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Abstract
In contrast to the systemic vasculature, where hypoxia causes vasodilation, pulmonary arteries
constrict in response to hypoxia. The mechanisms underlying this unique response have been the
subject of investigation for over 50 years, and still remain a topic of great debate. Over the last 20
years, there has emerged a general consensus that both increases in intracellular calcium
concentration and changes in reactive oxygen species (ROS) generation play key roles in the
pulmonary vascular response to hypoxia. Controversy exists, however, regarding whether ROS
increase or decrease during hypoxia, the source of ROS, and the mechanisms by which changes in
ROS might impact intracellular calcium, and vice versa. This review will discuss the mechanisms
regulating [Ca2+]i and ROS in PASMCs, and the interaction between ROS and Ca2+ signaling
during exposure to acute hypoxia.

1. Introduction
A unique aspect of the pulmonary circulation is the pressor response to hypoxia. While the
systemic circulation dilates in response to decreased oxygen (O2) concentrations in order to
increase blood flow and O2 delivery to tissues, alveolar hypoxia rapidly increases pulmonary
vascular resistance beginning within 1–2 minutes after a drop in O2 levels. Vasoconstriction
is maintained for the duration of the hypoxic exposure and rapidly reverses with
reoxygenation. This mechanism is thought to divert blood flow from regions of the lung
where ventilation is poor in an effort to maintain arterial O2 tension. However,
complications arise when alveolar hypoxia is global and prolonged, as can occur with
residence at high altitude or with many chronic lung diseases, resulting in the development
of pulmonary hypertension.

The exact mechanism underlying the generation of hypoxia-induced increases in pulmonary
vascular tone is unknown. Over the past 50 years, numerous studies have sought to
determine whether the hypoxic response is localized to pulmonary arterial smooth muscle
cells (PASMCs), or whether signals from the circulation or neighboring cells, (i.e, the
endothelium) are required. It is now generally well accepted that while the endothelium can
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influence the magnitude of the response, the PASMCs themselves sense and respond to the
hypoxic stimulus.

The smooth muscle cells surrounding the pulmonary arteries provide structural integrity for
the vascular wall and are vital for precise regulation of vessel tone, pulmonary arterial
pressure and pulmonary vascular resistance. The control of PASMC function is complex,
and it has become increasing well recognized that increases in intracellular calcium
concentration ([Ca2+]i) and changes in reactive oxygen species (ROS) generation play key
roles in hypoxic pulmonary vasoconstriction (HPV). This review will focus on the
interaction between ROS and Ca2+ signaling in PASMCs during exposure to acute hypoxia.

2. Ca2+ signaling in PASMCs
2.1. Mechanisms regulating [Ca2+]i in PASMCs

[Ca2+]i is one of the most important regulators of pulmonary vascular function. In PASMCs,
changes in [Ca2+]i modulate contraction(Buckley et al., 1995; Busse and Mulsch, 1990;
Emori et al., 1989; Kohno et al., 1992; Martin and Michaelis, 1990; Whorton et al., 1984),
cell proliferation and growth by facilitating progression through the cell cycle(Mogami and
Kojima, 1993; Rodman et al., 2005; Shukla et al., 2005) and the activation of genes via
regulation of Ca2+-sensitive transcription factors(Altura et al., 2003; Ginty et al., 1991;
Hardingham et al., 1998; Pribnow et al., 1992; Rothman et al., 1994). That Ca2+ signaling
plays a crucial role in a wide array of cell functions underscores the importance of
understanding the mechanisms regulating Ca2+ homeostasis under both physiologic and
pathophysiologic conditions.

PASMCs express several Ca2+ influx/efflux pathways that may contribute to Ca2+ handling
and regulation (Figure 1). Plasmalemmal Ca2+ channels conduct extracellular Ca2+ into the
cells, while receptors on the sarcoplasmic/endoplasmic reticulum mediate Ca2+ release from
internal stores into the cytoplasm. Mechanisms for removing cytoplasmic Ca2+ from the cell
include the plasma membrane Ca2+-ATPase (PMCA) and Na+/Ca2+ exchange (NCX), the
activities of which help to maintain low basal [Ca2+]i.

PASMCs are excitable cells, containing both L-type(Amenta et al., 1998; Fan et al., 2002;
Golovina et al., 2001; Resnik et al., 2006; Ricci et al., 2000; Wang et al., 2005; Yuan, 1995)
and T-Type(Rodman et al., 2005) voltage-gated Ca2+ channels (VGCC). As suggested by
their name, VGCC activity is controlled in large part by membrane potential (Em). L-type, or
long-lasting, Ca2+ channels exhibit sensitivity to dihydropyridines and are activated by large
depolarizations at potentials between −20 and +20 mV. At the normal resting Em, which in
PASMCs appears to be controlled primarily by voltage-gated K+ (KV) channels, little
activation of these channels occurs, resulting in low basal PASMC [Ca2+]i and
tone(Shimoda et al., 2000). However, when Kv channels are inhibited, the consequent
depolarization activates VGCCs and increases [Ca2+]i(Yuan, 1995). T-type, or transient,
Ca2+ channels have also been identified in PASMCs(Muramatsu et al., 1997; Rodman et al.,
2005). T-type channels require small depolarizations in order to activate, are only activated
from very negative holding potentials, conduct inward currents at membrane potentials
between −70 and 40 mV and typically inactivate rapidly at physiological membrane
potentials(Kuga et al., 1990; Mishra and Hermsmeyer, 1994; Wu et al., 2003).

Numerous studies have demonstrated that Ca2+ influx into PASMCs could occur via Ca2+

permeable channels other than VGCCs. In particular, nonselective cation channels (NSCCs)
provide an important Ca2+ entry pathway. Based on their proposed modes of activation,
these influx pathways were separated into 2 main categories: receptor-operated Ca2+

channels (ROCC), which are activated by ligand binding to membrane receptors, and store-
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operated Ca2+ channels (SOCCs), which are activated by depletion of intracellular
stores(Putney, 1986, 1990). While the activity of VGCCs is primarily driven by
depolarization, the activation of NSCCs is relatively voltage-independent. Several labs have
demonstrated that Ca2+ influx through NSCCs occurs in PASMCs(Golovina et al., 2001;
Snetkov et al., 2003; Wang et al., 2004a), and contributes to PASMC contraction and
growth(Golovina et al., 2001; McDaniel et al., 2001; Sweeney et al., 2002; Weigand et al.,
2006; Yu et al., 2003); however, these channels do not appear to be active under basal
conditions(Lin et al., 2004; Wang et al., 2006; Wang et al., 2004b). The exact molecular
identity of the proteins encoding Ca2+-permeable NSCCs remains unclear, although most
evidence suggests that these channels may be composed of mammalian homologs of
transient receptor potential (TRP) proteins, perhaps in combination with the recently
identified ORAI1 and stromal interaction molecule (STIM) proteins(Brough et al., 2001;
Cioffi et al., 2003; Lin et al., 2004; Lu et al., 2009; Lu et al., 2008; Ng and Gurney, 2001;
Sweeney et al., 2002; Wang et al., 2004a; Wang et al., 2006; Yang et al., 2006; Yu et al.,
2003).

There are many sites within PASMCs that can store Ca2+, including mitochondria,
lysosomes, and the sarcoplasmic (SR). Of these, the SR is the major contributor in
regulating cytosolic [Ca2+](Marin et al., 1999; Pozzan et al., 1994) through release of Ca2+

from channels on the SR membrane or uptake of Ca2+ into the stores via the sarcoplasmic/
endoplasmic Ca2+-ATPase (SERCA) pumps(Boittin et al., 1999; Laporte et al., 2004;
Wellman and Nelson, 2003). The channels mediating Ca2+ release from intracellular stores
can be divided into two categories: ryanodine receptors (RyR), which can be blocked by
ryanodine and are activated by caffeine, and inositol triphosphate (IP3) receptors (IP3R),
which can be activated by IP3 following agonist stimulation. RyR also contain Ca2+ binding
sites, leading to Ca2+-induced Ca2+ release, wgich can be triggered by an increase in
cytosolic [Ca2+] due to either IP3-induced release or Ca2+ influx from extracellular
sources(Zucchi and Ronca-Testoni, 1997) . Similarly, activation of IP3R by Ca2+ is
facilitated by binding of IP3. Three subtypes of RyR have been identified in PASMCs(Yang
et al., 2005; Zhang et al., 2003; Zheng et al., 2005), along with three subtypes of IP3
receptors(Zheng et al., 2004). Whether RyRs and IP3Rs access Ca2+ stores that are separate
and distinct(Flynn et al., 2001) or are the same pools(Pacaud and Loirand, 1995) remains in
debate, and may depend on vascular bed(Janiak et al., 2001) or whether cells are freshly
isolated or cultured(Ng et al., 2008).

2.2. Mechanisms that control [Ca2+]i in response to hypoxia
The main site of vasoconstriction in response to hypoxia appears to be the small diameter,
resistance arteries, since these vessels exhibit a robust contraction in response to reduced O2
tensions whereas conduit arteries exhibit relaxation or minimal contraction(Dawson et al.,
1978; Fishman, 1976; Madden et al., 1985; Nagasaka et al., 1984; Staub, 1985). In PASMCs
isolated from resistance arteries, abundant data has been generated in a variety of species
demonstrating that acute exposure to hypoxia (minutes to a few hours) is associated with an
increase in [Ca2+]i that is largely dependent on Ca2+ entry from the extracellular
compartment(Cornfield et al., 1994; Hong et al., 2004; Kang et al., 2002; Salvaterra and
Goldman, 1993; Sham et al., 2000; Urena et al., 1996; Vadula et al., 1993; Wang et al.,
2005). Consistent with a role for Ca2+ influx, perfusion with Ca2+-free solution reduced
HPV to a small transient constriction or abolished it altogether(Dipp et al., 2001; Farrukh
and Michael, 1992; Jin et al., 1992; Liu et al., 2001; Robertson et al., 2000; Weigand et al.,
2005).

Pharmacologic data indicates that L-type Ca2+ channels contribute significantly to the
increase in PASMC [Ca2+]i induced by acute reductions in O2 tension(Bakhramov et al.,
1998; Cornfield et al., 1994; Urena et al., 1996; Wang et al., 2005; Yuan, 1995) and to
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HPV(McMurtry et al., 1976; Redding et al., 1984; Simonneau et al., 1981; Stanbrook et al.,
1984; Weigand et al., 2005). However, despite a strong case for VGCC being a main
contributor to the Ca2+ influx due to hypoxia, recent studies indicate the presence of VGCC
antagonists reduced, but did not abolish, hypoxia-induced increases in [Ca2+]i and Ca2+

entry in PASMCs(Ng et al., 2005; Wang et al., 2005). While experiments examining the
effect of specific inhibitors of T-type Ca2+ channels, such as mibefradil, will need to be
performed to definitively determine their role in the maintenance of [Ca2+]i during hypoxia,
mounting evidence indicates that hypoxia-induced increases in [Ca2+]i can be abolished by
antagonists of NSCCs(Ng et al., 2005; Wang et al., 2005; Weissmann et al., 2006). Since
release from intracellular stores appears to be a component of the hypoxia-induced increase
in [Ca2+]i(Dipp et al., 2001; Jabr et al., 1997; Kang et al., 2002; Zheng et al., 2004; Zheng et
al., 2005), a likely scenario is that Ca2+ entry via NSCCs is triggered by store-depletion.
Store release in PASMCs in response to hypoxia appears to occur, at least in part, via
activation of RyRs(Dipp et al., 2001; Zheng et al., 2005). Blockade of RyRs or depletion of
the SR with thapsigargin or cyclopiazonic acid inhibited hypoxia-induced increases in
PASMCs [Ca2+]i(Vadula et al., 1993; Zheng et al., 2005) and HPV(Dipp et al., 2001; Du et
al., 2005; Leach et al., 1994; Liu et al., 2001; Morio and McMurtry, 2002; Robertson et al.,
2000; Zheng et al., 2005). These results indicate that hypoxia induces an initial increase in
[Ca2+]i due to Ca2+ release from intracellular stores, with a sustained increase in [Ca2+]i due
to Ca2+ influx, likely through both NSCCs and VGCCs. Interestingly, blockade of NSCCs
completely prevents the increase in [Ca2+]i induced by hypoxia, whereas blockade of
VGCCs only partially inhibited the response(Wang et al., 2005), suggesting the possibility
that activation of NSCCs not only leads to Ca2+ influx, but also may provide a depolarizing
stimulus that can subsequently contribute to the activation of VGCCs.

3. ROS signaling in PASMCs
3.1. Types of ROS and mechanisms of ROS production

It is now recognized that another major component of PASMC signaling is the generation of
ROS; O2-derived small molecules, including the O2 radicals superoxide and hydroxyl, and
nonradicals that are either oxidizing agents or are easily converted into radicals, such as
ozone (O3), singlet O2, and hydrogen peroxide (H2O2). ROS avidly interact with a variety of
molecules and have been identified as major contributors to cellular damage, aging and host
defense. It has also become clear that ROS play an important role in reversible regulatory
processes. For example, H2O2 influences pulmonary vasomotor tone(Jin and Rhoades, 1997;
Rhoades et al., 1990) and modifies the function of various proteins including transcription
factors, kinases, and phosphatases(Droge, 2002; Franklin et al., 2006; Ichiki et al., 2003; Jin
et al., 2000; McCubrey et al., 2006; Rao, 2000; Schmidt et al., 1995).

ROS are produced from a cascade of reactions that starts with the production of superoxide,
generated by mitochondrial respiration, xanthine oxidase, uncoupled NO synthase, or via
reduced nicotinamide adenine dinucleotide phosphate (NAD(P)H) oxidase (Nox).
Superoxide is highly reactive and rapidly dismutates to H2O2, either spontaneously or
catalyzed by superoxide dismutase. Superoxide can also react with nitric oxide to form
peroxynitrite, or the iron-catalyzed Fenton reaction leading to the generation of hydroxyl
radicals. Of the mechanisms known to produce ROS, evidence suggests that during hypoxia,
the mitochondria and Nox appear to be the predominate sources in PASMCs.

3.1.a. Mitochondria—In mitochondria, a series of redox reactions occurs during
respiration along which electrons are transferred from a donor molecule (NADH or QH2) to
O2, concluding at complex IV (cytochrome oxidase), where molecular O2 is reduced to
water (Figure 2). Formation of superoxide occurs upstream of complex IV, primarily by
auto-oxidation of flavins in complex I, where superoxide can enter the matrix, and at
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complex III where superoxide is formed via the Q-cycle. From complex I, two electrons are
carried by ubiquinol (QH2) to complex III (coenzyme Q: cytochrome c-oxidoreductase).
Another pair of electrons is donated to ubiquinone (Q) at complex II, and also carried by
ubiquinol to complex III, where one electron is transferred at the Qo site to the Rieske iron–
sulphur protein (Fe-S) and subsequently cytochrome c (Cyt c), while the remaining electron
is donated to cytochrome b (bl and bh), followed by transfer to ubiquinone at the Qo site.
Cytochrome c then donates the electrons to molecular O2 in complex IV, producing water.
Electron leakage can occur at both the Qo and Qi sites of complex III, resulting in
production of superoxide that enters either the mitochondrial intermembrane space or the
matrix, respectively(Boveris, 1977;Turrens, 2003;Turrens et al., 1985). Once in the matrix,
superoxide is converted first to H2O2, by mitochondrial superoxide dismutase, and then to
water by glutathione peroxidase (Gpx1). In the inter-membrane space, superoxide can
undergo multiple fates; it can be degraded by CuZnSOD, can be scavenged by cytochrome c
or can enter the cytosol via voltage-dependent anion channels(Han et al., 2003;Waypa et al.,
2001). The relative contribution of complex I and III to superoxide generation appears to be
cell and/or tissue specific and dependent on the respiratory status. In PASMCs, rotenone, a
complex I inhibitor, and myxothiazol and antimycin A, which prevent production of radicals
by inhibiting complex III at the pre- and post-ubisemiquinone sites, respectively, decreased
basal ROS production(Archer et al., 1993;Michelakis et al., 2002b;Paky et al., 1993;Waypa
et al., 2001), suggesting that constitutive superoxide generation is occurring at both sites.

3.1.b. NADPH oxidase—A second important source of ROS is via Nox. Originally
described in phagocytes, five Nox isoforms (Nox1-5) have now been identified. Nox
produces superoxide or H2O2 via electron transfer from cytosolic NADPH to FAD, and
subsequently to molecular O2 to form superoxide, which is then dismutated to H2O2. In
vascular smooth muscle, Nox 1, 2, 4 and 5 are expressed and contribute to generation of
ROS, although the exact distribution of isoforms varies with vascular bed and
species(Fulton, 2009; Lassegue and Griendling, 2010). Nox1 and Nox2, or gp91 phox, are
membrane bound and require the assembly of additional membrane associated (p22phox) or
cytosolic (Rac 1 and 2, p47phox, and p67phox) subunits for activation(Lambeth et al., 2007)
(Table 1), and have been implicated in a variety of cardiovascular diseases(Lassegue and
Griendling, 2010). Nox4, also abundant in pulmonary vascular smooth muscle(Ismail et al.,
2009; Mittal et al., 2007; Rathore et al., 2008), differs from Nox1 and Nox2 in that it
exhibits constitutive activity, does not appear to require additional subunits other than
p22phox(Lassegue and Griendling, 2010) and appears to produce primarily H2O2 rather than
superoxide(Serrander et al., 2007a), although the mechanism by which this occurs is
unclear. In contrast to the other Nox isoforms, Nox5 is not expressed in rodents, does not
require p22phox or the cytosolic subunits and is the only isoform that is directly activated by
Ca2+ due to four canonical EF-hands in the N-terminus(Jagnandan et al., 2007; Serrander et
al., 2007b). In addition, the NADPH-binding domain of Nox5 contains a calmodulin binding
site(Tirone and Cox, 2007), and PKC-mediated phosphorylation of Ser/Thr residues in the
FAD-binding domain may increase Ca2+-sensitivity(Jagnandan et al., 2007).

3.2. ROS generation in response to hypoxia
Numerous investigators have demonstrated changes in ROS production in PASMCs during
hypoxia, suggesting that ROS may be key mediators in HPV; however, controversy exists
concerning whether ROS increase or decrease during hypoxia. Since O2 is the major
substrate for ROS formation and hyperoxia increased ROS generation(Brueckl et al., 2006;
Chandel and Budinger, 2007; Freeman and Crapo, 1981), it was reasonable to hypothesize
that, due to substrate limitation, hypoxia would decrease ROS. Indeed, several reports
indicated that this was the case, contending that either mitochondrial production of ROS was
impaired(Archer and Michelakis, 2002; Archer et al., 1993; Michelakis et al., 2002a), or that
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there was a decrease in ROS generation by microsomal NADH oxidoreductase(Mohazzab et
al., 1995; Mohazzab and Wolin, 1994a, b). Reports of hypoxia-induced decreases in ROS
production were countered, however, by numerous labs which consistently showed
increased ROS generation in response to hypoxia(Jernigan et al., 2004; Killilea et al., 2000;
Leach et al., 2001; Liu et al., 2003; Marshall et al., 1996; Paddenberg et al., 2003; Rathore et
al., 2006; Wang et al., 2007; Waypa et al., 2001; Waypa et al., 2006; Waypa and
Schumacker, 2002, 2005; Weissmann et al., 2003). The mechanism by which hypoxia might
induce an increase in mitochondrial ROS production remains unresolved; however, it has
been hypothesized that decreased interaction between O2 and protein or lipids at complex III
could prolong the lifetime of ubisemiquinone or that hypoxia might increase the access of
O2 to the semiquinone radical at complex III. In both cases, O2 levels cause alterations in the
lipid–protein structure such that electron transfer from ubisemiquinone to O2 increases,
despite decreased availability of oxygen.

The reasons underlying discrepant reports regarding the effects of hypoxia on ROS remain
incompletely understood. Some investigators have attempted to use pharmacological
inhibitors of mitochondrial-derived ROS to resolve the controversy, with varying results.
Most agree that rotenone blocks the hypoxia-induced changes in ROS, regardless of whether
the response was an increase(Rathore et al., 2006; Wang et al., 2007; Waypa et al., 2001;
Waypa et al., 2006; Waypa and Schumacker, 2002; Weissmann et al., 2003) or
decrease(Archer et al., 1993; Michelakis et al., 2002a). Myxothiazol also blocked the acute
hypoxic responses in PASMCs(Archer et al., 1993; Michelakis et al., 2002a; Wang et al.,
2007; Waypa et al., 2001; Waypa et al., 2006; Waypa and Schumacker, 2002; Weissmann et
al., 2003), although more distal electron transport chain inhibitors, such as antimycin-A, had
no effect. These data suggest that the mitochondrial subunits prior to the ubisemiquinone
site of complex III act to increase generation of ROS in PASMCs during hypoxia.

In addition to mitochondria, studies have also indicated a role for Nox mediated generation
of ROS during hypoxia. Acute hypoxia increased Nox activity and translocation of p47phox
to the plasma membrane in pulmonary arteries(Rathore et al., 2008). Consistent with these
findings, the putative Nox inhibitors, apocynin and diphenyleneiodonium, blocked the
hypoxic increase in ROS in PASMCs(Marshall et al., 1996; Rathore et al., 2008); however,
a caveat is that both of these inhibitors can have nonspecific effects, as
diphenyleneiodonium is a broad spectrum inhibitor of electron transporters(Bedard and
Krause, 2007) and apocynin is able to act as an antioxidant independent of its effects on
Nox(Heumuller et al., 2008). Nonetheless, if activation of Nox did occur in these studies, it
is likely this was secondary to hypoxic activation of PKC, since inhibition of PKCε blocked
the hypoxia-induced Nox activity and increase in ROS. Interestingly, rotenone and
myxothiazol both attenuated the hypoxia-induced activation of PKCε activity(Rathore et al.,
2006), suggesting a link between mitochondrial and Nox generated ROS.

To complement pharmacologic studies, several investigators have used genetic alterations to
further explore the role of mitochondrial proteins in the hypoxic ROS response.
Overexpression of mitochondrial catalase and Gpx1, which would be expected to augment
ROS scavenging, attenuated hypoxia-induced increases in ROS(Wang et al., 2007; Waypa et
al., 2006), whereas Gpx1 gene deletion to prevent ROS removal has the opposite
effect(Wang et al., 2007). Furthermore, in nonvascular cells, silencing subunits of the
mitochondrial electron transport chain reduced hypoxia-induced ROS signaling(Guzy et al.,
2005; Mansfield et al., 2005), suggesting that the mitochondria are a primary source for
elevating ROS levels. Interestingly, lungs from p47phox knockout mice increased ROS in
response to hypoxia, whereas a reduction in ROS was observed in wild-type mice,
suggesting that reduced production of extracellular ROS derived from Nox might mask an
increase in intracellular mitochondrial-derived ROS under some experimental
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conditions(Weissmann et al., 2006). It is also possible that within the cell, ROS generation is
a localized event and that compartmentalization of either ROS or the indicator could
produce differential results. With respect to the indicator, experiments using recently
developed ratiometric, redox-sensitive fluorescence resonance energy transfer (FRET)
probes indicated that hypoxia-induced an increase in ROS which was inhibited by catalase
and antioxidants(Waypa et al., 2006; Waypa et al., 2010). Consistent with the possibility of
compartmentalized ROS production, recent reports using indicators targeted to the
mitochondrial matrix, intermembrane space and cytoplasm show that ROS levels vary
within these compartments, with hypoxia increasing ROS in the cytosol and intermembrane
space but decreasing ROS in the mitochondrial matrix(Waypa et al., 2010). These results
suggest the possibility that the differences reported regarding the effects of hypoxia on ROS
formation in PASMCs could reflect a lack of differentiation between extracellular and
intracellular sources of ROS or measurements of intracellular ROS within different sub-
compartments of the cell. Overall, however, it would appear that the predominance of
evidence argues for increased cytosolic ROS during hypoxia, with a fall in ROS occurring
extracellularly and within the mitochondrial matrix.

4. Interplay between ROS and [Ca2+]i

4.1. ROS modulate [Ca2+]i
Substantial evidence has accumulated demonstrating that ROS can influence vascular
smooth muscle [Ca2+]i. With respect to hypoxia and PASMCs, in experiments where a
ratiometric ROS probe was used in conjunction with a FRET-based ratiometric Ca2+

sensitive probe, the increase ROS and [Ca2+]i appeared to occur virtually
simultaneously(Waypa et al., 2006). Moreover, catalase, antioxidants and pharmacological
inhibitors of the potential sources of ROS, including rotenone and myxothiazol, reduced or
prevented the hypoxia-induced elevation in [Ca2+]i in PASMC(Leach et al., 2001; Rathore
et al., 2006; Wang et al., 2007; Waypa et al., 2006). In contrast, antimycin A or cyanide,
which inhibits Complex IV, had no effect on or enhanced the [Ca2+]i response to
hypoxia(Leach et al., 2001; Rathore et al., 2006; Wang et al., 2007; Waypa et al., 2006;
Waypa and Schumacker, 2002). Consistent with these results, HPV was prevented in the
presence of rotenone or myxothiazol(Archer et al., 1993; Leach et al., 2001; Rounds and
McMurtry, 1981; Waypa et al., 2001; Weissmann et al., 2003), but not by cyanide(Archer et
al., 1993; Leach et al., 2001; Waypa et al., 2001; Weissmann et al., 2003).

In the case of studies where ROS was found to decrease during hypoxia, it has been
proposed that reduced ROS leads to inhibition of K+ channels and depolarization, with
subsequent activation of VGCCs and increased [Ca2+]i(Archer and Michelakis, 2002;
Archer et al., 2008; Archer et al., 1993; Michelakis et al., 2002a; Michelakis et al., 2002b;
Michelakis et al., 2004; Reeve et al., 1995). On the other hand, ROS have been shown to
induce Ca2+ release from ryanodine-sensitive stores(Lin et al., 2007; Pourmahram et al.,
2008; Suzuki et al., 1998) either via action on redox-sensitive cysteine thiols in RyRs(Eu et
al., 1999) or stimulation of RyRs via generation of the β-NAD+ metabolite, cyclic ADP-
ribose(Dipp and Evans, 2001; Evans and Dipp, 2002). Release of SR Ca2+ could then serve
to increase Ca2+ entry via store-dependent NSCCs(Wang et al., 2005) and/or activation of
VGCCs, secondary to inhibition of K+ channels and depolarization(Post et al., 1995).
Elevated H2O2 levels could also initiate an increase in [Ca2+]i through the activation of
phospholipase C(Gonzalez-Pacheco et al., 2002), resulting in the production of both IP3 and
diacylglycerol. While IP3 generation would lead to Ca2+ release from internal stores,
diacylglycerol could serve to activate NSCCs, resulting in Ca2+ influx, as well as activation
of VGCCs secondary to depolarization(Weissmann et al., 2006). Superoxide and
peroxynitrite have also been shown to inhibit SERCA in systemic vascular smooth
muscle(Grover et al., 2003; Suzuki and Ford, 1991), which would serve to elevate cytosolic
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[Ca2+] by decreasing Ca2+ uptake into the SR; however, whether this occurs in PASMCs has
not been examined.

4.2. [Ca2+]i influences ROS generation
While several studies provide evidence that ROS alter [Ca2+]i, as described in the preceding
section, several reports also indicate that changes in [Ca2+]i may impact ROS formation.
With respect to Nox isoforms, only Nox5 is directly Ca2+-sensitive by virtue of four
canonical N-terminal EF-hands(Fulton, 2009). Nox5 also contains a binding site for
calmodulin in the NADPH-binding domain and PKC-mediated phosphorylation of Ser/Thr
residues in the FAD-binding domain may increase the Ca2+-sensitivity of Nox5(Fulton,
2009). In contrast, [Ca2+]i may control the activity of other Nox isoforms by regulating the
cytosolic subunits. For example, under certain circumstances, Nox-dependent generation of
ROS requires serine phosphorylation of p47phox, which occurs in response to activation of
protein kinase C(Lassegue and Griendling, 2010). Although the specific PKC isozyme(s)
responsible for mediating phosphorylation of p47phox has not been identified, it is possible
that conventional, or Ca2+-sensitive, PKC isozymes might be involved. On the other hand,
recent evidence suggests that Nox activation in PASMCs during hypoxia is mediated by
PKCs(Rathore et al., 2008), which is not Ca2+-sensitive; however, in this case ROS
production was only measured during brief hypoxic challenge, and it is not clear whether
longer duration of hypoxia might lead to Ca2+-dependent activation of Nox and generation
of ROS.

5. Conclusions
Over the last two decades, extensive work has been performed aimed at identifying the role
of ROS in the pulmonary vascular response to hypoxia. While abundant evidence now
indicates that ROS are an essential factor in HPV, there continues to be some debate
regarding the direction of the change in ROS with hypoxia, and how ROS might interact
with other signaling pathways, namely [Ca2+]i, to produce HPV. The preponderance of
evidence appears to indicate that hypoxia induces an increase in ROS formation, likely
mitochondrial in origin, which can trigger increases in [Ca2+]i and activation of PKC,
perhaps further enhancing ROS production through activation of Nox. It also seems
increasingly likely that ROS signaling, like that for Ca2+, is highly compartmentalized
within the cell, perhaps within microdomains where mitochondria, the SR and/or plasma
membrane channels are in close approximation. The consequence of this type of
compartmentalization on PASMC function during acute hypoxia remains to be fully
resolved.
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Figure 1.
Schematic illustrating calcium handling pathways in pulmonary arterial smooth muscle
cells. PMCA= plasma membrane Ca2+-ATPase; NCX= Na+/Ca2+ exchange
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Figure 2.
Depiction of the mitochondrial electron transport chain.
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