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Abstract
Impulsivity refers to a set of heterogeneous behaviors that are tuned suboptimally along certain
temporal dimensions. Impulsive inter-temporal choice refers to the tendency to forego a large but
delayed reward and to seek an inferior but more immediate reward, whereas impulsive motor
responses also result when the subjects fail to suppress inappropriate automatic behaviors. In
addition, impulsive actions can be produced when too much emphasis is placed on speed rather
than accuracy in a wide range of behaviors, including perceptual decision making. Despite this
heterogeneous nature, the prefrontal cortex and its connected areas, such as the basal ganglia, play
an important role in gating impulsive actions in a variety of behavioral tasks. Here, we describe
key features of computations necessary for optimal decision making, and how their failures can
lead to impulsive behaviors. We also review the recent findings from neuroimaging and single-
neuron recording studies on the neural mechanisms related to impulsive behaviors. Converging
approaches in economics, psychology, and neuroscience provide a unique vista for better
understanding the nature of behavioral impairments associated with impulsivity.
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Introduction
Decision making refers to the process of choosing a particular action among a number of
alternative options that is expected to produce the most beneficial outcome to the decision
maker. Given the complexity and diversity of necessary computations, it is perhaps not
surprising that many cortical and subcortical areas in the brain are involved in decision
making. In addition, there is a substantial variability in the decision-making strategies
displayed by different individuals, and many psychiatric disorders, including mood disorders
and substance abuse, are thought to result from decision-making abilities impaired in some
aspects. Accordingly, understanding the precise nature and neural mechanisms of such
variability is an important goal for theories on personality traits and psychiatric disorders
(1). In particular, individuals vary substantially in their strategies to deal with time during
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decision making, and impulsivity often refers to the failures in optimally incorporating
temporal factors in decision making (2). In the last decade, substantial progress has been
made in uncovering the basic mechanisms of decision making, including how the brain
synthesizes incoming sensory information and the decision maker’s previous reward history
to select the action that is most beneficial to the subject (3–9). This knowledge is essential
for understanding the precise nature of dysfunctions in the decision-making circuitries in the
brain, including those responsible for impulsive choice behaviors. This review first describes
the range of computations required for optimal decision making. Next, how suboptimal
solutions to some of these computational problems can lead to impulsive behaviors is
discussed. The rest of the article is devoted to the review of the neural mechanisms for
impulsive behaviors.

Computations necessary for optimal decision making
Economic decision making

In general, outcomes from a particular action might vary depending on the state of the
decision maker’s environment. For relatively simple types of decision making, the
relationship between actions and their outcomes might be fully known, but often the
relationship among the environment, action, and outcomes might change dynamically and
may not be known completely. Nevertheless, formal analyses of decision making tend to
share two common features. First, a set of available actions from which the final action can
be chosen must be specified. In most behavioral and neurobiological studies on decision
making, this is determined explicitly by the experimenter. In reality, the number of actions
that need to be considered by the decision maker can be potentially very large. Second, for
each of the actions under consideration, the desirability of outcomes expected from the
action must be evaluated. Outcomes of actions can vary in many different dimensions,
including not only the type of an outcome, but also its statistical and temporal properties.
For example, performing a particular action or a sequence of actions might determine the
probability of obtaining a particular amount of money or food, and such an outcome might
become available after some delay. In some cases, decision makers might dread the arrival
of an aversive outcome, and savor the anticipation of a pleasant outcome. As a result, the
preference for reward might increase as it is delayed and produces more opportunity for its
anticipation, while the preference for some painful outcome might increase when it happens
sooner (10). Such anomaly is referred to as negative time preference (11,12). In most cases,
however, humans and animals are more likely to take an action when the reward expected
from that action is delivered sooner than later, and when the aversive outcome that can be
avoided by taking that action is more imminent. This is referred to as positive time
preference and the process by which the value of a delayed outcome is diminished according
to its delay is referred to as delay or temporal discounting (13–15). Similarly, the subjective
value of an outcome is commonly depreciated by its uncertainty. Although a standard
economic choice theory has assumed that the subjective preference or utility of an outcome
is depreciated by its probability (16), behavioral studies have shown that the relative weight
given to a particular outcome might be determined by a non-linear function of its probability
(17,18).

Various cues from the environment of decision makers provide information about the
probabilities and timing of outcomes expected from each action. In some cases, as in
behavioral studies on economic decision making, statistics and temporal properties of
outcomes are explicitly indicated to the decision makers, making it possible to calculate the
utilities of alternative actions. However, more often, how the state of the decision maker’s
environment alters the relationship between an action and its outcomes has to be learned
through experience. Accordingly, the utilities of alternative actions cannot be determined
precisely, but can be only estimated empirically. To distinguish such estimates from the real
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utilities of actual outcomes, the empirical estimates of outcomes expected from a particular
action are referred to as value functions in the reinforcement learning theory (19). As
assumed by the economic theories of decision making, in which rational decision makers
select the action with the maximum utility, decision makers or agents in the reinforcement
learning theory tend to choose the action with the maximum value function. In contrast to
rational economic decision makers, however, reinforcement learning theory requires its
agents to behave stochastically, namely explore their environment, to gain the opportunity to
improve the accuracy of their value functions. This conflict between the need to choose the
action with the maximum value function (“exploitation”) and the need to choose randomly
(“exploration”) is often referred to as exploration-exploitation dilemma.

Perceptual decision making
In a stable environment, decision makers might be able to extract sufficient information
from sensory stimuli about the action that produces the most beneficial outcome in a given
context. In addition, the outcomes of choosing the correct vs. incorrect actions might be
fixed and well known to the decision makers. In such cases, the nature of decision making is
perceptual, since the outcome of the chosen action depends entirely on identifying the
sensory stimulus correctly. However, the task of such perceptual decision making can be
challenging, when the sensory inputs are noisy, and their quality fluctuates over time. In the
last two decades, important insights into the neural mechanisms of decision making have
resulted from the studies that manipulated the difficulty of decision making by changing the
signal strength of sensory stimuli (20–22). Results from the research on two-alternative
forced-choice paradigms have generated converging evidence that during the time interval
between the stimulus onset and motor response, noisy sensory evidence is temporally
integrated, analogous to a diffusion process or random walk, and the response is emitted
when this accumulated evidence reaches a certain threshold (23,24). Such models predict,
consistent with the findings from many studies on reaction times, that the accuracy of the
choice will deteriorate and the reaction time will be prolonged as the sensory stimulus
becomes noisier.

Models of impulsivity in decision making
Impulsivity and temporal discounting

Impulsive decision making can be viewed as a failure to take certain types of temporal
factors into account appropriately. However, impulsivity is not a unitary concept, and
includes several distinct cases in which time is handled suboptimally. For economic decision
making, impulsivity refers to the tendency to weigh immediate outcomes strongly and to
discount the value of delayed rewards precipitously (13–15,25). As described above,
humans and animals tend to prefer an immediate but smaller reward to a delayed but larger
reward, when the difference in magnitude is too small or when the difference in delay is too
large. This pattern of preference is often modeled by a temporal discount function, F(t),
which describes how steeply the value of delayed reward decreases with its delay t.
Although several different types of discount functions have been proposed (25), exponential
and hyperbolic discount functions have been used in most behavioral studies on inter-
temporal choice (Figure 1, left). Each of these discount functions has a single free parameter
that controls its steepness, and therefore, such parameters can be used as measures of
impulsivity. First, exponential discount function is given by the following.
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where t denotes reward delay, and kexp corresponds to discount rate r, which is defined as
the ratio r=−F′(t)/F(t). Therefore, for a given exponential discount function, its discount rate
is fixed and independent of reward delays (Figure 1, right). Second, hyperbolic discount
function is given by the following.

where khyp is the parameter that controls the steepness of the discount function. In contrast
to exponential discount functions, the discount rate for hyperbolic discount function
decreases with delay, according to khyp/(1+khyp t) (Figure 1, right). Nevertheless, for any
delay t, Fhyp decreases as the parameter khyp increases, so the value of khyp in a hyperbolic
discount function can be used as a measure of impulsivity in inter-temporal choice. Many
studies have consistently demonstrated that behaviors of humans and other animals during
inter-temporal choice are better accounted for by hyperbolic discount functions (13,25–28).
In addition, patients of substance abuse tend to display steeper discount functions (29–33),
suggesting that such maladaptive behaviors arise from impulsive choices.

Impulsivity and response inhibition
In addition to steep temporal discounting, impulsivity also refers to the tendency to produce
a habitual or some other default action prematurely. The ability to abort or suppress the
movement that was previously prepared but is no longer desired has been studied
extensively by using a stop-signal task (34,35). In this task, the subject is required to
respond to a particular sensory stimulus, such as a tone or visual target, but in a small
proportion of trials, the subject is also required to cancel the movement in response to a stop
signal. Whether the subjects can successfully abort the movement in response to a stop
signal largely depends on the interval between the target onset and stop signal onset, which
is often referred to as stop signal delay (SSD). For a short SSD, namely, when the stop
signal immediately follows the target, the subjects are more likely to cancel the movement
compared to when the SSD is longer. The performance of humans and monkeys in stop-
signal tasks has been well accounted for by the horse race model (34, 36; Figure 2 top). In
this model, the onset of a target and the onset of a stop signal trigger go and stop processes,
respectively, and the movement is canceled only when the stop process reaches the threshold
before the go process. The duration of the go process can be estimated directly from the
observed distribution of reaction times during the trials without stop signals. In addition, the
duration of the stop process can be inferred indirectly from the frequencies of cancelling the
movement for each SSD, and is referred to as stop signal reaction time (SSRT). A relatively
short SSRT implies that the subjects can successfully abort the movement even when the
stop signal is somewhat delayed (i.e., long SSD). In contrast, a long SSRT corresponds to a
reduced ability to suppress a movement that is no longer appropriate and therefore can be
used as a measure of impulsivity. In fact, children with attention-deficit/hyperactivity
disorder (ADHD) show prolonged SSRT compared to normal children (37), suggesting that
impaired response inhibition might be a core deficit in this disorder (38). However, it is not
entirely clear whether longer SSRT is a main characteristic for the behavioral deficit in
ADHD, because reaction times in children with ADHD are more variable and this might
introduce systematic biases in SSRT estimates (39,40).

Impulsivity and evidence accumulation
In the horse race model used to account for the behaviors in stop-signal tasks, the rate of
increase in the activation for each process is variable across trials but remains constant
within a given trial (Figure 2A). In contrast, in the so-called random-walk or drift-diffusion
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models, it is assumed that the sensory inputs are corrupted by noise and therefore display
moment-to-moment fluctuations in their signal strengths (Figure 2B). The process of
accumulating noisy sensory evidence is therefore considered analogous to the diffusion of a
particle in one dimension, and the ultimate choice is determined by which of the two bounds
(upper or lower) is crossed first. The accuracy of identification based on such noisy sensory
evidence is enhanced by this temporal integration. These models provide an intuitive
explanation for speed-accuracy trade-off, commonly observed in choice reaction time tasks
(41). When the bounds are set farther away from the starting point, the choices become more
accurate, but the reaction times increase (Figure 2B). Conversely, if the bounds are close to
the origin, random fluctuations in the momentary sensory signals are more likely to produce
errors, but this decreases the average reaction times. Therefore, within this framework,
impulsive behaviors result from the bounds that are set too close to the origin (e.g., Blow in
Figure 2B).

Neural mechanisms of impulsive decision making
Neural basis of temporal discounting

Inter-temporal choice behaviors are relatively well described by the models of temporal
discounting. Therefore, the neural substrates of inter-temporal choice should somehow
integrate the information about the magnitude and delay of reward expected from each
option. Indeed, the blood-oxygen-level-dependent (BOLD) signals obtained from the medial
frontal cortex and ventral striatum in functional magnetic resonance imaging (fMRI) studies
are correlated with the temporally discounted values of rewards chosen by the subjects
during inter-temporal choice tasks, suggesting that the information about reward magnitude
and delay might be combined in these brain areas (42–49). Lesion and
neuropharmacological studies have also implicated orbitofrontal cortex (50,51) and nucleus
accumbens (52) in temporal discounting. However, the results from neuroimaging or lesion
studies do not reveal how the information about reward magnitude and delay is combined at
the level of individual neurons.

In particular, if the activity of a given neuron related to reward magnitude and delay reflect
the temporally discounted values, then it should change similarly as the magnitude of a
reward is increased and as its delay is decreased. In fact, single-neuron recording studies in
rodents and non-human primates have shown that the neurons in the prefrontal cortex and
dopamine neurons change their activity according to the magnitude or delay of reward
expected by the animal (53–60). When the animal’s choice depends on both magnitude and
delay of reward, the activity of neurons in the prefrontal cortex is systematically influenced
by both variables, and consequently, prefrontal activity reflects signals related to temporally
discounted values (7,59). In addition, the time course and the nature of signals related to
temporally discounted values represented in the prefrontal cortex suggest that the prefrontal
cortex is involved in multiple computations during inter-temporal choice. For example,
immediately after the magnitude and delay of reward available from each option are
specified, neurons in the prefrontal cortex largely encode the signals related to the sum of
the temporally discounted values for the rewards available from different options as well as
their difference, whereas the signals related to the animal’s choice and the temporally
discounted value of the reward chosen by the animal develop more gradually (Figure 3b).
These results suggest that the prefrontal cortex is involved in gradual transformation of the
signals related to the values of individual options to the animal’s choice.

The convergence of signals related to reward magnitude and delay and encoding of
temporally discounted values in the prefrontal cortex might also endow it with the ability to
monitor and enhance the decision maker’s ability to pursue the long-term benefits by
resisting the temptation to accept immediate reward. Consistent with this possibility, some
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neuroimaging studies have found that the BOLD activity in the dorsolateral prefrontal cortex
is enhanced when the subject chooses the larger but more delayed reward during inter-
temporal choice (61,62). Moreover, the involvement of the dorsolateral prefrontal cortex
might generalize to other situations in which the decision makers must exert self-control to
choose the options that will maximize their long-term benefits. Such abilities have strong
implications in health care, since they might prevent over-eating and substance abuse (29–
33). For example, a recent study identified a stronger BOLD activity in the dorsolateral
prefrontal cortex when the dieters successfully choose healthy rather than tasty food (63). In
addition, during the trials in which the subjects successfully exerted self control and chose
healthy food, the activity in the dorsolateral prefrontal cortex influenced the activity in the
ventromedial prefrontal cortex, which commonly shows the activity related to the subjective
value of the option chosen by the subject. This interaction might be indirect and mediated by
the Brodmann area 46 in the inferior frontal gyrus (63).

Neural basis of response inhibition
Many of our actions are habitual and they are often generated automatically and rapidly
without much deliberation. Often, in order to produce most appropriate behaviors, such
automatic and habitual behaviors must be first suppressed. Numerous studies based on
lesions, neuroimaging, and single-neuron recording studies have suggested that this ability
to suppress undesirable movements might require the prefrontal cortex (64–69) and basal
ganglia (70,71). Currently, however, whether and how specific cognitive processes involved
in response inhibition are localized within different subregions of the prefrontal cortex is not
completely understood. For example, a number of studies suggested that the right inferior
frontal gyrous (IFG) or the ventrolateral prefrontal cortex (VLPFC) might be particularly
important for response inhibition during a go/no-go or stop-signal task (64–66). However,
some studies have also implicated the involvement of the dorsolateral prefrontal cortex in
response inhibition (67–69).

Single-neuron recording studies in non-human primates have focused on the role of the
frontal eye field (FEF) and supplementary eye field (SEF) in inhibiting previously planned
saccadic eye movements during a stop-signal task (72–74). These studies have found that
some neurons in the FEF display differential activity sufficiently early to cause the
cancellation of upcoming eye movements during stop-signal trials (72), whereas the neurons
in the SEF seem to play a role largely in monitoring the outcome of unwanted eye
movements (73,74). Single neuron recordings in the supplementary and pre-supplementary
motor areas during a manual stop-signal task also indicated that the medial frontal cortex
might be more involved in monitoring the consequences of animal’s actions and their
motivational control (75). These results suggest that the activation in the human medial
frontal cortex identified during a stop-signal task might also reflect functions related to
performance monitoring (76). In addition, results from diffusion-weighted imaging
tractography studies suggest that the network consisting of pre-supplementary motor area
(pre-SMA), right inferior frontal gyrus (IFG), and subthalamic nucleus might play an
important role in inhibiting unwanted movements (77).

Whereas the medial frontal cortex might not play a major role in response inhibition during
a stop-signal task, it might be more involved in overcoming the tendency to produce habitual
and automatic response according to various contextual cues (78). For example, neurons in
the pre-SMA often increase their activity immediately before the animal switches from
automatic, repeated patterns of behaviors to a new pattern of behaviors in response to
sensory cues (79,80). The lack of phasic activity in these so-called switching neurons was
associated with the failure to suppress automatic actions. In addition, the activity patterns of
switch neurons during a go/no-go task suggest that they are involved in suppressing a
particular action as well as facilitating the desired action (80). In contrast, neurons in the

Kim and Lee Page 6

Biol Psychiatry. Author manuscript; available in PMC 2012 June 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



subthalamic nucleus contribute largely to suppressing automatic actions that are no longer
appropriate (81). These results are consistent with the finding that the disruption of the
subthalamic nucleus leads to premature and impulsive actions (78,82,83). The subthalamic
nucleus is known to mediate a short-latency excitation in the internal segment of the globus
pallidus (GPi) induced by cortical stimulation. Since the output from the GPi inhibits the
downstream neurons in the thalamus, the subthalamic nucleus is considered a part of the
“hyperdirect” pathway (84), capable of suppressing alternative actions and promoting the
selection of the most appropriate action (70,85). Therefore, neurophysiological studies on
action switching have highlighted the role of the subthalamic nucleus in response inhibition
and controlling impulsive actions. However, whether this function is unique to the
subthalamic nucleus or shared by other areas of the basal ganglia, such as the striatum, needs
to be investigated further in future studies (86).

Neural basis of perceptual decision making—The random-walk or drift-diffusion
models describe how both accuracy and speed of decision making are influenced by the
stimulus discriminability (Figure 2b). The same models can also provide a parsimonious
explanation for the speed-accuracy trade-off by shifts in their threshold or bounds (Figure
2b). A threshold placed closer to the origin can be crossed more easily by the noisy
fluctuations in the integrated variable, leading to shorter reaction times but with more errors.
There is a large amount of theoretical as well as empirical evidence for these mathematical
models of decision making (5, 87, 88), but the mechanisms for adjusting the threshold are
not understood. For example, the onset of saccadic eye movement during a choice reaction
time task is tightly coupled to the moment when the activity level of individual neurons in
the frontal eye field reaches a particular threshold (89). In the posterior parietal cortex, such
as the lateral intraparietal area (LIP), the activity of individual neurons tends to rise at a rate
that increases with the stimulus strength during a perceptual decision making task,
converging to a particular level shortly before the animal produces its behavioral response
(5, 90). These results suggest that the bound or threshold postulated in the drift-diffusion
models might correspond to a fixed level of activity that needs to be reached by the neurons
responsible for implementing a particular choice or action. Accordingly, impulsive
behaviors during perceptual decision making might be accompanied by a lower threshold,
causing the movements to be triggered more quickly even when the rate of activity increase
in such cortical areas as FEF and LIP remains unchanged. These predictions need to be
tested in future studies. Results from neuroimaging studies have also suggested that the
cortical and subcortical network involved in switching from automatic to more controlled
behaviors, such as pre-SMA and subthalamic nucleus, might also be involved in speed-
accuracy trade-off (41, 91–93). However, the detailed underlying neural mechanisms need
to be investigated by characterizing the properties of single neurons in these areas.

Conclusions
Impulsivity is often associated with a number of mental illnesses, ranging from attention
deficit hyperactivity disorder (94) to substance abuse (95). While this label applies to a set
of heterogeneous behavioral features, they are related by the fact that impulsive behaviors
are suboptimally tuned along certain temporal dimensions. For inter-temporal choice,
impulsivity implies placing too much weight on immediate outcomes, whereas other types
of impulsivity result from the premium on speed rather than accuracy of responses or
failures to suppress appropriate actions. The data from a number of studies suggest an
important role of the prefrontal cortex and basal ganglia in controlling multiple types of
impulsivity. Neuroimaging and lesion studies have implicated specific anatomical areas,
including the medial frontal cortex and basal ganglia in addition to the prefrontal cortex, in
controlling impulsive behaviors. In addition, single-neuron recording studies in non-human
primates have also characterized the dynamic properties of neural activity that underlies
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temporal discounting and the suppression of prepotent but inappropriate behaviors. As we
understand better the nature of neural mechanisms underlying various forms of impulsivity,
such knowledge will lead to the improvement in the diagnosis and treatment of impulsivity-
related behavioral disorders.
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Figure 1.
Comparison of exponential and hyperbolic discount functions (left) and their corresponding
discount rates (right). Exponential discount functions (black) are given by Fexp(t) =
exp(−kexp t), where kexp = 0.2 (solid) or 0.8 (dotted), whereas hyperbolic discount functions
(green) are given by Fhyp(t) = 1/(1+khyp t), where khyp = 2.0 (solid) or 0.5 (dotted). For both
types of discount functions, larger values of k parameters correspond to more impulsive
choices.
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Figure 2.
Models of impulsive behavioral responses. A. Horse-race model for response inhibition in a
stop-signal task. Go (green, G1 or G2) and stop (red, S1 or S2) processes are initiated when
the target for the movement and stop signal are presented, respectively. Movements are
canceled only if the stop process reaches the threshold (gray line) before the go process.
Stop-signal reaction time (SSRT) refers to the time needed by the stop process to reach the
threshold. In this example, a short SSRT (S1) successfully cancels the movement with a
slow go process (G2), whereas a long SSRT (S2) fails to cancel any movement. B. Random-
walk or drift-diffusion model for a two-alternative forced choice (2AFC) task. Noisy
evidence from a sensory stimulus is temporally integrated and “up” or “down” response is
triggered depending on whether this integrated evidence reaches the upper or lower bound.
In this example, the average signal is positive (a gray straight line). For a bound closer to the
origin (Blow), an error is committed when the integrated evidence crosses the lower bound
(−Blow). In contrast, a correct response is made for a bound farther from the origin (Bhigh).
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Figure 3.
Time course of signals related to the temporally discounted values and choice in the
dorsolateral prefrontal cortex (DLPFC). A. Signals related to the magnitude (red) and delay
(blue) of the reward expected from each choice and the choice of the animal (leftward or
rightward saccade; green). B. Signals related to the sum of the temporally discounted values
with the two alternative rewards (DVL and DVR for the left and right target, respectively;
red), their differences (blue), the difference between the temporally discounted values of the
chosen (DVC) and unchosen (DVUC) rewards (black), and the animal’s choice (green). Left
panels, the fraction of neurons that showed significant modulations in their activity
according to each variable during a 200-ms sliding window used for a multiple linear
regression model. Right panels, coefficient of partial determination (CPD) averaged across
the population of DLPFC neurons estimated for each variable in the same regression model
(59).
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