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Introduction
Unlike preclinical animal studies where confounding variables 
can be controlled and prenatal tobacco exposure can be  
assigned randomly as a treatment group, typical human expo-
sure outcome studies use observational designs where sample 
likely differs in confounding variables between exposure groups. 
In statistical terms, unobserved selection bias exists, where  
exposure groups are not balanced as in a true experimental  
design. In fact, even with the best efforts of researchers to con-
trol for confounding variables using stringent sampling meth-
ods, unobserved selection bias typically exists (D’Agostino, 
1998; Rosenbaum & Rubin, 1983, 1984). Ignoring selection bias 
can lead to unreliable or misleading estimates of causal effect 
that are the target of observational studies (Rosenbaum, 2002).

To address selection bias in observational studies and allow 
researchers to draw a causal inference from studies where ran-
domization is not possible, an analytic method to control for 
selection bias is needed. Although there are several available, 
propensity score methods are being increasingly used. A pro-
pensity score is a probability value, estimated from confounding 
variables via a statistical model, for each subject who has the 
chance to belong to the “treatment” group (here those offspring 
who are tobacco exposed [TE]). In seminal work, Rosenbaum 
and Rubin (1983, 1984) showed that using propensity scores in 
hypotheses testing produced unbiased estimates of the true 
group difference. Unlike analysis of covariance, propensity 
score methods account for group differences by modeling the 
sampling process and addressing selection bias with a theoreti-
cally unlimited number of confounding variables related in any 
way to group selection (McCaffrey, Ridgeway, & Morral, 2004; 
Shadish, Cook, & Campbell, 2002; West, Biesanz, & Pitts, 2000).
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 Once calculated, the propensity score can be included into 
statistical models as a single covariate, allowing researchers to 
statistically balance groups with less complex models and  
more statistical power (Braitman & Rosenbaum, 2002; Wang & 
Donnan, 2001).

To estimate propensity scores, most studies have used a 
parametric logistic regression model that assumes a specific  
underlying distribution and that the covariates are linear and  
additive on the log odds scale. Because covariates are usually non
normal, nonlinear, and not additive, generalized boosted models 
(GBM; McCaffrey et al., 2004) that incorporate data mining and 
statistical techniques are a better alternative to calculate propen-
sity scores (e.g., Friedman, 2001; Imbens, 2003). In data mining 
and machine learning literature, the term “boosting” refers to an 
algorithm that identifies the strongest model by building upon 
and learning from weaker models (Freund & Schapire, 1997; 
Friedman, 2002; Schapire & Singer, 1999). GBM expands boost-
ing algorithms by using a collection of regression trees that out-
perform traditional approaches (Breiman, Friedman, Olshen, & 
Stone, 1984; Buhlmann & Yu, 2003; Friedman, 2002; McCaffrey 
et al., 2004). Compared with typical logistic regression, the ap-
pealing features of GBM include (a) using an automated data-
adaptive modeling algorithm that can estimate the nonlinear 
relation between a variable of interest and a large number of  
covariates; (b) reduction in the chance of model misspecification 
and as nonparametric models, do not assume underlying distri-
butions; (c) accommodation of various types of covariates (con-
tinuous, nominal, or ordinal) and missing values while allowing 
multicollinearity; (d) allowing estimated propensity scores to be 
used for covariate adjustment, weighting, matching, or stratifica-
tion; (e) better balance of covariates, with fewer prediction  
errors; (f) and greater capability of removing bias in baseline  
differences between treatment and control groups.

The purpose of the present study is to demonstrate the  
application of this novel method, GBM, in a prenatal tobacco 
exposure study to test unobserved selection bias between TE 
and nonexposed (NE) neonates. In this study, exposure was 
measured prospectively, using self-report measures and bioas-
says during pregnancy. We selected emergent attention skills as 
the outcome from our earlier study (Espy et al., in press). Neo-
natal attention skills were measured three times during the first 
month of life. We hypothesized that propensity score modeling 
would account for substantial unobserved selection bias and 
that inclusion of the propensity score as a covariate would alter 
the pattern of prenatal tobacco exposure-related effects on early 
attention development. We also used birth weight, the most 
commonly reported outcome that is affected deleteriously by 
prenatal tobacco exposure (e.g., DiFranza, Aligne, & Weitzman, 
2004), as a second exemplar outcome to test the efficacy of the 
propensity score method, where the inclusion of the propensity 
score as a covariate again was expected to reveal the magnitude 
of change of the exposure-related effects on birth weight.

Methods
Participants
Study flyers were distributed to pregnant women over a 4.5-year 
period at all obstetric and prenatal clinics at two sites in the 
Midwest: a rural five-county region and a small-sized city. Nine 

hundred and fifteen women contacted the laboratory and com-
pleted a screening interview to gather demographic information 
for selection and determine study eligibility (i.e., plan to deliver 
at a local hospital, speak English in the home, no binge drinking 
defined as ≥4 drinks per day, and no illegal drug use). Screened 
women who reported smoking around the last menstrual peri-
od (to capture smokers who underreport smoking during very 
early pregnancy and are often misclassified; England et al., 
2007) or were actively smoking during pregnancy were recruit-
ed and enrolled. To reduce known demographic disparities  
between exposure groups, screened eligible nonsmokers were 
oversampled for enrollment based on Medicaid insurance status 
(a less intrusive proxy for income), race/ethnicity, and educa-
tion (<14 years), resulting in 387 participants.

Participants completed a comprehensive adapted timeline 
followback interview during pregnancy at 16 weeks, 28 weeks, 
and just after delivery (termed 40 weeks hereafter). The inter-
view gathered detailed information on smoking before and dur-
ing pregnancy. Questions regarding use of alcohol and other 
substances, background, and health-related questions, such as 
diet, exercise, and medication use, were also included. A bio-
logical measure of tobacco exposure via cotinine levels was gath-
ered for mothers and children using the DRI Cotinine Assay 
from U.S. Drug Laboratories. Mothers provided a urine sample 
at each interview during pregnancy, while neonatal cotinine was 
measured using a meconium sample taken from the neonate’s 
diaper shortly after birth and urine samples at 2- and 4-weeks.

Despite our efforts to selectively focus on tobacco use and 
eliminate the confounding of illegal drug use through screening, 
53 women denied use of marijuana during screening but admit-
ted use on subsequent prenatal interviews or their neonate tested 
positive for marijuana at birth. We retained their data as it is  
not uncommon in prospective exposure studies for women to 
answer sensitive questions differently at screening than later dur-
ing study enrollment when they are more comfortable. Because 
of the comorbidity of tobacco, alcohol, and marijuana use during 
pregnancy, particularly in heavier smokers, we elected to include 
a binary marijuana use variable in the propensity score estima-
tion. However, due to the known large impacts on neonatal be-
havior that would mask prenatal tobacco effects, women/neonate 
data were excluded from eight participants with heavy drinking 
during any prenatal month (≥1 drink per day), 1 participant who 
was prescribed antipsychotic medication throughout pregnancy, 
and 17 participants who were born ≤35-week gestation.

Procedures
Prenatal Tobacco Exposure Measurement and Group 
Classification
Prenatal tobacco exposure was determined using the number of 
maternal self-reported cigarettes during prenatal smoking and 
biospecimen assays in a three-step process. First, women who 
self-reported smoking any cigarettes during the prenatal period 
on any maternal prenatal interview were classified initially as TE 
and those who reported no smoking during the period on all 
interviews were classified initially as NE. Then, the consistency 
of self-reported smoking behavior across interviews was exam-
ined for congruence with initial group assignment. Where 
smoking status was consistent across interviews and agreed with 
the last smoking date, the exposure group assignment remained. 
If these criteria were not met, the reported last smoking dates 
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across the interviews were examined relative to the last men-
strual period. If a participant was initially classified NE despite 
last smoking dates falling in the window of pregnancy, that par-
ticipant was reclassified as TE. Using this procedure, 16 partici-
pants were reclassified. Finally, the results of the biospecimen 
sampling were considered, as self-reported smoking can underesti-
mate true maternal smoking due to social undesirability (Pley et al., 
1991). Using the cutoff value recommended by U.S. Drug Labo-
ratories, two women with urine cotinine values >100 ng/ml 
were reclassified as TE. Among the 361 neonates, 189 were clas-
sified as TE and 172 as NE.

The exposure group variable, determined by maternal self-
reported cigarette smoking and cotinine levels, reflected the 
direct group-level effect of tobacco exposure incurred by the 
neonate during pregnancy. To capture the effects of second
hand environmental smoke exposure to the mother that con-
tributes indirectly to offspring exposure, the self-reported 
number of smokers in home during pregnancy and daily part-
ner smoking amount in the presence of the participant (average 
value across the 16-, 28-, and 40-week interviews) were included 
as predictors in these models.

As expected, the mean cotinine levels in maternal urine and 
neonate meconium differed among the TE and NE groups at all 
timepoints (all ps < .01). The mean TE maternal urine cotinine 
was 364.95 ng/ml at 16 weeks and 333.21 ng/ml at 28 weeks. 
Mean NE maternal urine cotinine was 5.70 ng/ml at 16 weeks and 
10.75 ng/ml at 28 weeks. At the 40-week interview, the mean ma-
ternal urinary cotinine level for the TE group dropped to 75.7 ng/ml, 
whereas for NE women remained unchanged (11.69 ng/ml). The 
mean cotinine level in infant meconium of the TE (196.19 ng/ml) 
was significantly higher than the NE group (0.63 ng/ml, p< .001).

Outcomes
Neonates were administered a standardized neonatal tempera-
ment assessment (NTA; Riese, 1982, 1986) three times in the neo-
natal period: approximately two days after birth in the hospital 
(called at birth hereafter), 2 weeks in a university laboratory, and 
4 weeks in the participant’s home. The NTA has demonstrated 
reliability (Riese, 1986), and 4% of all assessments were coscored 
and yielded mean interrater module reliabilities between .89 
and .99. Individual NTA items were treated as multiple behavior 
indicators of three latent constructs that were identified empiri-
cally using principal-components analysis (Espy et al., in press); 
Attention/Orientation (AT), capturing infants’ responses to audi-
tory and visual stimuli and overall degree of alertness; Irritable 
Reactivity, summarizing infants’ irritability during orientation 
items and reflex elicitation procedures; and Stressor Dysregula-
tion, reflecting infants’ latency to soothe after the cold disc and 
pacifier withdrawal stress tests. Espy et al. (in press) provide further 
details related to NTA administration and data reduction.  
Although three latent constructs captured neonatal behavior, 
substantive exposure effects were noted mainly for the AT factor 
score in the Espy et al. (in press). Thus for the purposes here, only 
the AT domain was examined. For the second outcome, weight  
at birth, the neonate’s birth weight in grams as recorded by the 
hospital staff at delivery, was used as the dependent variable.

Analysis
Using propensity scores in analyses requires three basic steps: 
(a) propensity score estimation, (b) hypotheses testing with and 

without propensity score adjustment, and (c) sensitivity analy-
sis. Each step is described in detail in the following sections.

Step 1: Propensity Score Estimation
In theory, an unlimited number of confounding variables can be 
considered and included in propensity score estimation. These 
variables do not have to be related to one another and can be 
continuous or categorical variables. However, all included con-
founding variables should have a theoretical rationale for inclusion.

Smoking during pregnancy cooccurs with numerous potential 
confounding variables that are related to childhood outcomes, 
including maternal psychiatric symptoms of hostility, depres-
sion (Anda et al., 1990; Fergusson, Goodwin, & Horwood, 2003; 
Rodriguez, Bohlin, & Lindmark, 2000; Schuetze & Eiden, 2006; 
Whiteman, Fowkes, Deary, & Lee, 1997), and anxiety (Parton et al., 
1998), and Attention-Deficit Hyperactivity Disorder (ADHD) 
(Flick et al., 2006; Goodwin, Keyes, & Simuro, 2007; Kodl 
Middlecamp & Wakschlag, 2004). Pregnant smokers are also 
more likely to be young, poor, unmarried, and engage in other 
risky health behaviors during pregnancy, including alcohol and 
other drug use, and have suboptimal nutrition (Baghurst, Tong, 
Woodward, & McMichael, 1992; Breslau, 1995; Dani & Harris, 
2005; Pickett, Wilkinson, & Wakschlag, 2009 ). Therefore, in 
this study, we gathered information pertaining to these ma-
ternal background variables through comprehensive interviews 
during pregnancy at 16-, 28-, and 40 week. Table 1 provides the 
maternal variables collected, which included demographic infor-
mation, healthy diet (calculated by an average score of each subject 
across three visits if consumption of tuna, fish, bread, fruit, 
vegetables, and dairy were reported [yes/no]), mother’s weight, 
prenatal alcohol use (drinks per day per month), prenatal mari-
juana use (yes/no), and prenatal prescription medication (yes/
no for each medication). In addition to the interviews, during 
the 28-week session, participants completed the Brief Symptom 
Inventory (Derogatis, 1993) to assess maternal psychopathology 
symptoms and the Connors Adult ADHD Rating Scale—Short 
Form (Connors, Erhardt, & Sparrow, 1998) to measure ADHD 
symptoms. Mothers completed the Woodcock–Johnson Brief 
Intellectual Ability assessment during the 44-week postnatal  
interview to measure general intelligence (Woodcock, McGrew, & 
Mather, 2001). Standardized scores derived from instrument 
normative tables were used in all analyses. Less than 3% of the 
data were missing for the included confounding variables. Table 1 
provides the 42 potential confounding variables means or 
proportions by exposure group.

A propensity score was calculated for each participant using 
the 42 confounding variables and the GBM-based “twang” 
package in R 2.8.1 (Friedman, 2002 ; McCaffrey et al., 2004; 
R Development Core Team, 2008; Ridgeway, 2006).

Step 2: Hypotheses Testing of Exposure Effect On AT 
and Birth Weight With and Without Propensity Score 
Adjustment
Hypothesis testing was conducted to determine if the expo-
sure effect estimated from a statistical model would increase, 
decrease, or remain the same after controlling for selection 
bias. The obtained propensity score (single propensity score 
covariate), the exposure grouping variable (predictor of inter-
est), and two maternal secondhand smoke exposure variables 
were entered into a latent multiple indicator growth model for 
neonatal attention skills (MIGM, performed in Mplus 6.0; 
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Muthén & Muthén, 2007; see Supplementary Figure 1) and a 
linear regression model for infant birth weight.

Neonatal attention scores and weight at birth were the re-
spective outcome variables. For neonatal attention, the multiple 
indicator growth model that characterized developmental change 
in AT scores across age was used. This model integrates the struc-
tural equation approach of the relations between observed be-
havior indicators and latent constructs (e.g., NTA visual stimuli 
items to the AT construct) with the multilevel model conceptual-
ization of age (at birth, 2, and 4 weeks) within subjects (Muthén & 
Muthén, 2007). Measurement invariance was specified and test-
ed by holding the intercepts and factor loadings of the indicators 
equal across age. The maximum likelihood estimator with robust 
SEs (MLR) was used to allow for missing data at random as well 
as nonnormal and nonindependence outcomes (Yuan & Bentler, 
2000). For the MLR estimator, the chi-square likelihood ratio test 
based on log likelihood values and scaling correction factors  
(Satorra, 2000) was used with Akaike’s information criterion  
(AIC) and Bayesian information criteria  (BIC) to examine model 
fit. The residual variances of the factor indicators (i.e., individual 
items) and the latent factors were estimated and allowed to differ 
across age. The regression models were used to estimate birth 
weight with TE/NE exposure grouping variable and two maternal 
secondhand smoke exposure variables as predictors.

Step 3: Sensitivity Analysis
Using propensity scores helps examine the influences of mea-
sured confounding variables on exposure effects, although no 
study can measure all the possible confounding influences. The 
inability to include all potential confounding variables can result 
in hidden bias for estimated effects (Rosenbaum, 2002). In this 
study, sensitivity analyses were performed in R 2.8.1 (Friedman, 
2002; McCaffrey et al., 2004; R Development Core Team, 2008; 
Ridgeway, 2006). To begin, one observed confounding variable 
was removed from the propensity score model, treating it as an 
unobserved variable, and then the propensity score recalculated. 
Next, an obtained ratio of propensity scores with and without 
this confounding variable was computed for each person  
(McCaffrey et al., 2004; Ridgeway, 2006; Rosenbaum, 2002). 
This confounding variable then was added back into the model, 
the next confounding variable removed, and the process repeat-
ed. Finally, a worst-case scenario was repeatedly simulated for 
each removed confounding variable to reexamine the exposure 
effects on developmental parameters (i.e., intercepts, linear 
slopes, and quadratic decelerations for AT scores from our 
growth models) and birth weight. The worst-case scenario as-
sumes a larger and more unlikely relation between the develop-
mental parameters and calculated ratios than the actual observed 
correlations. In this study, an absolute correlation of .99 was 
used to illustrate this highly unlikely circumstance. If the worst-
case scenario resulted in dramatically different model estimates, 
then exposure effects were considered susceptible to hidden bias 
(McCaffrey et al., 2004). That is, the estimate exposure effects 
may be dramatically affected by latent confounding variables.

Results
Propensity Score Estimation
The relative influence, or percentage increase in the logistic log 
likelihood (Friedman, 2001), of each confounding variable was 

obtained from the GBM. Relative influence, provided in the 
rightmost column of Table 1, indicates a variable’s contribution 
to estimating the propensity score. The rank among confound-
ing variables was created according to the degree of relative in-
fluence, with the higher the contribution, the more important 
the confounding variable is to propensity score calculation. Re-
sults showed maternal alcohol use during first month of preg-
nancy, education, and alcohol use around conception as being 
the three most influential variables. It is important to note that 
we cannot conclude or infer any relationship between any con-
founding variable and outcomes through the propensity scores. 
The propensity score approach in hypothesis testing is only used 
to balance compared groups, reduce the selection bias for a spe-
cific sample, and help reveal the more accurate exposure effect, 
regardless of the relation among confounding variables and 
outcomes. As shown in Table 1, 26% of the increase in model 
likelihood was due to alcohol-use variables, 28% to maternal 
mental health variables (e.g., maternal depression, anxiety, hos-
tility, inattention, impulsivity, and hyperactivity), 26% to de-
mographics (e.g., marital status, age, education, intelligence, 
ethnicity, insurance status, and number of pregnancies), and 
20% to maternal health variables. Figure 1 displays the distribu-
tion of calculated propensity scores by exposure groups. The 
large difference between the TE and NE groups indicates that 
selection bias exists despite the stringent sampling plan used to 
reduce confounding influences. Based on these results, the pro-
pensity score variable was included as a covariate in the multiple 
indictor growth model for AT and in the regression model for 
weight at birth.

Hypotheses Testing With and Without 
Propensity Score Adjustment
Attention
Smaller AIC and BIC and significant MLR chi-square likelihood 
ratio tests indicated that the quadratic model (AIC = –4,517.59; 
BIC = –4,311.48; c2 

_MLR
 

difference
 = 28.76, p < .01) fit better than 

the linear model (AIC = –4,302.90; BIC = –4,116.23). These 
three indices (AIC = –2,101.00; BIC = –1,872.38; c2 

_MLR
 
difference

 = 
24.89, p < 0.05) also indicated that the full model including 
the propensity score fits the data better than the model with-
out propensity scores (AIC = –1,882.20; BIC = –1,665.21). 
The calculated developmental trajectories of the AT scores 
across age by exposure groups are plotted in Figure 2. Center-
ing at 4 weeks of age, the growth models without a propensity 
score showed that the intercept and linear change rate of TE 
neonates did not differ from their NE peers (g

_intecept
 = 0.016, 

SE = 0.018, p =0.39; g
_slope

 = 0.010, SE = 0.017, p = 0.58). The 
exposure groups also did not differ in their quadratic decel-
eration rate (g_

quadratic
 = –0.001, SE = 0.004, p = 0.77) over the 

first month of their life. The two maternal secondhand expo-
sure measures were not related to neonatal attention growth 
(number of self-reported smokers in home during pregnancy, 
ps > 0.10, and daily partner smoking amount in the presence 
of the participant, ps > 0.30). With propensity scores included, 
growth models showed that neonatal attention differences 
between TE and NE were larger in magnitude. Furthermore, 
compared with NE peers, TE neonates score marginally lower 
in AT at 4 weeks of age (g

_intecept_ps
 = –0.042, SE = 0.027, 

p = 0.10), with a marginally slower linear change rate (g
_slope_ps

 = 
–0.041, SE = 0.023, p = 0.08) and marginally greater quadratic 
deceleration rate (g

_quadratic_ps
 = –0.009, SE = 0.006, p = 0.10) over 
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Table 1. Descriptive Statistics By Exposure Group and Relative Influence in Propensity 
Scores

Confounding variables

Tobacco exposed Nonexposed

Ranka %M/% SD M/% SD

Maternal age at delivery (years)** 25.2 4.9 26.6 4.9 4 7.65
Maternal education (years)*** 12.98 1.56 13.88 1.71 2 9.83
% Medicaid 85 — 84 — 31 0.26
% Married*** 37 — 57 — 32 0.25
Maternal race (% White) 77 — 77 — 28 0.34
Maternal weight
  Prepregnancy 162.2 48.2 167.2 45.8 9 3.61
  Delivery 197.7 47.9 196.6 45.4 16 2.05
  Gain** 35.5 19.6 29.4 14.9 8 4.38
Number of previous pregnancies 1.68 2.05 1.61 1.55 20 1.44
Healthy diet 4.38 0.69 4.51 0.76 13 2.52
Exercise (% three times per week)
  Prepregnancy 47 — 53 — 26 0.54
  16 weeks 39 — 48 — 21 1.33
  28 weeks 42 — 42 — 35 0.11
  Delivery 31 — 34 — 34 0.17
% Prenatal marijuana use*** 20 — 5 — 7 4.45
Average number of alcohol drinks per day+

  At last menstrual period*** 0.467 0.926 0.109 0.337 3 8.55
  Month 1 pregnancy*** 0.245 0.398 0.036 0.092 1 14.88
  Month 2 pregnancy** 0.032 0.114 0.005 0.034 23 1.22
  Month 3 pregnancy 0.006 0.037 0.002 0.008 33 0.23
  Month 4 pregnancy 0.003 0.010 0.001 0.007 39 0.03
  Month 5 pregnancy 0.003 0.012 0.001 0.006 29 0.32
  Month 6 pregnancy* 0.004 0.016 0.001 0.006 30 0.30
  Month 7 pregnancy* 0.005 0.018 0.001 0.005 40 0.03
  Month 8 pregnancy 0.005 0.027 0.001 0.010 38 0.05
  Month 9 pregnancy 0.005 0.028 0.001 0.007 41 0.02
% Prenatal prescription medication
  Antidepressants 12 — 8 — 36 0.10
  Opioid-based analgesics 22 — 19 — 27 0.47
  Asthma 5 — 7 — 37 0.06
  Thyroid** 2 — 4 — — 0.00
BIA maternal IQ score*** 95.08 11.52 99.51 12.20 5 6.43
BSI subscale T score
  Anxiety* 50.70 9.61 48.59 9.21 19 1.54
  Depression** 53.70 8.74 51.21 9.00 17 1.94
  Hostility 57.49 9.16 56.33 8.54 18 1.88
  Interpersonal sensitivity 53.28 9.12 52.95 9.16 15 2.08
  Obsessive–compulsive 56.91 10.73 56.83 10.18 22 1.31
  Paranoid ideation 52.59 9.13 51.24 8.81 25 0.88
  Phobic anxiety** 51.62 8.52 49.35 7.24 11 3.10
  Psychoticism** 55.40 9.49 52.67 8.73 24 0.98
  Somatization 58.95 8.70 58.23 8.46 14 2.47
CAARS subscale T score
  Hyperactivity 47.98 8.32 46.46 7.33 6 5.81
  Impulsivity 46.16 6.92 45.66 6.94 12 2.78
  Inattention 48.03 8.40 47.83 7.99 10 3.60

Note. BIA = Woodcock-Johnson III Brief Intellectual Ability; BSI = Brief Symptom Inventory; CAARS = Connors Adult ADHD Rating Scale-Short 
Form.

aRank based on the magnitude of the relative influence listed in the last column; rank is not given if the relative influence is 0%.
*p < .05; **p < .01; ***p < .001.
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the first month. Again, maternal secondhand smoke exposure 
variables were unrelated to attention growth (number of self-
reported smokers in home during pregnancy, ps >0.12, and 
daily partner smoking amount in the presence of the partici-
pant, ps > 0.32).

Birth Weight
Similar to the AT results without propensity scores included,  
TE and NE groups did not differ in birth weight (g

_bwt
 = –71.352, 

SE = 49.826, p =0.15). However, inclusion of the GBM estimat-
ed propensity scores, the weight difference between the two ex-
posure groups, was greater in magnitude and reached marginal 
statistical significance (g

_bwt
 = –133.309, SE = 73.371, p = 0.07).

Sensitivity Analysis
The Supplementary Table selectively presents resulting prenatal 
exposure effects on the AT developmental parameters under the 

worst-case scenario after removing each of the top five influen-
tial confounding variables (as indicated in Table 1). These re-
sults indicated that the prenatal tobacco exposure effect did not 
appear to be sensitive to hidden bias as the worst-case scenario 
did not result in any dramatic change in the exposure effect on 
these developmental parameters. The same procedures were 
used to examine the hidden bias for the exposure effect on birth 
weight and again with no hidden bias found.

Discussion
The purpose of this study was to test the presence and evaluate 
the impact of selection bias in a carefully selected prospectively 
recruited observational sample. We then applied a GBM model 
to derive a propensity score for each individual. Using the de-
rived propensity score as a covariate, hypothesis testing was 

Figure 1.  Propensity score distribution by tobacco exposure group status (the two dots indicated two nonexposed [NE] have relatively high pro-
pensity scores and the rest of NE neonates have propensity scores below .40).

Figure 2.  Exposure-related group differences in Attention/Orientation (AT) with and without propensity score adjustment.
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conducted to determine if there were changes in the effects of 
prenatal tobacco exposure on important outcomes when pro-
pensity score covariate was included. Without propensity 
scores, the TE and NE groups did not differ in orientation to, 
and attentive tracking of, auditory and visual stimuli or in 
weight at birth. However, with a propensity score covariate in-
cluded in the models, the exposure-related effects were larger in 
magnitude. In comparison with NE neonates, those exposed 
had lower attention and linear change rate at 4 weeks of age, a 
greater deceleration in attention skills over the first month of 
life, and weighed less at birth. These attention differences ob-
served at 4 weeks of age, well after direct prenatal exposure has 
ceased, were not apparent in other studies when other analyses 
of covariance methods are used (Yolton et al., 2009). Similarly, 
the inclusion of propensity scores helped uncover the exposure 
group-level differences in birth weight that are not always evi-
dent in modern tobacco studies where the amount of smoking 
is substantially lower than studies conducted in earlier decades 
(Lumley, 1987; Shiono, Klebanoff, & Rhoads, 1986). Without 
the inclusion of propensity scores, the selection bias related to 
unaccounted background variables appears to have obscured 
exposure-related differences in neonatal attention and weight at 
birth. Of course, a different result might be obtained for other 
outcomes, for example, the Irritable Reactivity or Stressor Dys-
regulation domains from the NTA that were not examined here.

Although the statistical significance of tobacco exposure ef-
fect “improved” with the inclusion of the propensity score, that 
is not the purpose of propensity score modeling. Rather, pro-
pensity scores are included to minimize and theoretically elimi-
nate selection bias related to confounding variables, thereby 
helping reveal the more accurate exposure effects. Comparing 
the results of the statistical models without and with the pro-
pensity scores, there are three possible results, that is, the mag-
nitude of exposure effect can increase, decrease, or remain 
about the same. Larger or smaller exposure effects indicate that 
selection bias exists and needs to be tested to better characterize 
true exposure effects. Effects that are similar with and without 
propensity scores indicate that selection bias likely is negligible, 
which is also an important insight. Regardless of magnitude and 
direction of differences, this study indicates that section bias ex-
isted despite careful selection procedures used to minimize dif-
ference in background variables, as is common in modern 
observational designs for human teratological investigations. 
Propensity score modeling offers the opportunity to account for 
selection bias and thereby provide a more accurate and com-
plete interpretation of statistical results. However, one disad-
vantage of propensity score approach is that the propensity 
scores are calculated by treating exposure group as a categorical 
variable (and cannot be computed directly on a continuous ex-
posure variable), which might lead to some loss of information.

Taken as a whole, our findings illustrate three key points. 
First, the GBM method captured the selection bias and en-
hanced estimation of the influence of prenatal tobacco expo-
sure on neonatal attention and birth weight. Second, despite 
careful and prospective selection methods, the influences of 
confounding variables appeared to dilute exposure-related 
differences in the development of early attention/orientation 
skills, as well as in birth weight, between TE and NE neonates. 
Third, because of the influence of selection bias, exposure-
related outcome differences reported previously in other 
studies may be misattributed in magnitude and/or direction. 

Incorporating the propensity score methods illustrated here 
into the modeling strategy offers one potential method to bet-
ter characterize the true impact of prenatal tobacco exposure 
on important developmental outcomes in observational stud-
ies by statistically accounting for selection bias related to con-
founding influences.
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Tobacco Research online (http://www.ntr.oxfordjournals.org/).

Funding
This research was supported in part by National Institutes of 
Health (R01 DA014661, 2003–2008; DA023653, 2009–2013; 
DA024769, 2008–2010; MH065668, 2004–2014, and HD050309, 
2006–2011).

Declaration of Interests
The authors have no competing interests related and had access to 
all relevant data.

Acknowledgments
The authors acknowledge the participating families, hospital 
staff, and project personnel who made this work possible.

References
Anda, R., Williamson, D., Escobedo, L., Mast, E., Giovino, G., & 
Remington, P. (1990). Depression and the dynamics of smok-
ing: A national perspective. Journal of the American Medical 
Association, 264, 1541–1545.

Baghurst, P., Tong, S., Woodward, A., & McMichael, A. (1992). 
Effects of maternal smoking upon neuropsychological develop-
ment in early childhood: Importance of taking account of social 
and environmental factors. Paediatric and Perinatal Epidemiol-
ogy, 6, 403–415.

Braitman, L., & Rosenbaum, P. (2002). Rare outcomes, com-
mon treatments: Analytic strategies using propensity scores. 
Annals of Internal Medicine, 137, 693–695.

Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. 
(1984). Classification and regression trees. Belmont, CA: 
Wadsworth International Group.

Breslau, N. (1995). Psychiatric comorbidity of smoking and  
nicotine dependence. Behavior Genetics, 25, 95–101.

Buhlmann, P., & Yu, B. (2003). Boosting with the L2 loss:  
Regression and classification. Journal of the American Statistical 
Association, 98, 324–339.

Connors, C. K., Erhardt, D., & Sparrow, E. (1998). CAARS—
Self-report: Short version (CAARS—S: S). North Tonawanda, 
NY: Multi-Health Systems.



1218

Propensity score adjustment

D’Agostino, R. (1998). Propensity score methods for bias re-
duction in the comparison of treatment to a non-randomized 
control group. Statistics in Medicine, 17, 2265–2281.

Dani, J., & Harris, R. (2005). Nicotine addiction and comorbid-
ity with alcohol abuse and mental illness. Nature Neuroscience, 
8, 1465–1469.

Derogatis, L. R. (1993). Brief Symptom Inventory (BSI): Admin-
istration, scoring and procedures manual. Minneapolis, MN: 
NCS Pearson.

DiFranza, J. R., Aligne, C. A., & Weitzman, M. (2004). Prenatal 
and postnatal environmental tobacco smoke exposure and  
children’s health. Pediatrics, 113, 1007–1015.

England, L. J., Grauman, A., QainWilkins, D. G., Schisterman, E. F., 
Yu, K. F., & Levine, R. J. (2007). Misclassification of maternal 
smoking status and its effects on an epidemiologic study  
of pregnancy outcomes. Nicotine & Tobacco Research, 9, 
1005–1013.

Espy, K. A., Fang, H., Johnson, C., Stopp, C., Wiebe, S., & 
Respass, J. (in press). Prenatal tobacco exposure: Develop-
mental impact on neonatal regulation. Developmental 
Psychology.

Fergusson, D., Goodwin, R., & Horwood, R. (2003). Major de-
pression and cigarette smoking: Results of a 21-year longitudi-
nal study. Psychological Medicine, 33, 1357–1367.

Flick, L., Cook, C., Homan, S., McSweeney, M., Campbell, C., & 
Parnell, L. (2006). Persistent tobacco use among during preg-
nancy and the likelihood of psychiatric disorders. American 
Journal of Public Health, 96, 1799–1807.

Freund, Y., & Schapire, R. E. (1997). A decision-theoretic gen-
eralization of on-line learning and an application to boosting. 
Journal of Computer and System Sciences, 55, 119–139.

Friedman, J. H. (2001). Greedy function approximation: A gra-
dient boosting machine. Annals of Statistics, 29, 1189–1232.

Friedman, J. H. (2002). Stochastic gradient boosting. Computa-
tional Statistics and Data Analysis, 38, 367–378.

Goodwin, R., Keyes, K., & Simuro, N. (2007). Mental disorders 
and nicotine dependence among pregnant women in the United 
States. Obstetrics and Gynecology, 109, 875–883.

Imbens, G. (2003). Nonparametric estimation of average treat-
ment effects under exogeneity: A review, (National Bureau of 
Economic Research, Technical Report, T0294) Retrieved from  
http://www.nber.org/papers/t0294

Kodl, Middlecamp M., & Wakschlag, L. (2004). Does a child-
hood history of externalizing problems predict smoking during 
pregnancy? Addictive Behaviors, 29, 273–279.

Lumley, J. (1987). Stopping smoking. British Journal of Obstet-
rics & Gynecology, 94, 289–294.

McCaffrey, D., Ridgeway, G., & Morral, A. (2004). Propensity 
score estimation with boosted regression for evaluating adolescent 
substance abuse treatment. Psychological Methods, 9, 403–425.

Muthén, L., & Muthén, B. (2007). Mplus user’s guide (5th ed.). 
Los Angeles, CA: Author.

Parton, G., Carlin, J., Coffey, C., Wolfe, R., Hibbert, M., & 
Bowes, G. (1998). Depression, anxiety, and smoking initiation: 
A prospective study over 3 years. American Journal of Public 
Health, 88, 1518–1522.

Pickett, K., Wilkinson, R., & Wakschlag, L. (2009). The psycho-
social context of pregnancy smoking and quitting in the Millen-
nium Cohort Study. Journal of Epidemiology and Community 
Health, 63, 474–480.

Pley, E., Wouters, E., Voorhorst, F., Stolte, S., Kurver, P., &  
de Jong, P. (1991). Assessment of tobacco-exposure during 
pregnancy; behavioural and biochemical changes. European 
Journal of Obstetrics, Gynecology and Reproductive Biology, 40, 
197–201.

R Development Core Team. (2008). R: A language and environ-
ment for statistical computing. Vienna, Austria: R Foundation for 
Statistical Computing. ISBN 3-900051-07-0 Retrieved from 
http://www.R-project.org

Ridgeway, G. (2006). Assessing the effect of race bias in post-
traffic stop outcomes using propensity scores. Journal of Quan-
titative Criminology, 22, 1–29.

Riese, M. (1982). Procedures and norms for assessing behav-
ioral patterns in full-term and stable pre-term neonates. JSAS 
Catalog of Selected Documents in Psychology, 12(MS. No.2415).

Riese, M. (1986). Implications of sex differences in neonatal 
temperament for early risk and developmental/environmental 
interactions. Journal of Genetic Psychology, 147, 507–513.

Rodriguez, A., Bohlin, G., & Lindmark, G. (2000). Psychosocial 
predictors of smoking and exercise during pregnancy. Journal of 
Reproductive and Infant Psychology, 18, 203–223.

Rosenbaum, P. (2002). Observational studies. New York, NY: 
Springer.

Rosenbaum, P., & Rubin, D. (1983). The central role of the pro-
pensity score in observational studies for causal effects. 
Biometrika, 70, 41–55.

Rosenbaum, P., & Rubin, D. (1984). Reducing bias in observa-
tional studies using subclassification on the propensity score. 
Journal of the American Statistical Association, 79, 516–524.

Satorra, A. (2000). Scaled and adjusted restricted tests in multi-
sample analysis of moment structures. In R. D. H. Heijmans,  
D. S. G. Pollock & A. Satorra (Eds.), Innovations in multivariate 
statistical analysis. A Festschrift for Heinz Neudecker (pp. 233–247), 
London: Kluwer Academic.

Schapire, R. E., & Singer, Y. (1999). Improved boosting algo-
rithms using confidence-rated predictors. Machine Learning, 37, 
297–336.

Schuetze, P., & Eiden, R. (2006). The association between ma-
ternal smoking and secondhand exposure and autonomic func-
tioning at 2–4 weeks of age. Infant Behavior and Development, 
29, 32–43.



1219

Nicotine & Tobacco Research, Volume 12, Number 12 (December 2010) 

Shadish, W. R., Cook, T. D., & Campbell, D. T. (2002). Experi-
mental and quasi-experimental designs for generalized causal in-
ference. Boston, MA: Houghton-Mifflin.

Shiono, P. H., Klebanoff, M., & Rhoads, C. (1986). Smoking 
and drinking during pregnancy. Journal of the American Medical 
Association, 255, 82–84.

Wang, J., & Donnan, P. T. (2001). Propensity score methods in 
drug safety studies: Practice, strengths and limitations. Pharma-
coepidemiology and Drug Safety, 10, 341–344.

West, S. G., Biesanz, J. C., & Pitts, S. C. (2000). Causal inference and 
generalization in field settings experimental and quasiexperimental 
designs. In H. T. Reis & C. M. Judd (Eds.), Handbook of research 
methods in social and personality psychology (pp. 40–88), New York: 
Cambridge University Press.

Whiteman, M., Fowkes, F., Deary, I., & Lee, A. (1997). Hostility, 
cigarette smoking and alcohol consumption in the general pop-
ulation. Social Science Medicine, 44, 1089–1096.

Woodcock, R., McGrew, K., & Mather, N. (2001). Woodcock-
Johnson III Tests of Cognitive Abilities: Brief Intellectual Ability. 
Itasca, IL: Riverside Publishing.

Yolton, K., Khoury, J., Xu, Y., Succop, P., Lanphear, B.,  
Bernert, J. T., et al. (2009). Low-level prenatal exposure to nico-
tine and infant neurobehavior. Neurotoxicology and Teratology, 
31, 356–363.

Yuan, K., & Bentler, P. (2000). Three likelihood-based methods 
for mean and covariance structure analysis with nonnormal 
missing data. In M. E. Sobel & M. P. Becker (Eds.), Sociological 
methodology 2000 (pp. 165–200), Washington, DC: ASA.


