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Abstract
Drug resistance involves multiple mechanisms. Multidrug resistance (MDR) is the leading cause
of treatment failure in cancer therapy. Elevated levels of MDR proteins [members of the ATP-
binding cassette (ABC) transporter family] increase cellular efflux and decrease the effectiveness
of chemotherapeutic agents. As a salvage approach to overcome drug resistance, inhibitors of
MDR proteins have been developed, but have had limited success mainly due to undesired
toxicities. Nuclear receptors (NRs), including pregnane X receptor (PXR), regulate the expression
of proteins (including MDR proteins) involved in drug metabolism and drug clearance, suggesting
that it is possible to overcome drug resistance by regulating NR. This review discusses the
progress in the development of MDR inhibitors, with a focus on MDR1 inhibitors. Recent
development of PXR antagonists to pharmacologically modulate PXR is also reviewed. The
review proposes that selectively preventing the elevation of MDR levels by regulating NRs rather
than non-selectively inhibiting the MDR activity by using MDR inhibitors can be a less toxic
approach to overcome drug resistance during cancer therapy.
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1. Introduction
Drug resistance – the reduction in effectiveness of a drug in curing a disease or improving
patient symptoms – can develop against antibiotics, antivirals, or chemotherapeutic agents
for cancers. Drug resistance is a complex cellular response and target-specific and target-
nonspecific mechanisms can be involved in the process.

In target-specific drug resistance, changes in a specific drug target that decrease the
interaction between the target and drug might lead to drug resistance. For example,
mutations in viral genes frequently lead to antiviral drug resistance [1], and loss of
expression of the estrogen receptor (ER) can cause tamoxifen resistance in patients with
breast cancer [2]. It can be difficult to predict, prevent, or overcome target-specific drug
resistance without developing new therapeutic agents. On the other hand, in target-
nonspecific drug resistance, changes in parameters not directly relevant to or dependent on
the drug target contribute to drug resistance. For example, target cells or organisms might
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produce higher levels of drug-metabolizing enzymes (DMEs) to degrade the drug or
increase their efflux capacity, resulting in decreased bioavailability and reduced
effectiveness of drug [3].

Cases of target-nonspecific drug resistance have several features in common, which have
been targeted by various approaches in order to overcome drug resistance, especially against
chemotherapeutic agents. For example, a family of ATP-dependent drug pumps, known as
ATP-binding cassette (ABC) transporter proteins, can increase the resistance to
chemotherapeutic agents by increasing cellular efflux. Multidrug resistance (MDR) proteins
belong to the ABC transporter protein family and play an important role in maintaining
normal physiologic functions that protect human tissues from drugs and other xenobiotics.
Elevated levels of MDR1, a key MDR protein [also known as P-glycoprotein (P-gp) or
ABCB1], have been associated with drug-mediated drug resistance in cancer [4], making
inhibition of MDR1 activity a logical approach to overcome MDR1-mediated drug
resistance.

This review discusses the progress made in the development of MDR1 inhibitors in
overcoming drug resistance in cancer. As the primary role of MDR1 is disposition of
xenobiotics, the undesired toxicities resulting from the use of MDR1 inhibitors have posed a
challenge in the development of MDR1 inhibitors for clinical applications. The problems
encountered and the lessons learned in developing MDR1 inhibitors as salvage therapies to
reverse drug resistance are reviewed.

The expression of MDR1 as well as other proteins involved in regulating the bioavailability
of drugs is regulated by nuclear receptors (NRs), a family of ligand-activated transcription
factors. The pregnane X receptor (PXR) is an NR that directly regulates the expression of
MDR1 and other important proteins involved in drug metabolism and resistance. PXR can
be activated by xenobiotics, including drugs involved in MDR, suggesting that drug
resistance can be prevented instead of being reversed. The recent progress made in
developing PXR antagonists to pharmacologically modulate PXR and thereby potentially
prevent the elevation of MDR1 levels is also reviewed.

Recently, a new form of MDR – drug ratio–dependent MDR – has been reported in cancer
therapy, which occurs at discrete drug:drug ratios of combined chemotherapeutic agents.
Drug ratio–dependent MDR can be circumvented by systematically screening a wide range
of drug ratios and concentrations and encapsulating the drug combination in a liposomal
delivery vehicle at optimal synergistic ratios. This has been recently reviewed [5], and will
not be discussed here.

2. Drug resistance in anticancer therapies
2.1 Cancer and drug resistance

Despite years of intensive research and development, cancer remains one of the leading
causes of death worldwide. In 2009, there were an estimated 1.5 million new cases of and
560,000 deaths from cancer in the US [6]. Chemotherapy is the most commonly used
treatment for cancer, as surgery and radiation are often not effective in treating cancer at
every location where it spreads. MDR of cancer cells to chemotherapeutic agents – a
complex cellular process – is the leading cause of failure of chemotherapy and the rise in
cancer-related deaths [7].

A common feature among cases of resistance to anticancer drugs is the dynamic interactions
among cancer cells, the human body (the “host”) that governs the systemic drug clearance,
and the therapeutic agent (Fig. 1), which can be used to develop target-nonspecific
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approaches to address resistance to chemotherapeutic agents. To a healthy human body,
xenobiotics or drugs are external stresses and these are disposed of via a highly regulated
drug metabolism and drug clearance process. During this process, DMEs in the liver break
down the drug, and NRs such as PXR and the therapeutic drugs play crucial roles in
regulating the expression of DMEs [8,9]. Recently, cancer cells have also been shown to
affect drug clearance by affecting the expression of DMEs [10].

2.2 Proteins involved in resistance to cancer drugs
Changes in the expression levels of DMEs that break down drugs and ABC transporters that
increase cellular efflux of chemotherapeutic agents have been associated with drug
resistance in many cancers [7]. Among the 48 known human ABC transporters, MDR1, the
multidrug resistance-associated protein 1 (MRP1; also known as ABCC1), and the breast
cancer resistance protein (BCRP; also known as ABCG2) are major contributors to the
MDR phenotype. There have been intensive investments in developing compounds that can
reverse the MDR phenotype. Although laboratory research has led to promising results,
efforts to translate them to clinical use have been somewhat disappointing (see sections 2.3
and 2.4 for details).

2.3 Approaches used to overcome cancer drug resistance
MDR1 is known to transport several cancer drugs [7], and its activity can be
pharmacologically inhibited to prevent the efflux of cancer drugs and sensitize resistant
cancer cells to cancer drugs both in vitro [11] and in the clinical setting [12]. These early
data suggested that MDR1 can be a feasible target to reverse drug resistance, which was
supported by the observation that loss of both Mdr1a and Mdr1b (there are 2 rodent Mdr1
genes but only 1 human MDR1 gene) does not result in an obvious phenotype. Significant
efforts have since led to the development of 3 generations of MDR inhibitors.

First-generation MDR1 inhibitors are compounds that have already been approved by the
Food and Drug Administration (FDA) for other clinical applications. These non-specific
MDR1 inhibitors, such as verapamil, quinine, and cyclosporine A, generally fail to show
clinical efficacy, mainly because they have toxic side effects at doses required to inhibit
MDR1 activity [13]. However, a few positive outcomes [14] encouraged the development of
second-generation MDR1 inhibitors, and efforts were centered on increasing the potency for
MDR1 while decreasing toxicities, using pharmacophores of the first-generation MDR1
inhibitors. PSC-833, a cyclosporine D analog with high-affinity for MDR1 and no
immunosuppressive side effects, is representative of second-generation MDR1 inhibitors.
However, the inhibition of MDR1 decreased the systemic clearance of drugs and increased
the exposure of both normal and cancerous tissues to the toxic effect of drugs. In addition,
PSC-833 and other MDR1 inhibitors inhibited cytochrome p450 3A (CYP3A) function and
decreased CYP3A-mediated drug metabolism. These undesired pharmacokinetic
interactions led to drug-associated adverse effects. Therefore, although PSC-833 enhanced
the therapeutic effect of certain chemotherapeutic drugs (e.g., etoposide, cytarabine, and
daunorubicin) in patients with acute myeloid leukemia (AML) [15], its use was associated
with high rates of mortality in other phase III trials [16], and its development was therefore
discontinued. The development of another second-generation MDR1 inhibitor, biricodar,
was discontinued because of similar adverse effects [17]. Efforts to develop third-generation
MDR1 inhibitors have focused on increasing the affinity for MDR1 and lowering
pharmacokinetic interactions (i.e., not inhibiting CYP3A function and normal CYP3A-
mediated drug metabolism). Therefore, unlike first- and second-generation MDR1
inhibitors, which were developed from compounds known to target other biologic functions,
third-generation MDR1 inhibitors are derived from new compounds generated by
combinatorial chemistry. Laniquidar, OC144-093, zosuquidar, elacridar, tariquidar and
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CBT-1 are examples of third-generation MDR1 inhibitors that have a high affinity for
MDR1 without having a CYP3A inhibitory effect [7]. Tariquidar was being tested in phase
III clinical trials as adjunctive therapy in combination with first-line chemotherapy in
patients with non-small-cell lung cancer (NSCLC), but was discontinued because of
treatment-associated toxicities. It is important to note that the rationale for choosing patients
with NSCLC in the studies was not clear, since there was no convincing data suggesting that
the target of tariquidar, MDR1, is significantly expressed in NSCLC. In addition, the dose
used for the combination therapy was higher than the maximum tolerated dose previously
determined [18]. Newly exploratory trials with tariquidar are currently ongoing; zosuquidar
is also being tested in phase II trials in women with metastatic and locally recurrent breast
cancer [19].

Some third-generation MDR1 inhibitors are less toxic, do not affect the pharmacokinetics of
anti-cancer drugs, and have better outcomes in clinical trials than first- and second-
generation MDR1 inhibitors. In addition to chemical inhibitors, other MDR-reversing agents
aimed at inhibiting the activity of MDR, including antibodies, have been developed [7];
however, whether the activity of MDR1 can be inhibited without causing undesired toxicity
remains unclear.

2.4 Lessons learned
First- and second-generation MDR1 inhibitors have been developed based on compounds
previously discovered to act on targets other than MDR1. These non-specific MDR1
inhibitors also inhibited the activity of CYP3A, affected drug metabolism and clearance, and
failed in clinical trials due to undesired toxicity. Third-generation MDR1 inhibitors that are
specific and potent for MDR1 and devoid of CYP3A inhibitory effect have been developed.
Again, early trials in clinics failed due to undesired toxicities. The inappropriate study
design of earlier trials on third-generation MDR1 inhibitors might have contributed to the
failure of these trials; therefore, with appropriate study design, the approach to develop
reversing agents for ABC drug transporters might have an optimistic future, suggesting that
overcoming drug resistance by down-regulating MDR1 remains a feasible strategy [7].
Overcoming drug resistance by countering the elevated levels of MDR1 (due to drug-
mediated over-expression) is a salvage approach. MDR1 is constitutively expressed in many
normal tissues (e.g., adrenal gland, liver, kidney, intestinal mucosa, muscle, and endothelial
cells of the blood brain barrier [20]) and plays an essential role in protecting normal tissues
from drugs and other xenobiotics. MDR1 is over-expressed in cancer cells and causes drug
resistance. MDR1 inhibitors inhibit the activity of MDR1, regardless whether it is the drug-
mediated over-expressed MDR1 (which causes drug resistance) or the constitutively-
expressed MDR1 (which is required for normal protecting function). To date, it has not been
possible to avoid the toxicities associated with inhibition of MDR1 activity, so it remains to
be studied whether drug-mediated over-expression of MDR1 can be selectively prevented.
Studies on the regulation of MDR1 expression can help address the question of whether
drug-mediated over-expression of MDR1 can be prevented.

The expression of MDR1 is regulated at the transcriptional level by multiple signaling
mechanisms, including those mediated by hypoxia-inducible factor-1α (HIF-1α) [21], p53
[22], and even chromosomal rearrangement [23]. MDR1 expression is also regulated by
epigenetic mechanisms such as methylation [24,25] and acetylation [26]. Post-
transcriptional regulation of MDR1 expression by microRNA has been reported recently
[27,28].

Recently, the expression of MDR1 has been shown to be regulated by xenobiotic receptor
PXR [29–31], suggesting a role of NRs in regulating inducible drug resistance and a
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possible new strategy to overcome drug resistance by preventing the induction of MDR1
over-expression during drug therapy instead of inhibiting the activity of total MDR1.

3. Nuclear receptors and drug resistance
3.1 Regulation of drug resistance by nuclear receptors

MDR1, MRP1, and BCRP – the ABC transporters that mediate the ATP-dependent cellular
export of drugs – have high expression levels in liver, intestine, kidney, and blood-brain
barrier. Their normal physiologic function is to protect the body from cytotoxicity caused by
drugs or other xenobiotics. This protecting function is coordinated with the DMEs, which
first break down the drugs in most cases. MDR1, MRP1, and BCRP, which partially overlap
in their substrate specificity, are the major ABC transporters involved in cancer drug
resistance. MDR1 was the first ABC transporter identified in Chinese hamster ovary cells
selected for resistance to the cytotoxic agent colchicine [32]. MRP1 was discovered in a
multi-drug-resistant human lung cancer cell line [33] and BRCP in a multi-drug-resistant
human breast cancer cell line [34].

There is only 1 gene for MDR1 in humans, but 2 genes (Mdr1a and Mdr1b) in rodents [35].
MDR1, which was first discovered as a protein associated with cancer cell resistance to
cytotoxic compounds [32], was subsequently found to be expressed in normal cells from
various tissues [36–39] and playing key roles such as elimination of drugs from the system
by exporting drugs into the lumen of the gut [39], biliary excretion in the liver [39,40], renal
elimination [41], and limiting drug uptakes into the central nervous system (CNS) [42–45].
MDR1 transports a broad range of hydrophobic compounds, including anticancer drugs,
anti-HIV drugs, antibiotics, cardiac drugs, calcium channel blockers, and
immunosuppressants [7,46–48].

There are 13 MRPs in humans. MRP1 was found to be amplified in multiple drug-resistant
cancer cells [33]. MRP1 transports anticancer cytotoxic drugs [47,49]. BCRP also confers
resistance to many anticancer drugs [49,50].

NRs have been shown to regulate the expressions of MDR1 and BCRP at the transcription
level. PXR [29,31] and constitutive androstane receptor (CAR) [51] bind to and activate the
promoter of MDR1. The promoter of BCRP contains response elements for both ER [52] and
proliferator-activated receptor γ (PPARγ) [53], suggesting the role of NR in regulating
BCRP expression. Whether NRs regulate the expression of MRP1 is unknown. The
regulation of the MDR1 expression by PXR has been well-studied, and is the focus of this
review.

3.2 PXR and drug resistance
PXR and CAR are master xenobiotic receptors that regulate the expression of genes
involved in drug metabolism and clearance, including DMEs and transporters. Although no
physiologic ligand has been definitively identified for PXR, PXR can bind to many
structurally diverse chemicals (a characteristic referred to as “ligand promiscuity”),
including anticancer drugs such as paclitaxel [54–57]. PXR is expressed not only in normal
tissues such as liver, intestine, colon, kidney, brain [58–61], breast [62], prostate [63],
peripheral mononuclear blood cells [64,65], heart, bone marrow, spinal cord [66], stomach,
ovary, placenta [58,67] and the immune cells [68], but also in many human cancers,
including breast [62,69], prostate [63], colon [70], osteosarcoma [71], ovarian [72], and
endometrial [73,74] cancers. Activation of PXR induces expression of DMEs and
transporters, including MDR1, suggesting a significant role of PXR in cancer drug
resistance.
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NRs are ligand-activated transcription factors that regulate target gene activation [75,76].
PXR, a member of the NR superfamily, was discovered in 1998 by multiple groups
[59,60,77,78]. Similar to other NRs, PXR has a highly variable N-terminal domain, a
conserved DNA-binding domain (DBD), and a C-terminal ligand-binding domain (LBD)
(Fig. 2).

Although the sub-cellular localization of un-liganded PXR remains controversial [79–82], it
is clear that PXR binds to the promoter of its target gene as a heterodimer with retinoid X
receptor α (RXRα) [75,83]. The consensus sequence, 5′ AG(G/T)TCA 35′, that the PXR
DBD interacts with [77,78] can be arranged as direct repeats separated by 3–5 nucleotides
(DR3, DR4, or DR5), everted repeats separated by 6 or 8 nucleotides (ER6 or ER8), or
inverted repeats separated by 6 or no nucleotides (IR6 or IR0). Two most important PXR
target genes, CYP3A4 and MDR1, contain DR3/ER6 [78,84] and DR4/ER6 [31] in their
promoter regions, respectively.

Depending on the ligand-regulated conformation of the LBD, the activation function 2
(AF-2) region interacts with either corepressors or coactivators, resulting in transcriptional
repression or activation [75,76]. Example of coactivators are steroid receptor coactivator-1
(SRC-1), glucocorticoid receptor interacting protein 1 (GRIP1), activator for thyroid
hormone and retinoid receptors (ACTR), and PPARγ coactivator 1-α (PGC-1α)
[60,77,78,85]. Nuclear receptor corepressor (NCoR) and silencing mediator of retinoid and
thyroid hormone receptors (SMRT) are corepressors that regulate PXR [81,86]. In the
absence of PXR agonist, PXR associates with corepressors, resulting in transcriptional
repression. The binding of an agonist to PXR changes its conformation, allowing
coactivators to interact with the AF-2 and resulting in transcriptional activation of the target
genes of PXR [75]. The ultimate outcome of transcriptional activation of a target gene for
PXR depends on the PXR agonist, the promoter of the target gene for PXR, and the specific
tissue- and cellular context (availability of corepressors and coactivators, cell cycle status,
etc.) [71,87].

Because of its unique structure of the LBD [88,89], PXR is a “promiscuous” xenobiotics
receptor that can bind to a wide variety of structurally and chemically diverse compounds
[90]. Endobiotics such as endogenous steroids and bile acids [60,77,78], cholesterol, and
metabolites [91] have been shown to activate PXR. In addition, xenobiotics such as
antibiotics rifampicin [59], cholesterol-lowering agent SR12813 [59], anticancer drug
paclitaxel [55], anti-HIV drugs, and calcium channel modulators [92], are among an
expanding list of drugs that can bind to and activate PXR. The activation of PXR is likely to
affect the effectiveness of many drugs.

It has been clearly demonstrated that PXR directly regulates the transcriptional activation of
MDR1. Geick et al. [31] first identified a distal enhancer region −7.8 kb from the
transcriptional start site of the MDR1 promoter that mediates the induction of MDR1
expression by rifampicin. By using LS174T, a colon cancer cell line that expresses PXR,
and a reporter gene under the control of the MDR1 promoter, Geick et al. showed that the
promoter region between −8.0 and −7.7 kb mediates the induction by rifampicin. An
electrophoretic mobility shift assay (EMSA) confirmed the binding of PXR/RXRα to 3 DR4
(I, II, and III) and an ER6/DR4(III). Mutational analysis demonstrated that DR4(I) is
essential for the rifampicin-mediated induction of MDR1 in LS174T cells. These studies
elucidated the molecular mechanism responsible for PXR-mediated induction of MDR1
expression by rifampicin. Geick et al. subsequently demonstrated that MDR1 is also
regulated by CAR, through the DR4(I), and, to a lesser extent, the ER6/DR(III) [51].
Interestingly, CAR also binds to the DR(II) as a monomer. Both DR4(I) and DR4(II) are
required for the maximal induction of MDR1 by CAR.
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The expression of MDR1 and CYP3A4 is induced by PXR agonists both in vivo [93,94] and
in vitro [95]. Although the level of in vitro induction of MDR1 and other transporters is
lower than that of CYP3A4 and other CYPs [95], the in vivo inductions of CYP3A4 and
MDR1 are similar [93,94,96]. The difference in in vitro induction might result from the
significantly reduced basal expression level of CYP3A4 and other CYPs, but not that of
MDR1 and other transporters, in in vitro systems [95,97]. These observations indicate that
PXR-mediated induction of MDR1 plays important roles in modulating drug clearance, and
also suggest that in vitro systems (e.g., cancer cell lines or isolated primary hepatocytes)
might be suitable to study the regulation of MDR1 before conducting in vivo experiments.

The significant role of induction of MDR1 in increasing drug clearance has also been
illustrated in human volunteers treated with various PXR agonists and MDR1 substrates.
PXR agonists such as rifampicin, St. John’s Wort, and carbamazepine can induce the
expression of intestinal MDR1 and decrease the bioavailability and plasma levels of
compounds transported by MDR1 (e.g., digoxin, talinolol, and fexofenadine) [93,94,98–
101]. Rifampicin can also increase digoxin clearance into bile [39], and carbamazepine can
increase the renal clearance of talinolol [99]. To emphasize the role of transporters in drug
clearance, digoxin, talinolol, and fexofenadine were chosen in these studies because they are
transported by MDR1 but minimally metabolized by DMEs.

These studies demonstrate that induction of drug transporters such as MDR1 affects drug
disposition and ultimately reduces the plasma concentration of drugs. Although induction of
MDR1 and other transporters is a mechanism to protect the body against potentially toxic
chemicals, it also reduces the effectiveness of therapeutic drugs in curing a disease or
improving patients’ symptoms, thereby contributing to drug resistance.

The undesired toxicity associated with inhibition of the physiologic function of MDR1 has
limited the success of MDR1 inhibitors in clinical applications. Because MDR1 can be
induced by drugs through activation of PXR, a feasible option is to pharmacologically
antagonize the drug-mediated activation of PXR and PXR-induced expression of MDR1 to
increase the bioavailability of drugs and minimize toxicity.

3.3 Preventing drug resistance by regulating PXR
The concept that down-regulating PXR in PXR-expressing cancers can sensitize cancer cells
to chemotherapeutic agents has been proposed and investigated in several recent studies.
Chen et al. detected the expression of PXR in both normal and cancerous prostate tissues
and in prostate cancer cell lines [63]. In the prostate cancer cell line PC-3, treatment with the
PXR agonist SR12813 activated PXR and increased both the expression of MDR1 and the
resistance of PC-3 cells to the anticancer drugs paclitaxel and vinblastine. The targeted
knock-down of PXR by using short hairpin RNA (shRNA) enhanced the sensitivity of PC-3
to paclitaxel and vinblastine, suggesting that the effectiveness of anticancer drugs can be
enhanced in PXR-positive cancers by blocking the activity of PXR.

Masuyama et al. showed that PXR is expressed in endometrial cancer. Down-regulation of
PXR by small interfering RNA (siRNA) in the endometrial cancer cell line HEC-1
decreased the expression of MDR1 and sensitized cells to anticancer agent and PXR agonist
paclitaxel and cisplatin [73]. In contrast, increased expression level of PXR led to increased
resistance of HEC-1 cells to paclitaxel and cisplatin.

The correlation between the activity of PXR and drug resistance observed in the studies
discussed previously has also been reported in osteosarcoma [71], in which the effectiveness
of etoposide was reduced due to activation of PXR. Furthermore, co-administration of PXR
agonists enhanced the clearance of all-trans-retinoic acid (ATRA), which could potentially
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contribute to ATRA resistance in the treatment of acute promyelocytic leukemia (APL) and
several solid tumors [102].

Because of its ligand promiscuity, PXR can be activated by many anticancer drugs, such as
tamoxifen, Taxol [55,30,103], and vincristine [55]. Most patients with cancer are usually
administered many other drugs in addition to anticancer drugs while undergoing
chemotherapy, which further increases the possibility of drug-mediated PXR activation. As
PXR regulates the expression of proteins involved in drug metabolism and drug transport,
activation of PXR can lead to undesired drug interactions. In PXR-expressing cancers, the
anticancer drug that activates PXR might compromise the effectiveness of the drug itself as
well as that of other drugs in combination therapy. The ability to activate PXR is therefore
considered an undesirable property for a lead compound for development as a drug [104].
One approach to overcome the PXR activation of a lead compound is to chemically modify
the compound to remove the PXR activating function without compromising the target
activity. This has been shown to be possible in principle in a few studies. For example,
paclitaxel and docetaxel, both inhibitors of microtubule disassembly, have minor structural
difference and are equally potent in inhibiting microtubule depolymerization and cancer cell
proliferation. However, paclitaxel, but not docetaxel, significantly activates PXR and
induces MDR1 expression [30]. Recently, Zimmermann et al. reported the chemical
modifications of their first generation IGF-1R inhibitors to reduce PXR transactivation while
maintaining potency against IGF-1R [104]. However, given the agonist promiscuity of PXR,
tremendous efforts are needed in drug development programs to remove the PXR activity
while maintaining the target activity for many lead compounds. In addition, it is highly
likely that other properties of compounds might have also changed because of the chemical
modifications to remove the PXR activating function. Furthermore, many anticancer drugs
with PXR agonistic activity continue to be used in the clinical setting. In light of these
considerations, efforts need to focus on developing compounds that can antagonize PXR-
mediated MDR1 expression and enhance the effectiveness of anticancer drugs.

A few compounds previously known to target various biological pathways can inhibit PXR
function (Table 1). Here, PXR inhibitors refer to compounds that inhibit the agonist-
mediated activation of PXR, but whether they bind to PXR is unknown. PXR antagonists
refer to PXR inhibitors that have been shown to competitively bind to PXR in in vitro
binding assays. Ecteinascidin-743 (ET-743), an antineoplastic agent, has been shown to
inhibit PXR transactivation [30]. Ketoconazole, an inhibitor of CYP3A4 enzyme activity,
can inhibit multiple NRs, including PXR, by disrupting the NR–coactivator interaction
[105]. A-792611, an HIV protease inhibitor, inhibits PXR-mediated CYP3A4 expression
[106]. Sulforaphane (SFN), an inhibitor of histone deacetylases and an inducer of phase II
DMEs such as glutathione S-transferases (GSTs), appears to be a PXR antagonist [107].
SFN down-regulates CYP3A4 expression by directly binding to PXR and inhibiting
coactivator recruitment. Coumestrol, a potent agonist of ERα and ERβ (EC50 21 – 67 nM),
antagonizes PXR at high concentrations (EC50 12 μM) [108]. Camptothecin, an inhibitor of
topoisomerase I, inhibits PXR-mediated transcriptional activation of CYP3A4 by disrupting
the interaction of PXR with SRC-1 without competing with agonist for binding to PXR
[109]. The effect of camptothecin is not specific for PXR, because camptothecin also
inhibits CAR-mediated, but activates vitamin D receptor (VDR)-mediated transactivation
[109]. Although all known PXR inhibitors or antagonists have an activity other than
inhibiting PXR, these studies suggest that it is feasible to antagonize the inducible activity of
PXR and to enhance the effectiveness of drugs. In a recent study, Raynal et al. showed that
activation of PXR reduced the chemosensitivity of colorectal cancer cells to irinotecan.
Interestingly, the reduction in chemosensitivity was reversed by the PXR antagonist SFN
[110].
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In addition to test compounds with known bioactivity for their PXR antagonistic activity,
other groups used a computational approach to study PXR antagonism. Ekins et al.
investigated pharmacophores for both PXR agonists and antagonists, and suggested that
agonists and antagonists might bind to distinct regions of PXR [111]. Ekins et al. used
computational pharmacophore and docking tools to discover PXR antagonists in the low
micromolar range [112]. In a study of the crystal structure of PXR with the agonist T-1317,
Xue et al. suggested that because of the ligand promiscuity of PXR it may be difficult to
design an effective antagonist that targets the ligand-binding pocket of PXR [113].

As several studies support the existence of PXR antagonists, the development of specific
and non-toxic PXR antagonists as codrugs hold promise in order to prevent the activation of
PXR and induction of MDR1 during drug therapies and thereby prevent drug resistance.
Such specific PXR antagonists might have broad applications in overcoming drug
resistance. For example, a PXR-like pathway regulating multidrug resistance in fungi has
been reported by Thakur et al. [114]. The authors showed that drug resistance during
treatment of fungal infections is often due to upregulation of drug efflux pumps by a fungal
transcription factor that directly binds to xenobiotics, including PXR agonists, and suggest
that a PXR antagonist can be used to treat multidrug-resistant fungal infections.

4. Conclusions
Drug resistance involves multiple mechanisms and targets; it is therefore impossible to
overcome drug resistance by targeting a single protein. MDR1 is an important protein
involved in target-nonspecific drug resistance. Inhibition of MDR1 to overcome drug
resistance has had limited success due to toxicity. MDR1 expression can be regulated by
several mechanisms. The recent discovery that the expression of MDR1 is induced by PXR,
a xenobiotic receptor activated by many compounds, including anticancer drugs, suggests
that it is possible to antagonize the drug-induced activation of PXR to prevent the drug-
mediated expression of MDR1. The identification of PXR antagonists further suggests that
pharmaceutical agents can be developed to enhance the efficacy of anticancer drugs. All
known PXR inhibitors or antagonists have activities other than inhibiting PXR. Future
studies need to focus on identifying specific PXR antagonists that target the agonist-induced
activation of PXR. Such specific PXR antagonists will not interfere with the basal activity of
PXR and might have minimal toxicity. Owing to the ligand promiscuity of PXR, it might be
difficult to design such PXR antagonists. Large-scale high-throughput screening, using a
large collection of structurally diverse compounds, might provide the most effective
approach to identify and develop PXR antagonists.

Non-toxic, specific, and potent PXR antagonists can be used to improve the efficacy of
anticancer drugs in PXR-positive cancers. Such specific PXR antagonists might have broad
applications in overcoming drug resistance, including treating multidrug-resistant fungal
infections.
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Figure 1.
The ultimate efficacy of a drug is determined by the interactions among the drug, the target
cancer cells, and the drug clearance system of the human body.
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Figure 2.
A schematic comparison of the domain structures of a typical nuclear receptor and PXR.
AF-1, activation function 1; DBD, DNA binding domain; H, hinge region; LBD, ligand
binding domain; AF-2, transactivation function 2.
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Table 1

Chemical structures and known activities of PXR inhibitors/antagonists

Compound Structure Other known activity References

ET-743 Antineoplastic Synold et al. [30]

Ketoconazole Inhibiting CYP3A4 enzyme activity Huang et al. [105]

Sulforaphane Inhibiting histone deacetylases: inducing Phase II enzymes Zhou et al. [107]

A-792611 Inhibiting HIV protease Healan-Greenberg et al. [106]

Coumestrol Agonist for estrogen receptors Wang et al. [108]

Camptothecin Inhibiting topoisomerase I Chen et al. [109]
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