
Spine Plasticity in the Motor Cortex

Xinzhu Yu and
Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz,
Santa Cruz, CA 95064, USA xyu@biology.ucsc.edu

Yi Zuo
Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz,
Santa Cruz, CA 95064, USA zuo@biology.ucsc.edu

Summary of recent advances
Dendritic spines are the postsynaptic sites of the majority of excitatory synapses in the mammalian
central nervous system. The morphology and dynamics of dendritic spines change throughout the
lifespan of animals, in response to novel experiences and neuropathologies. New spines form
rapidly as animals learn new tasks or experience novel sensory stimulations. This is followed by a
selective elimination of previously existing spines, leading to significant synaptic remodeling. In
the brain damaged by injuries or neurological diseases, spines in surviving cortical regions turn
over substantially, potentially forming new synaptic connections to adopt the function lost in the
damaged region. These findings suggest that spine plasticity plays important roles in formation
and maintenance of a functional neural circuitry.

Introduction
The mammalian cortex is composed of columnar aggregates of neurons that share similar
functional properties, such as orientation selectivity in the visual cortex or muscle movement
control in the motor cortex. Functional maps in different cortical regions are capable of rapid
and long-lasting reorganization throughout the animal's life, which is associated with novel
experiences and pathologies. In the motor cortex, learning a new motor task is accompanied
by expansion of the functional representation of task-related muscle movements in rats,
primates and humans [1-3]. During the recovery following stroke or injury, surviving
cortical regions adopt the function of damaged tissues [4-6]. In the visual cortex, the
retinotopic map remodels following retinal lesions, associated with a massive rewiring of
synaptic structures [7]. It has been proposed that intrinsic horizontal connections (i.e.,
intercolumnar and intracolumnar connections) of the cerebral cortex serve as a structural
substrate for map plasticity. Pyramidal neurons establish these connections by extending
long, horizontal axon collaterals that form excitatory synapses with their postsynaptic
partners.

The synapse is the site of information exchange in the central nervous system. In the
mammalian brain, the vast majority of excitatory glutamatergic synapses are formed
between presynaptic axonal en passant boutons and postsynaptic dendritic spines. Dendritic
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spines are small protrusions emanating from dendritic shafts. Not only are spines
heterogeneous in shape, their density also varies among different types of neurons and in
different developmental stages [8]. Spines contain all the essential components required for
postsynaptic signaling and plasticity and, thus, serve as good indicators of modifications in
synaptic connectivity [9-11]. Recent studies have revealed dynamics of individual,
fluorescently labeled dendritic spines over time in various cortical regions of living mice
using two-photon imaging, and demonstrated that sensory experience dramatically affects
spine stability (see reviews [12-14]). However, relatively little is known about spine
dynamics in the motor cortex, how motor learning affects the connectivity of the neural
circuitry, or how memory is structurally encoded in the intact brain.

Here, we will first review earlier studies on the functional and structural plasticity of
synapses in the mammalian motor cortex. Next, we will move to the living brain and discuss
recent examinations of spine dynamics during development and learning, including a
comparative analysis of different cortical regions. Finally we will talk about some in vitro
and in vivo studies on altered spine morphology and dynamics under pathological
conditions.

Functional and structural plasticity of synapses in the motor cortex
Functional plasticity of synapses

Integration of synaptic signals is critical to the functional organization of neural circuitry.
Long-term potentiation (LTP) and long-term depression (LTD) lead to changes in synaptic
efficacy and have been proposed to be candidate mechanisms for learning-induced plasticity
in the motor cortex. Evidence supporting this hypothesis comes from studies on both
animals and humans.

Training rats with a skilled reaching task has been shown to strengthen horizontal
connections in both layer I and layer II/III motor cortex contralateral to the trained limb,
resulting in elevated amplitudes of field potentials [15,16]. Moreover, after the animal
acquires the new motor skill, LTP is reduced, while LTD is enhanced [16] (Figure 1a,b). In
humans, learning of novel hand movements has also been found to prevent the subsequent
induction of LTP-like plasticity, while enhancing LTD-like plasticity [17]. The occlusion of
further LTP induction in the post-learning brain suggests that LTP or LTP-like plasticity
happens during motor learning.

In addition, while elevated field potentials persist long after initial learning acquisition, both
LTP and LTD thresholds shift upward. As a consequence, the elevated baseline of synaptic
efficacy is placed back to the middle of the LTP/LTD operating range, ensuring the
possibility of further synaptic strengthening [18] (Figure 1b). Furthermore, electrical
induction of LTP/LTD or LTP/LTD-like plasticity in the motor cortex in vivo before or
during motor learning interferes with the learning process [19-21], providing further
evidence to support LTP/LTD as a mechanism for learning acquisition of motor skills.

Structural changes of synapses
Many lines of evidence have also shown that synaptic structural changes are associated with
functional changes of neural circuitry. In the rat motor cortex, induction of LTP in the
forelimb region increases spine density of layer III and layer V pyramidal neurons, and
expands the forelimb representation [22]. In contrast, induction of LTD decreases spine
density [23], and shrinks the forelimb representation [24]. Learning-induced LTP occlusion,
as discussed above, has also been shown to be associated with enlargement of spine heads in
layer I of the motor cortex [15].

Yu and Zuo Page 2

Curr Opin Neurobiol. Author manuscript; available in PMC 2012 February 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



For decades, both electron microscopy (EM) and the Golgi staining method have been used
to examine synapse/spine numbers in the motor cortex following motor skill learning.
Despite the general belief that learning promotes synaptogenesis, data from different
experimental paradigms and methods have resulted in diverse and somewhat conflicting
conclusions. For example, EM analysis has indicated that motor learning has no effect on
synapse density, but increases the synapse/neuron ratio in both layer II/III and layer V motor
cortex contralateral to the trained forelimb [1,25]. In contrast, spine counting reveals that
there is a decrease in spine density of layer III neurons, yet no effect on spine density in
layer V pyramidal neurons in the motor cortex following motor skill training [26]. The
layer-dependent changes in spine density imply that a sub-population, rather than all, of the
neurons in the motor cortex responds to learning.

Spine dynamics in the living brain
The advent of high-resolution time-lapse imaging in conjunction with fluorescent molecular
tools enables the visualization of synaptic structures in living animals. Using two-photon
microscopy and transgenic animals in which a small population of neurons is fluorescently
labeled, turnover and morphological changes of postsynaptic dendritic spines have been
examined in various cortical regions, both during development and in association with
experience and learning. While long-term in vivo imaging has revealed a global stability of
dendritic arborization of cortical layer V neurons [27,28], spine dynamism and
morphological changes have been reported throughout the cerebral cortex during
development and in adulthood.

Spine dynamics in developing and adult brains
Despite the debate on the exact degree of spine dynamics, it is generally believed that
dendritic spines change their morphology and turn over rapidly in developing animals but
become much more stable in adults. During early postnatal stages, spines of cortical neurons
are highly plastic, changing length and appearing/disappearing within tens of minutes
[29,30]. Both spine motility and turnover decrease with increasing age. In adolescence,
while spine turnover rates are comparable [31,32]; spine motility is intrinsically different in
various cortical regions, high in somatosensory and auditory cortices while low in visual
cortex [32]. Rewiring visual input into the auditory cortex at birth does not alter spine
motility [32]. At this stage, spine elimination is significantly higher than spine formation
throughout the cerebral cortex, leading to a gradual reduction in total spine number during
postnatal development [28,31,33-35]. In contrast to adolescence, total spine numbers in all
examined regions remain unchanged over time in adulthood, due to comparable rates of
spine formation and elimination [28,31,33-36]. While the majority of spines stay stable, a
subset of them constantly turns over [31,34]. Regardless of the divergence in spine
classifications and calculation methods used in different studies, the consensus in the field is
that the proportion of stable spines increases gradually from adolescence to adulthood
[27,30,31,34,35,37]. For example, over 30% of spines are lost in mouse visual cortex from
one to two months old of age, whereas ~96% spines in adults (>4 months old) have a half-
life more than 13 months [35]. While the high stability of spines provides a potential
structural basis for long-term information storage in the brain, the plasticity of spines offers
the brain a capability to rewire in response to novel experiences.

Spine remodeling during motor skill learning
Two recent studies further investigate spine dynamics during and after motor learning. Xu
and colleagues train mice with a forelimb reaching task. They find that new spines are
formed within one hour after initiation of motor skill learning in apical dendrites of layer V
pyramidal neurons residing in the contralateral motor cortex [28] (Figure 1c,d). A similar
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observation is made by Yang et al., using an accelerated rotarod running task, in which
spine formation increases within two days of training [37]. The degree of spine formation is
closely associated with the degree of learning acquisition [28], as well as maintenance of the
skill [37]. These de novo spines could provide a route to enlarge the memory storage
capacity of the brain by creating new synaptic connections [38]. Moreover, this rapid
spinogenesis during initial learning is followed by enhanced spine elimination, making total
spine number return to the control level after prolonged training (Figure 1c,d). This
elimination is selective for the spines that have existed before training, while the new spines
induced during learning are preferentially stabilized during subsequent training, enduring
long after training stops [28].

One of the most unique characteristics of motor learning is the fact that, once a motor
behavior is learned, further maintenance of the motor skill does not require constant practice
(Figure 1a). Xu et al. have shown that retraining of the same motor skill months later does
not enhance spine dynamics (Figure 1d), suggesting that the circuitry needed for performing
such motor tasks is made during initial training and maintained afterwards. However,
training these pretrained animals with a novel motor skill continues to induce a robust
spinogenesis in the primary motor cortex, suggesting that different motor memories are
stored at different synaptic locations [28].

Together, these two studies suggest a critical role of long-lasting synaptic reorganization in
formation of durable motor memories. However, despite the nice correlation of spine
dynamics and learning behaviors illustrated in these studies, their causal relationship
remains unclear. Genetic approaches to target and manipulate learning-related spines will be
required to further address this question.

Experience-dependent spine plasticity outside the motor cortex
Experience-dependent spine plasticity has been found in many other systems in both
developing and mature animals. In the barrel cortex, while enriched environment and
learning paradigms promote spine formation [37,39], experience is also essential for the
profound synapse pruning during adolescent development [33]. In the visual system,
monocular deprivation (MD) doubles the rate of spine formation and increases the spine
density in the apical dendrites of layer V neurons in the binocular cortex of adult mice.
Restoring the binocular vision returns spine dynamics to the baseline. However, many MD-
induced spines persist during binocular deprivation, providing a structural basis for the rapid
functional shift during subsequent MD [36,40]. Recently, another elegant study investigates
spine dynamics in the forebrain nucleus HVC, a site where auditory information and motor
representation merge in songbirds. Using lentivirus/GFP constructs to label neurons in HVC,
the authors follow the spine dynamics in HVC during song learning in birds. Their data
show that a higher level of spine turnover before tutoring correlates with greater capacity for
subsequent song imitation. Furthermore, song learning experience triggers rapid stabilization
of dendritic spines, and enhances spontaneous synaptic activity of these neurons [41].

Altered spine morphology and dynamics under pathologies
While experience-dependent modification of spine plasticity provides a cellular mechanism
underlying learning and memory, abnormal spine morphology and dynamics are hallmarks
of injuries and neurological diseases. In Alzheimer's disease (AD), a dramatic spine loss has
been observed in the vicinity of β-amyloid plaques in the living cortex of transgenic AD
mice [42,43]. Fragile X Syndrome (FXS) is characterized by an abundance of immature
postsynaptic dendritic spines. A recent study has revealed a delayed downregulation of spine
turnover and an increase of immature spines in layer II/III neurons during early postnatal
stage in FXS mice [30]. In the motor cortex, spinal cord injury leads to spine remodeling:
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spine density of cortical pyramidal neurons decreases initially and partially recovers later on,
together with enlarged spine heads and increased spine lengths [44]. Enriched environment
and transplant/neurotrophin-3 treatments abolish such injury-induced spine morphological
changes, providing potential candidates for further therapies [45]. Using live imaging, recent
studies examine the dendritic and spine remodeling in the sensorimotor cortex following
photothrombotic-induced stroke. These studies show that peri-infarct dendrites are
exceptionally plastic, with elevated spine formation extending up to 6 weeks after stroke
[46,47]. Furthermore, such synapse rewiring is closely associated with the functional
remodeling that occurs during the recovery period [48]. These studies provide a better
understanding of the relationship between spine alterations and brain dysfunctions, and offer
valuable insights into pathogenesis and therapeutics of neurological diseases and injuries.

Conclusion
An important feature of the mammalian cortex is the capability of rapid and long-lasting
functional reorganization. Our understanding of the morphological plasticity of spines, as
well as their modifications with learning and altered brain functions in the living mouse
cortex, highlights the significance of spines in the functional reorganization. In the motor
system, current in vivo evidence indicates that spinogenesis occurs rapidly after motor
learning is initiated and that a large population of these new spines persists while animals
maintain motor skill performance, suggesting de novo spines as the underlying mechanism
of learning. So far, changes in synaptic strength [16] and reorganization of the functional
map [1] have been observed at a relatively late phase of motor learning, in contrast to the
immediate spinogenesis observed in vivo [28]. Further investigation of the relationship
between spine remodeling and motor functional map reorganization will provide valuable
information to understanding the mechanisms underlying motor learning. Some recent
studies combine in vivo imaging of synaptic structures with functional imaging (e.g. intrinsic
optic imaging) or electrophysiological examination to address this question [7,27,48]. Two-
photon calcium imaging, using Ca2+ sensitive dye or genetically encoded Ca2+ indicators,
has monitored the activity of spatially defined neuronal population in the mammalian cortex,
and led to a direct observation of functional neuronal clusters in the awake mouse motor
cortex. It is shown that neurons involved in different responses intermingle spatially [49],
while the temporal correlation between neurons decreases with the distance [50]. Moreover,
when mice are trained with an odor-selective licking task, correlations of coincident activity
for neurons with the same response types increase with learning. This suggests that learning
creates a local network of functionally related neurons in the motor cortex [49].

The mammalian cortex is a laminar structure. Neurons in different cortical layers have
different local and subcortical connections [51]. To date, the majority of in vivo, dendritic
spine imaging data has been collected from two transgenic lines – the YFP-H line and the
GFP-M line. Both lines use the thy-1 promoter to drive fluorescent protein expression
selectively in a subset of cortical neurons [52,53]. The studies described above mostly
investigate dynamics of spines on apical dendrites of layer V neurons. Whether changes in
spine dynamics triggered by motor learning are restricted to these neurons remains unclear.
It has been shown that spine dynamics of layer II/III neurons do not change after MD [36].
Thus, it will be important to explore structural plasticity in other cell types.

Finally, spines are postsynaptic components of excitatory synapses. It is to be expected that
modifications in presynaptic axonal boutons also participate in motor cortex plasticity.
Using the same thy-1 transgenic mice, previous studies have investigated axon terminal
stability in vivo. These studies find that axon bouton dynamics are cell-type specific [54],
and axonal terminals are more stable than dendritic spines in general [32,54]. Studies
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examining axonal bouton changes in the motor cortex and during motor learning remain to
be done.
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Figure 1.
Changes in synapse strengths and spine dynamics in the motor cortex during and after motor
learning. (a) Three phases of motor learning: significant improvement of performance is
observed in acquisition phase, and high performance is maintained during consolidation and
retention phases. (b) Synaptic efficacy baseline and LTP/LTD modification range. Elevated
baseline field potentials have been observed in layer I, II/III neurons in the motor cortex
after learning acquisition. This leads to reduced LTP and enhanced LTD. In the retention
phase, the synaptic modification range shifts upward with time, placing the elevated baseline
back to the middle of the LTP/LTD operating range. (c) A schematic illustrating immediate
and protracted spine dynamics in both control and trained animals. Learning-induced new
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spines are preferentially stabilized, while pre-existing spines are selectively removed,
leading to the rewiring of the neural circuitry. Motor learning temporally increases spine
density, which gradually returns back to the control level. (d) Time course of changes in
spine formation and elimination. Motor learning leads to a rapid increase in spine formation,
which is followed by delayed but prolonged spine elimination.
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