3 and -12 still need to be studied in clinical settings.

4.2. Nrf2/heme oxygenase/iron
Nrf2 is a key transcriptional factor that regulates antioxidant genes that act together to
remove ROS (Chen and Kunsch, 2004; Nguyen et al., 2009). These Nrf2-regulated genes
constitute the phase II antioxidant and detoxification response and code for antioxidant
enzymes such as NAD(P)H:quinine oxidoreductase 1, glutathione S transferases, glutamate–
cysteine ligase, glutathione peroxidase, and HO-1. Nrf2 is now regarded as a protector for
brain and many other organs (reviewed in Lee et al., 2005). During ICH, substantial
amounts of heme are released from extravasated blood and dying cells. The HO enzymes
(HO-1 and HO-2) degrade this heme into biliverdin, carbon monoxide, and iron (Ryter and
Tyrrell, 2000). Increasing evidence suggests that iron-induced oxidative stress can cause
neurodegeneration (Zecca et al., 2004).

4.2.1. Preclinical studies—In the brain, Nrf2 is present in astrocytes, neurons, and
microglia, where it participates in redox homeostasis by regulating the expression of
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antioxidant genes. Studies have shown that activation of Nrf2 is neuroprotective in a variety
of in vitro models (Johnson et al., 2008). Specifically, astrocytic Nrf2 activation is sufficient
to protect neurons from cytotoxicity both in vitro (Shih et al., 2005) and in vivo (Jakel et al.,
2007). In terms of stroke, administration of an Nrf2 inducer, either tert-butylhydroquinone
or sulforaphane, significantly improved stroke outcomes in rodents (Shih et al., 2005; Zhao
et al., 2006b). Conversely, Nrf2−/− mice suffered more stroke damage than did WT controls
in permanent and transient stroke models (Shah et al., 2007; Shih et al., 2005). The cellular
localization of Nrf2 in the hemorrhagic brain is not clear. We first demonstrated that mice
lacking Nrf2 are more susceptible than WT control mice to collagenase-induced
hemorrhagic brain injury (Fig. 5A–C). Additionally, we showed that the exacerbation of
brain injury in Nrf2−/− mice was associated with increases in leukocyte infiltration, ROS
production, and cytochrome c release (Wang et al., 2007). Consistent with our results, Zhao
et al. (2007a) reported that Nrf2−/− mice subjected to the whole-blood model of ICH
exhibited more severe neurologic deficits than did WT control mice and that the Nrf2
inducer sulforaphane administered 30 min after ICH was able to reduce neutrophil count,
oxidative damage, and behavioral deficits in WT but not in Nrf2−/− mice.

Nrf2 is known to regulate the transcription of HO-1; however, the brain contains two HO
isoforms: inducible HO-1 and constitutive HO-2. Both isoforms catalyze the rate-limiting
reaction by which heme is degraded into biliverdin, carbon monoxide, and iron (Ryter and
Tyrrell, 2000). In rodent brain after ICH, HO-1 is mainly induced in glial cells, whereas
HO-2 is expressed in neurons throughout the brain (Koeppen et al., 2004; Matz et al., 1997;
Nakaso et al.,2000; Wang and Doré, 2007a). Such different cellular expression of HO-1 and
HO-2 suggests that they might have distinct roles in ICH. Although some evidence indicates
that HO-1 and HO2 have cytoprotective functions (Parfenova and Leffler, 2008; Takahashi
et al., 2004), several preclinical studies have demonstrated that non-selective HO inhibitors
are neuroprotective in blood ICH models (Huang et al., 2002; Koeppen et al., 2004; Wagner
et al., 2000). Presumably, HO-1 does not exert a direct neuroprotective effect early after
ICH because it selectively localizes to microglia/macrophages. Although activation of
microglia/macrophages contributes to hematoma resolution (Wang et al., 2003), it is
involved in early brain injury after ICH (Wang et al., 2003; Wang and Tsirka, 2005c).
Furthermore, HO-1 activation is not neuroprotective in ischemia, as stroke damage was not
exacerbated in HO-1−/− mice (Doré et al., 1999; Shah et al., 2006). These findings challenge
the belief that HO-1 confers neuroprotection early after ICH. Actually, evidence suggests
that the effects of HO-1 depend on the relative activity of the enzyme, and excessively high
levels of HO-1 could be cytotoxic (Suttner and Dennery, 1999). In ICH, the heme-induced
upregulation of HO-1 might exceed the protection threshold and result in brain injury. To
elucidate the role of HO-1 after ICH, we compared the outcomes in WT and HO-1−/− mice
subjected to the collagenase-induced ICH model and found that HO-1 protein was highly
expressed in the perihematomal region, mostly in microglia/macrophages and endothelial
cells. The injury volume was smaller in HO-1−/− mice than in WT mice early after ICH, and
the protection in HO-1−/− mice was associated with decreased inflammation and free radical
levels (Fig. 1 and Fig. 2) (Wang and Doré, 2007a). A correlation between HO-1 induction
and oxidative brain injury also has been reported in whole-blood ICH models by other
investigators (Chen and Regan, 2007; Wagner et al., 2002; Wu et al., 2003). In contrast,
early studies suggested that HO-2 expression is cytoprotective (Doré et al., 2000; Doré and
Snyder, 1999; Parfenova and Leffler, 2008) and that constitutive HO-2 protects the brain
against ischemia and traumatic brain injury (Chang et al., 2003; Doré et al., 2000,1999; Goto
et al., 2003). We have shown that HO-2 deletion renders primary cultured neurons more
vulnerable to hemin (oxidized heme)-induced toxicity (Wang et al., 2006) and that
HO-2−/−mice are more vulnerable than WT mice to collagenase-induced ICH (Wang and
Dore, 2008; Wang et al., 2006). Furthermore, the exacerbation of brain injury in HO-2−/−

mice is associated with increases in neuroinflammation and ROS production (Fig. 3) (Wang
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and Dore, 2008). Conflicting data were reported by Qu et al. (2007). The differences may
reside in the ICH model used (collagenase vs. single-blood infusion) and the use of
anticoagulant heparin in the blood injected.

Hemolysis of red blood cells leads to hemoglobin degradation and the formation of products
such as non-heme iron. In a rat model of ICH, brain hemorrhage led to iron deposition and a
threefold increase in non-heme iron (Wu et al., 2003). Excess iron in the brain can result in
lipid peroxidation and the formation of free radicals (Gutteridge, 1994), which damage
neurons in many disease states (Thompson et al., 2001; Zecca et al., 2004). Hemolysis and
heme/iron-mediated toxicity occur 2–3 days after ICH (Wagner et al., 2003). Considerable
evidence suggests that hemoglobin breakdown and subsequent iron accumulation within the
brain mediates secondary brain injury after ICH (Wagner et al., 2003; Xi et al., 2006). Brain
atrophy and neurologic deficits observed up to 2 months after ICH have been attributed to
iron deposition within the striatum (Hua et al., 2006). Interestingly, and in support of iron-
mediated toxicity after ICH, treatment with an iron chelator such as deferoxamine was
shown to provide neuroprotection in a whole-blood ICH model in rats (Hua et al., 2006;
Nakamura et al., 2004a; Okauchi et al., 2009; Song et al., 2007) and in piglets (Fig. 6) (Gu et
al., 2009), but not in a collagenase-induced ICH model in rats (Warkentin et al., 2010).

4.2.2. Clinical studies—Currently, no histopathologic data are available on Nrf2 in
human ICH brain. Two studies have shown induction of HO-1 in microglia/macrophages
and increased iron content associated with the hemorrhagic lesion (Beschorner et al., 2000;
Lou et al., 2009). Interestingly, increased HO-1 concentration was reported to be associated
with worse neurologic outcome after traumatic brain injury in infants and children (Cousar
et al., 2006). In a small clinical study, it was reported that the levels of nonprotein-bound
iron were elevated in the cerebrospinal fluid from preterm infants with intraventricular
hemorrhage compared with control infants (Savman et al., 2001). In patients with
spontaneous ICH, an association between serum ferritin level and perihematomal edema
volume on days 3–4 has been reported (Mehdiratta et al., 2008). High serum ferritin levels
did not correlate with acute phase reactions and were found to be associated with poor
outcomes (de la Ossa et al., 2010). Recently, magnetic resonance imaging revealed a
relationship between iron content within the hematoma and perihematomal edema in the
human brain after ICH (Lou et al., 2009), further linking iron-mediated toxicity to brain
edema formation and delayed neuronal death after ICH.

5. Stem cell therapy
5.1. Preclinical studies

Neural stem cell (NSC) transplantation has been proposed as a means to repair brain
damage, and related brain repair has been shown in several preclinical models of neurologic
disorders (Miller, 2006). Using rats with collagenase-induced ICH, Jeong et al. (2003) found
that the intravenous transplantation of human NSCs, which differentiated into neurons and
astrocytes, improved neurologic function. The same group examined the effects of systemic
NSC transplantation on brain and spleen inflammatory reactions during the acute phase of
ICH. They observed that early intravenous NSC injection had an important “bystander” anti-
inflammatory effect on the spleen-macrophage system that promoted brain repair (Lee et al.,
2008). Although stem cell therapy seems to be very promising, questions regarding NSC
differentiation, migration, and integration as well as the optimal injection routes, cell doses,
and timing of transplantation should be answered before any translation to the clinic can be
considered.
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6. Summary
Preclinical and clinical studies have provided evidence to indicate that various cellular and
molecular components of inflammation are involved in hemorrhagic brain injury. As
discussed, microglial activation after ICH occurs much earlier than neutrophil infiltration.
Inflammation is now recognized as a key player in the pathologic progression of ICH and
could affect ICH outcome. Considering the limitations of preclinical ICH models and
numerous difficulties in translating experimental data to clinical use, human histopathologic
studies are critically needed to confirm the findings from preclinical studies. Although it
remains uncertain whether and when anti-inflammatory strategies might be successfully
translated into clinical practice, additional strategies that target newly identified signaling
pathways or molecules could offer a promising therapeutic approach to ICH.

Abbreviations

BBB blood-brain barrier

GFAP glial fibrillary acidic protein

HO heme oxygenase

ICH intracerebral hemorrhage

MIF microglia/macrophage inhibitory factor

MIP macrophage inflammatory protein

MMP matrix metalloproteinase

Nrf2 nuclear factor erythroid 2-related factor 2

NSC neural stem cell

ROS reactive oxygen species

TNF tumor necrosis factor

tPA tissue plasminogen activator

WT wild-type
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Fig. 1.
Effect of HO-1 on leukocyte infiltration after ICH. Infiltrating neutrophils
(myeloperoxidase-positive cells) were apparent in the injury site 5 h post-ICH in WT mice
(A), but not in HO-1−/− mice (B). At 24 h post-ICH, many more infiltrating neutrophils
were present in and around the injury site in WT mice (C, E) than in HO-1−/− mice (D, F).
The images in E and F represent higher magnification of the boxed area in C and D. (G)
Quantification analysis indicated that HO-1−/− mice had significantly fewer infiltrating
neutrophils than did WT mice at 24 h post-ICH (n = 5/group, **p < 0.01). Scale bar, A, B,
E, F, 20 µm; (C, D) 300 µm. From Wang and Doré (2007a).
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Fig. 2.
Effect of HO-1 on microglial/macrophage activation after ICH. The distribution and
morphology of microglia/macrophages (Iba1-positive) are shown in coronal sections
collected at different time-points in WT (A, B, E, F, I,J, M, N) and HO-1−/− (C, D, G, H,K,
L, O, P) mice. (A–D) Images shown at 0 h are from sham-operated mice. The images in B,
F, J, N, D, H, L, P (scale bar: 20 µm) represent higher magnification of the boxed areas in A,
E, I, M, C, G, K, and O (scale bar: 200 µm), respectively. In sham-operated WT (A, B) and
HO-1−/− (C, D) mice, resting microglial cells were sparsely distributed. Insets in B and D
(scale bar: 5 µm) illustrate Iba1-positive resting microglial cells at higher magnification.
Microglial activation appeared as early as 1 h after ICH in WT (E, F) and HO-1 −/− (G, H)
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mice, but more intensely stained, activated cells (with large cell bodies and short processes)
were observed in and around the ICH region in WT mice. This tendency persisted at 5 h (I–
L) and up to 24 h (M–P) after ICH. (J) In a WT section 5 h post-ICH, two typical activated
microglia/macrophages (elongated, rod cells) are indicated by arrows. (Q) Quantification of
activated microglia/macrophages around the border region of injury. HO-1−/− mice had
significantly fewer activated microglia/macrophages than did WT mice at 5 and 24 h post-
ICH (n = 5/group, **p < 0.01). Values represent means ± SD. From Wang and Doré
(2007a).
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Fig. 3.
Deletion of HO2 increases neuroinflammation in mice subjected to intracerebral hemorrhage
(ICH). (A) Infiltrating neutrophils (myeloperoxidase-positive cells), (B) activated microglia/
macrophages (Iba1-immunoreactive cells), and (C) reactive astrocytes (GFAP-positive cells)
were apparent in or around the injury site in WT and HO2−/− mice 72 h post-ICH. (D) Three
sections per mouse with similar brain injury size were chosen from six WT and six HO2−/−

mice. Positive cells were counted randomly from 12 locations per animal (4 fields per
section × 3 sections per animal) and the numbers were averaged and expressed as positive
cells/field. Cell count analysis indicated that HO2−/− mice had significantly more infiltrating
neutrophils, activated microglia/macrophages and astrocytes than did WT mice at 72 h post-
ICH (all n = 6/group, *p < 0.05, **p < 0.01). Scale bar = 30 µm for A, B, C; IR,
immunoreactive. Values are means ± SD. From Wang and Dore (2008).
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Fig. 4.
Increased in situ gelatinolytic activity after ICH on day 1 in control, wild-type (wt) and tPA
knockout (−/−) mice. (A) Gelatinolytic activity-positive cells are present in the injury area in
all animals. Column a, c: 100 × magnification; Column b, d: 400 × magnification. Scale bar,
20 µm. (B) Quantification of gelatinolytic activity-positive cells on day 1 in wt and tPA−/−

mice. No significant difference was observed between the two genotypes of mice (n = 5).
Values shown are means ± SD. Modified from Wang et al. (2003).
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Fig. 5.
Deletion of Nrf2 increases brain injury volume and neurologic deficits in mice subjected to
intracerebral hemorrhage (ICH). Age- and weight-matched Nrf2 knockout (Nrf2−/−) and
wild-type (WT) mice were subjected to ICH, and brains were sectioned and stained with
Luxol fast blue/Cresyl Violet. (A) Representative sections from Nrf2−/− and WT mice 24 h
after collagenase injection showing different areas of injury as represented by lack of
staining. Scale bar =100 µm. (B) Quantification shows significantly larger brain injury
volume in Nrf2−/− mice (n = 7) compared with WT mice (n = 10) 24 h after collagenase
injection. (C) An investigator blinded to genotype assessed the neurologic deficits of
Nrf2−/− and WT mice with a 24-point neurologic scoring system 24 h after collagenase
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injection. Neurologic deficits were significantly more severe in Nrf2−/− mice (n = 7) than in
WT mice (n = 10). Values are means ± SD. *p < 0.05. From Wang et al. (2007).
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Fig. 6.
Deferoxamine reduces reddish zone around hematoma at day 3 and day 7 in a pig ICH
model. Values are means ± SD, n = 4, #p < 0.01 vs vehicle. From Gu et al. (2009).
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Table 1

Preclinical and clinical trials of various anti-inflammatory strategies in ICH.

Target Model/strain Resulta Reference

Leukocyte infiltration

    Global depletion of circulating leukocytes and platelets Microballoon/rat + (Kane et al., 1992)

Microglial activation

    Microglia/macrophage inhibitory factor (MIF) Collagenase/mouse + (Wang et al., 2003; Wang and Tsirka, 2005c)

    Minocyclineb Collagenase/rat + (Power et al., 2003)

    Minocycline Collagenase/rat + (Wasserman and Schlichter, 2007a)

    Minocycline Blood/rat + (Wu et al., 2009b)

    Minocycline Blood/mouse + (Xue et al., 2010)

    Minocycline Collagenase/rat − (Szymanska et al., 2006)

Mast cell stabilization

    Sodium cromoglycate Blood/rat + (Strbian et al., 2007)

Cytokines

    TNFα-specific antisense oligodeoxynucleotide Collagenase/rat + (Mayne et al., 2001b)

    Adenosine A2A receptor agonist Collagenase/rat + (Mayne et al., 2001a)

    Overexpression of IL-1ra Blood/rat + (Masada et al., 2001, 2003)

Matrix metalloproteinases

    BB-1101 Collagenase/rat + (Rosenberg and Navratil, 1997)

    GM6001 Collagenase/mouse + (Wang and Tsirka, 2005b)

    GM6001 Blood/mouse + (Xue et al., 2009b)

    BB-94 Collagenase/mouse − (Grossetete and Rosenberg, 2008)

Reactive oxygen species

    Alpha-phenyl-N-tert-butyl nitrone Collagenase/rat + (Peeling et al., 1998)

    Alpha-phenyl-N-tert-butyl nitrone Blood/rat + (Aronowski and Hall, 2005)

    NXY-059 Collagenase/rat + (Peeling et al., 2001a)

    NXY-059 Phase II clinical trial − (Lyden et al., 2007)

Nrf2

    Nrf2 inducer sulforaphane Blood/rat + (Zhao et al., 2007a)

Heme oxygenases

    Tin-mesoporphyrin IX Blood/rabbit + (Koeppen et al., 2004)

    Tin-mesoporphyrin IX Blood/pig + (Wagner et al., 2000)

    Tin-protoporphyrin Blood/rat + (Huang et al., 2002)

    Zinc protoporphyrin Blood/rat + (Gong et al., 2006)

Ferric iron

    Deferoxamine Blood/rat + (Hua et al., 2006; Nakamura et al., 2004a;
Okauchi et al., 2009; Song et al., 2007)

    Deferoxamine Blood/pig + (Gu et al., 2009)

    Deferoxamine Collagenase/rat − (Warkentin et al., 2010)

Complement

    C3a receptor antagonist Blood/mouse + (Rynkowski et al., 2009)
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Target Model/strain Resulta Reference

    C5a receptor antagonist Blood/mouse + (Garrett et al., 2009)

Others

    PPARγ agonist rosiglitazone Blood/mouse + (Zhao et al., 2007b)

    15d–PGJ2 Blood/rat + (Zhao et al., 2006c)

    FK-506 Collagenase/rat + (Peeling et al., 2001b)

    Neural stem cell transplantation Collagenase/rat + (Jeong et al., 2003; Lee et al., 2008)

a
+ Indicates positive result; − indicates negative result.

b
Minocycline also targets MMPs.
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