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Abstract
An understanding of sensory and motor processing will require elucidation of the mechanisms by
which the brain tells time. Open questions relate to whether timing relies on dedicated or intrinsic
mechanisms and whether distinct mechanisms underlie timing across scales and modalities.
Although experimental and theoretical studies support the notion that neural circuits are
intrinsically capable of sensory timing on short scales, few general models of motor timing have
been proposed. For one class of models, population clocks, it is proposed that time is encoded in
the time-varying patterns of activity of a population of neurons. We argue that population clocks
emerge from the internal dynamics of recurrently connected networks, are biologically realistic
and account for many aspects of motor timing.

The problem of time
The fact that people can communicate using a purely temporal code - as occurs when two
individuals are receiving and sending messages in Morse code - is one of many pieces of
evidence that the nervous system has evolved sophisticated mechanisms to tell time and
process temporal information. Indeed, the sheer diversity of time scales and computational
problems that rely on temporal processing suggests that multiple mechanisms are in place to
tell time. The neural bases of timing have been the subject of a number of recent reviews [1–
6] and one critical question addressed in these reviews is whether timing relies on dedicated
(specialized) neural mechanisms or on an intrinsic and general ability of networks of
neurons (Box 1). An equally important and related unanswered question is whether sensory
and motor forms of timing share mechanisms and circuits. For example, does the
discrimination of a 400- or 500-ms tone rely on the same neural circuitry as that required to
generate a 400- or 500-ms depression of a piano key?

Box 1

Dedicated versus intrinsic neural mechanisms of timing

Central to the issue of the neural basis of timing and temporal processing is the question
of whether the brain uses dedicated or intrinsic neural mechanisms to tell time [3]. This
distinction in many ways revolves around whether there are ‘clocks’ in the brain, that is,
whether there are specialized systems that were ‘designed’ to tell time and are
exclusively devoted to the problem of timing, or whether timing is a general and intrinsic
ability of neurons and neural circuits. In this view the same circuits responsible for
timing can process other aspects of sensory stimuli simultaneously in a multiplex fashion.
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The classic internal clock model, composed of a pacemaker and accumulator, is an
instantiation of a dedicated and centralized mechanism of timing [74,75]. By contrast, an
example of an intrinsic model is a state-dependent network; in this class of models,
sensory timing emerges from the interaction of the time-varying internal state of neural
networks with incoming stimuli [13,14]. Although the notion that subsecond timing is
performed locally has recently received experimental support [10–12,76], there is still
little direct evidence of whether the brain relies on dedicated or intrinsic mechanisms.

Here we focus on the problem of motor timing and, although the issue of whether motor and
sensory timing rely on the same circuitry remains open [7–12], we take the position that they
generally rely on nonoverlapping networks. Specifically, we argue that motor timing relies
on the internal dynamics that arise from the ability of recurrent neural networks to generate
self-sustained, complex, time-varying patterns of neural activity, whereas, as previously
proposed, sensory timing depends on the interaction between incoming stimuli and time-
dependent changes in the internal state of recurrent networks [13,14]. A key distinction
between models is the regime of recurrent networks. Motor timing would rely on regimes
with strong internal connections capable of self-sustained activity, whereas sensory timing
depends on with weak connections regimes, which do not support self-perpetuating
dynamics. One consequence of these differences is that the circuits involved in motor timing
can encompass longer time scales of many seconds.

Motor timing
Motor control, from catching a ball to playing the piano, requires the production of complex
spatiotemporal patterns of muscle activity. The spatial dimension refers to which muscle
groups are activated, and the temporal dimension to the timing of activity in relation to other
muscle groups or to external sensory stimuli. Most motor tasks, including speech production
and playing a musical instrument, require carefully orchestrated movements timed on the
order of tens of milliseconds to a few seconds. In the following discussion we focus on
motor problems that explicitly require timing, as opposed to the production of any sequence
of movements, such as touching different points on a computer screen (which should not be
taken to imply that we view the mechanisms as different).

Localization of motor timing
Many different neural structures are known to contribute to motor control. Most movements
require a precise temporal structure, so it is not surprising that many of these areas have also
been implicated in motor timing. One area known to be important for motor coordination,
the cerebellum, was one of the first structures hypothesized to contribute to timing [15] and
decades of research have provided compelling evidence that the cerebellum is critical to
some forms of motor timing. For example, human studies have revealed that patients with
cerebellar lesions exhibit a range of general motor coordination deficits [16,17]. In addition,
this patient population has impairments in pure motor timing tasks, including the precision
(standard deviation) of finger tapping ([18,19], but see [20]). More directly, animal studies
have established that the appropriate timing of conditioned eyeblink responses, which are
learned as a function of the conditioned stimulus–unconditioned stimulus interval, are
abolished by localized cerebellar lesions [21,22].

Other areas also play an important role in timing, particularly in the timing of complex
movements associated with recently learned motor tasks. Numerous studies indicate that the
basal ganglia are involved in motor timing. Such a role has been inferred in part from
pharmacological and Parkinson's disease studies that point to alteration in motor timing on a
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scale of seconds [23–25]. In addition, imaging studies have revealed changes in activity in
the basal ganglia during motor production tasks [5,26–28].

Different neocortical areas have also been implicated in motor timing. Imaging studies have
revealed a large, and as yet not agreed on, network of cortical areas that are activated during
implicit and explicit timing tasks [5,26]. In addition, electrophysiological studies have
revealed time-sensitive neuronal responses during motor timing tasks in many different
cortical areas [29–32]. But converging evidence supports the role of pre- and supplementary
motor areas [30,33], which are also known to contribute to sequence generation [34]. In
subsequent sections, we argue that many aspects of motor timing can be addressed by
models based on the internal dynamics of excitatory recurrent networks characteristic of
neocortical circuits; for this reason, our discussion focuses primarily on timing in neocortical
areas.

Models of timing
Timing has long been incorporated into abstract models of motor control [35]. However,
relatively few biologically realistic neuron-based models of motor timing have been
proposed. The internal clock model (Glossary), for instance, assumes the presence of a
pacemaker and accumulator in the brain; however, evidence on the location of the
pacemaker or nature of the accumulator has been elusive after several decades of research.
Other models of motor control and sequence generation either have simply assumed that
there is a population of neurons that fires selectively at different points in time, or have
limited their focus to sequence generation [36–38].

Multiple oscillator models
Some models are based on the hypothesis that timing arises from a population of elements
oscillating at different frequencies [39,40]. These multiple-oscillator models do not require
integration or counting of pulses in any of the oscillators, but rely on detecting specific beats
or synchronous patterns among the population of oscillators. This detection process can be
performed by readout neurons that detect the coincident activity of a subset of oscillators
corresponding to a specific point in time.

Labeled-line models
Other biologically inspired models have proposed that motor timing might rely on an array
of neuronal elements that exhibit a spectrum of different time constants of some neuronal or
synaptic property, implementing what is commonly referred to as a labeled line [37,41].
Biologically plausible implementations of such spectral, or delay line, models have been
proposed, including the time constants of neurotransmitter receptors [42], the time constant
of slow membrane conductances [43,44] and the decay time of inhibitory postsynaptic
potentials [45,46]. In these models all elements share a common implementation, but at least
one of the variables is set to a different value, which endows each unit with the ability to
respond selectively to a different interval. In specialized domains, such as the auditory
system of the bat, there is evidence that the duration of inhibitory postsynaptic potentials
contributes to the detection of temporal windows of <50 ms. However, it seems unlikely that
such mechanisms can be generalized to complex forms of temporal processing that require
discrimination of the patterns generated by consecutive intervals and there is little evidence
that they are involved in motor timing.

Population clock models
A distinct class of neural-based models proposes that time is both generated and represented
in a population of essentially identical neurons [47]. Here timing emerges from the
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dynamics of the entire network and is encoded in the population vector of neurons that are
active at any specific point in time (Box 2). Critical to the notion of a population clock is
that the activity of neurons in the network is time-varying and that output units can be
trained to recognize specific patterns of activity within the population clock network and
thus serve as a readout of time. Note that as with multiple oscillator or labeled-line models,
time can ultimately be read by a single output neuron; importantly, however, timing per se
(the clock) is an emergent property of the network; in other words, it relies on the interaction
between many units, and the time scale over which a network can time far exceeds the
longest time constant of the individual elements.

Box 2

Population clocks

For a population clock it is assumed that a group of neurons exhibit time-varying activity
and that each point in time is coded by a unique pattern of activity in the network [47–
49]. Consider a group of three neurons (N1–N3) that in response to a start signal (t = 0)
reliably produce a specific pattern of firing (represented as the number of spikes in a time
bin, Figure I). In this example, each time step can be identified by a unique combination
of the number of spikes in each cell: bin t1 has the spike signature [0,3,1], whereas bin t3
has the signature [3,0,3]. Time can be read by output units that receive synapses from all
the neurons in the population clock network if the synaptic weights are adjusted
appropriately. For example, to generate a motor response at time bin 3, the synapses onto
the output neuron from N1 and N3 should be fairly strong, because both these neurons are
strongly active at this time bin and not at the others (note that the synapses cannot be too
strong because then the output would fire at other time points as well). In a network in
which thousands of neurons fire in a time-varying manner, it is easy to establish a
population code for time. A simple instantiation of a population clock consists of a chain
of neural activity in a population of neurons. In this case, each point in time would be
represented by the activity of a single or a small population of neurons [52,53,77,78].
This sparse code (which is essentially a labeled line) for time has been observed
experimentally [79]

Figure I.
Reading a population clock.

The critical challenge to any population clock model is how a dynamic population of active
neurons would be generated. In principle, any recurrent neural network (Glossary) can
produce time-varying activity, which can be thought of as a neural trajectory (Box 3).
Assuming that a network is in the appropriate regime, a given population of active neurons
A could activate population B and so on, leading to the pattern A→B→C→…, in which
each letter corresponds to a distinct but possibly overlapping population of neurons. The
second challenge to population clock models is that the trajectory must be able to be elicited
in a robust and reproducible manner. We address these two issues below and show that the
dynamics of a recurrently connected neural network can subserve a population clock in
neocortical circuits.
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Box 3

Neural trajectory

A complex and time-varying pattern of activity in a population of neurons can be thought
of as a neural trajectory in neural space. In a network with three neurons, all possible
patterns of activity can be represented in three-dimensional space, where each axis
corresponds to the instantaneous firing rate of each neuron (or the presence or absence of
a spike at each point in time). In a network composed of 1500 neurons, the trajectory
takes place in a 1500-dimensional space that can nevertheless be visualized using
dimension reduction methods. Figure I illustrates the simulated activity of 10 units from
the network shown in Figure 1. In this simulation the activity of each unit is bounded
between −1 and 1. The activity of the entire network can be visualized as a 3D neural
trajectory by plotting the first three components of a principal component (PC) analysis
on the activity of the entire network. Note that in the neural trajectory time is represented
as a color gradient. Thus, the rate of color change provides information about the speed
of the trajectory or the rate of change of the firing pattern. The same point in time could
be represented by many nearby points in state space, and the output or downstream
neurons that would fire with the network is somewhere within this cloud of points. The
effect of both the input pulse and the output pulse (fed back) on the network activity is
evident as large excursions in PC space.

Figure I.
Low-dimensional representation of a high-dimensional neural trajectory. Left: activity of
10 sample units in a network of 1500 units. Right: Plot of the first three components of a
Principal Component analysis on the activity of the whole network.

Dynamics in recurrent networks
The first population clock model was proposed by Michael Mauk in the context of the
cerebellum [48–50]. In his model, a continuously changing population of granule cells
encodes time, and specific time points are read by Purkinje cells that detect distinct patterns
of granule cell activity. It is proposed that the evolving trajectory of granule cells arises from
the interaction between a tonic input into the cerebellum and the internal state defined by the
granule and Golgi cells. Granule cells excite, and are inhibited by, Golgi cells, thus creating
a negative feedback loop that can result in a dynamic pattern of granule cell activity and
implement a population clock. Realistic large-scale simulations based on spiking neurons
have revealed that it accounts for many of the experimental observations on timing of
eyeblink conditioning [50,51].
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The cerebellar circuitry is unique for its absence of recurrent excitatory activity.
Consequently, the cerebellum cannot sustain a self-maintaining and dynamic pattern of
activity in the absence of an external input. By contrast, neocortical networks are
characterized by robust excitatory connections capable of sustaining internal dynamics.

Critical to the dynamics of recurrent neural networks, and whether they support self-
maintaining activity, is the average strength of the recurrent synaptic weights. It is evident
that if the internal weights are on average very weak, there is little coupling between the
units and in response to a brief input (or start signal) network activity will quickly fade away
(this is generally the regime a state-dependent network model operates in for sensory
timing). By contrast, if the recurrent weights are strong, it is easy to imagine that in response
to a brief input the network could potentially enter a self-maintaining activity regime (which
could be steady state, periodic or non-periodic in nature). Thus, the weights within the
recurrent network are critical to the behavior of the circuits. Yet setting these weights in
theoretical models has proven challenging because of the highly nonlinear nature of the
internal dynamics. It has recently been shown that biologically plausible learning rules
facilitate the development of spatiotemporal patterns that can be used for motor timing,
although the patterns are simple and limited in time scale [52,53].

It seems likely that the brain harnesses the computational potential of recurrent networks by
using the complex dynamic regimes that are ideally suited to generate population clocks.
However, these regimes are precisely those that lead to chaotic dynamics [54]. In a system
with chaotic activity, there is a critical dependence on the initial conditions and noise: tiny
perturbations to the system will make the trajectory of a system diverge exponentially in
time. It has been shown that feedback is a powerful tool for controlling the chaotic dynamics
of nonlinear systems [55,56] and advances have provided insights into how recurrent
networks can both generate complex patterns -that could be used for a population clock –
and not be dominated by chaos. In the context of artificial networks, Jaeger and Haas [57]
demonstrated that carefully controlled feedback can be used to generate complex yet
reproducible patterns. Sussillo and Abbott [58] recently extended this approach and
demonstrated how it can be used for networks that are spontaneously active (strong internal
connections). The recurrent weights in these networks are set at random (with specific
distributions), avoiding the need to carefully set them. Pivotal, however, are the weights of
the recurrent network onto the output unit, because they define the output and feedback (if
present). Different supervised learning rules have been used to effectively adjust these
weights, and using both firing-rate and spiking models it has been shown that recurrent
networks with feedback can generate time-varying outputs [57–60].

Recurrent networks with strong internal coupling, with or without feedback, are potentially
well suited for timing tasks. Consider a psychophysical task that requires a subject to press a
button 1 s after stimulus 1 and 2 s after stimulus 2. As shown in Figure 1, a recurrent
network can be trained to solve this task; in response to a brief input representing stimulus 1,
a well-timed response is generated with a delay of 1 s (the time constant of the elements in
this circuit was 10 ms, which, along with the size of the network, determines the upper limit
that can be timed [61]). Importantly, in response to a different input (stimulus 2) the same
network can be trained to generate a response at 2 s. Specifically, different input patterns
will set the network along different neural trajectories, and thus the same points in absolute
time can be encoded in different network states, depending on the task. An inherent strength
of this approach is that it provides a general and robust model of motor timing. As shown in
Figure 2, it is easy to use the same network to generate temporal patterns (multiple time
responses from the same output unit), each triggered by different inputs. Thus, the same
network can be used to generate multiple distinct temporal or spatiotemporal output patterns
[58].

Buonomano and Laje Page 6

Trends Cogn Sci. Author manuscript; available in PMC 2011 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Neural correlates of timing
In vivo electrophysiology studies have revealed neural correlates of time in animals when
performing tasks involving implicit or explicit timing tasks. One robust observation is that
some neurons exhibit a more or less linear change in firing rate as time elapses (increasing
or decreasing). Such ramping activity has been observed in different parts of the brain,
including the prefrontal, parietal and motor areas [30,33,62,63]. Typically, graded firing
rates that peak at the time of an anticipated response are observed. Although activity in
ramping neurons correlates with time, these neurons might not be keeping track of absolute
time, but might reflect temporal expectation of or preparation for a motor response, which in
most tasks is linearly related to absolute time. In a study in which the delay before an
expected event was drawn from a bimodal distribution, the firing rate of ramping neurons
did not increase monotonically with time, but increased and decreased according to expected
likelihood [64]. Thus, ramping neurons might not be telling time, but using temporal
information from other areas to anticipate or react to events [5].

It has been proposed that the linear ramping of neuronal firing rate is a result of neuronal or
network mechanisms [65–67]. Importantly, the population clock model based on recurrent
networks with feedback can account for the experimentally observed ramping responses.
Specifically, the readout units of these networks can be trained to exhibit ramping behavior.
As shown in Figure 3, when the strength of the coupling within the recurrent network is
relatively weak (but still self-sustaining), the activities of neurons in the population clock
can themselves be positively or negatively ramping. On the other hand, with strong internal
coupling (rich internal dynamics), activity in the population clock is highly variable. In both
cases, however, the weights of synapses onto the readout unit can be set so that it fires in a
linear manner.

In addition to linearly ramping neurons, electrophysiological studies have revealed a rich
diversity of time-varying firing rate profiles, including neurons that fire at select time
intervals or in a complex aperiodic manner [31,68–70]. These observations are what would
be expected for a population clock. Indeed, some of these studies have shown that a linear
classifier (readout unit) can be used to decode time based on the profiles of the
experimentally recorded neurons, thus effectively implementing a population clock.

Concluding remarks
Population clock models propose that motor timing arises from the time-varying activity of a
population of neurons. We suggest that the dynamics required for a population clock arises
naturally in recurrent cortical networks as a result of the internally generated dynamics, but
many critical issues regarding the control and regimes of neural dynamics in these networks
remain to be resolved. Importantly, a given network can embark on different neural
trajectories depending on the task at hand; this provides a powerful mechanism to generate a
large number of timed motor patterns (Figures 1 and 2). Thus, in principle, different well-
timed sequences of key presses on a piano can be generated by triggering different sets of
inputs to the recurrent network and appropriately adjusting the weights from the recurrent
units to a small set of output units.

The population clock framework falls into the category of intrinsic models, and thus many
of its predictions require resolution of whether different forms of timing rely on distinct
circuits. Recent psychophysical experiments have suggested that sensory timing is local,
which indirectly supports the notion that sensory and motor timing are distinct [10–12], but
future research must further examine this issue. Population clocks predict that the spatial and
temporal components of motor patterns can be inextricably linked; once a spatiotemporal
motor pattern is learned, it could be difficult to transfer the learned temporal structure to a
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new spatial pattern (e.g. a different sequence of finger movements). This is because both the
spatial and temporal patterns are jointly encoded in the internal dynamics of the network
(although population clocks could be used to code for absolute time if different external
stimuli triggered a master neural trajectory). Whereas some psychophysical data are
consistent with this suggestion [71,72], it remains an unresolved issue [73]. Ultimately,
however, validation of the population clock model will require electrophysiological
confirmation of the predicted complex neural trajectories and demonstration that
modification of these trajectories alters behavioral timing.
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Glossary

Dedicated models
of timing

models in which timing relies on specialized and modular neural
mechanisms that are primarily dedicated to temporal processing.
Man-made clocks are examples of dedicated timers, as is the
internal clock model of timing (Box 1).

Internal clock
model

one of the first models of timing. The pulses of a central oscillator
or a pacemaker are integrated by an accumulator, thus providing an
explicit and linear metric of time (Box 1).

Intrinsic models of
timing

models in which timing is a general and inherent ability of neural
networks. In these models the same neural circuit processes
temporal information and other feature dimensions of stimuli. An
example of an intrinsic mechanism for timing is the state-
dependent network model (Box 1).

Labeled-line model phenomenological model in which it is assumed that different cells
represent different time periods or delays. Labeled lines are often
used in models that require timing but that are agnostic as to the
neural mechanisms of timing.

Motor timing production of timed motor actions or responses, ranging from a
simple timed motor response to complex spatiotemporal patterns of
muscle activation. Examples of motor timing include self-paced
finger tapping, interval reproduction, sending a message in Morse
code and playing the piano.

Population clock
model

models in which a given point in time is represented by a unique
spatial pattern of activity within a neural network. Distinct patterns
of activity in the network unfold over time (Box 2).

Recurrently
connected neural
networks

networks in which the connections can form a loop; thus, activity
in a single unit could indirectly feedback onto itself. Most
neocortical circuits exhibit robust recurrent connectivity and many
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theoretical models, including state-dependent networks, rely on
recurrent connectivity. Recurrent networks stand in contrast to
feed-forward models such as a standard multilayer perceptron.

Sensory timing processing or discrimination of stimuli based on temporal features.
A typical sensory timing task is discrimination of the duration or
interval of auditory or visual stimuli.

Spatiotemporal
pattern

pattern of neural activation that unfolds both in time and space,
where space refers to different neurons in a circuit.

State-dependent
network model

model that proposes that cortical networks are inherently capable of
processing spatial and temporal information in the range of
hundreds of milliseconds as a result of state-dependent network
properties imposed by ongoing activity (the active state) and time-
dependent cellular and synaptic properties (the hidden state).
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Figure 1.
Simple interval timing with a population clock model. (a) The network architecture is
composed of a population of 1500 firing-rate units (time constant 10 ms), all of which are
connected to a single output unit that also provides feedback to the network. Each target
output pattern (blue traces in panels b and c) is triggered by a combination of the three
inputs to the network. Tonic input 3 sets the network to a ready state (not shown) and then
pulses at inputs 1 or 2 are used to elicit either of two different trained output patterns.
Training consists of adjusting the weights from the recurrent units onto the output unit (red
arrows). Network architecture and the learning rule used to train the weights onto the output
units were similar to those reported by Sussillo and Abbott [58]. The network connectivity
matrix was sparse with probability of connection p = 0.1 and synaptic strength factor g of
1.35. A noise ‘current’ from a uniform distribution with a maximal amplitude of 0.001 was
present in all the units. It should be stressed that although these simulations are biologically
realistic in the sense that they rely on the interaction of neuron-like units, future work must
use spiking units with realistic synaptic dynamics. In addition, the precise role of feedback
when using nonperiodic targets must be examined; indeed, similar results can be obtained in
the absence of feedback. (b) The upper panel shows the activity of the output unit trained to
generate a delayed pulse-like response at 1 s to input 1 at time zero (traces from three
different trials are overlaid). The lower panel shows a sample of the activity of the units in
the recurrent network. The activity level of the recurrent units is color-coded and bounded
between −1 (blue) and 1 (red). Input and output activity is normalized to the corresponding
maximum value. (c) The same network shown in panel b generates an output pulse at 2 s in
response to a pulse in input 2 at time zero (three traces overlaid).
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Figure 2.
Production of two different complex temporal patterns. The same type of network as shown
in Figure 1 was trained to produce two different temporal patterns, each consisting of three
pulses. When pattern 1 is elicited, the output unit pulses at 600, 1000 and 1800 ms, whereas
in pattern 2 the output pulses at 800, 1300 and 1800 ms. Pattern 1(2) is triggered by input
1(2). Three traces for each input are overlaid. Input and output are normalized to the
corresponding maximum value. The synaptic strength factor was 1.4.
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Figure 3.
Ramping output. Dynamics or the regime in the network is governed in part by the synaptic
strength factor g that scales the weights in the recurrent network. A value of g < 1 leads to
decaying activity, whereas values greater than 1 make the network increasingly chaotic. (a)
In this simulation, the internal synaptic strength factor was at the low end of the g>1 regime
(g = 1.25) and the output unit was trained to ramp linearly from 0 to 1000 ms. In this regime,
many of the neurons in the recurrent network exhibit approximately linear (graded color
transitions) responses during the trained interval (raster plot shows selected units grouped
according to whether they exhibit a positive or negative slope; average of ramping up and
ramping down units shown below). Input and output are normalized to the corresponding
maximum value. (b) When the internal synaptic coupling is increased (g = 1.5) the internal
dynamics of the network becomes more complex and most recurrent units do not ramp in a
linear fashion; however, the output unit can still be trained to exhibit a linear ramp. The
weights of the output to recurrent units were bounded between −0.5 and 0.5 in these
simulations.
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