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Abstract
People are remarkably smart: they use language, possess complex motor skills, make non-trivial
inferences, develop and use scientific theories, make laws, and adapt to complex dynamic
environments. Much of this knowledge requires concepts and this paper focuses on how people
acquire concepts. It is argued that conceptual development progresses from simple perceptual
grouping to highly abstract scientific concepts. This proposal of conceptual development has four
parts. First, it is argued that categories in the world have different structure. Second, there might
be different learning systems (sub-served by different brain mechanisms) that evolved to learn
categories of differing structures. Third, these systems exhibit differential maturational course,
which affects how categories of different structures are learned in the course of development. And
finally, an interaction of these components may result in the developmental transition from
perceptual groupings to more abstract concepts. This paper reviews a large body of empirical
evidence supporting this proposal.
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1. Knowledge Acquisition: Categories and Concepts
People are remarkably smart: they use language, possess complex motor skills, make non-
trivial inferences, develop and use scientific theories, make laws, and adapt to complex
dynamic environments. At the same time, they do not exhibit evidence of this knowledge at
birth. Therefore, one of the most interesting and exciting challenges in the study of human
cognition is to gain an understanding of how people acquire this knowledge in the course of
development and learning.

A critical component of knowledge acquisition is the ability to use acquired knowledge
across a variety of situations, which requires some form of abstraction or generalization.
Examples of abstraction are ample. People can recognize the same object under different
viewing conditions. They treat different dogs as members of the same class and expect them
to behave in fundamentally similar ways. They learn words uttered by different speakers.
Upon learning a hidden property of an item, they extend this property to other similar items.
And they apply ways of solving familiar problems to novel problems. In short, people can
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generalize or form equivalence classes by focusing only on some aspects of information
while ignoring others.

This ability to form equivalence classes or categories is present in many non-human species
(see Zentall et al., 2008 for a review); however, only humans have the ability to acquire
concepts – lexicalized groupings that allow ever increasing levels of abstraction (e.g., Cat --
> Animal --> Living thing --> Object). These lexicalized groupings may include both
observable and unobservable properties. For example, although pre-linguistic infants can
acquire a category “cat” by strictly perceptual means (Quinn, Eimas, & Rosenkrantz, 1993),
the concept “cat” may include many properties that have to be inferred rather than observed
directly (e.g., “mating only with cats, but not with dogs”, “being able to move in a self-
propelled manner”, “having insides of a cat”, etc.). Often such properties are akin to latent
variables – they are inferred from patterns of correlations among observable properties (cf.,
Rakison & Poulin-Dubois, 2001). These properties can also be lexicalized, and when
lexicalized, they allow non-trivial generalizations (e.g., “plants and animals are alive” or
“plants and animals reproduce themselves”). While the existence of pre-linguistic concepts
is a matter of considerable debate, it seems rather non-controversial to define those
lexicalized properties that have to be inferred (rather than observed) as conceptual and
lexicalized categories that include such properties as concepts.

Concepts are central to human intelligence as they allow uniquely human forms of
expression, such as many forms of reasoning. For example, counterfactuals (e.g., “if the
defendant were at home at the time of the crime, she could not have been at the crime scene
at the same time”) would be impossible without concepts. According to the present proposal,
most concepts develop from perceptual categories and most conceptual properties are
inferred from perceptual properties1. Therefore, although categories comprise a broader
class than concepts (i.e., there are many categories that are not lexicalized and are not based
on conceptual properties), there is no fundamental divide between category learning and
concept acquisition.

Most of the examples presented in this paper deal with “thing” concepts (these are
lexicalized by “nominals”), whereas many other concepts, such as actions, properties,
quantities, and conceptual combinations are left out. This is because nominals are often most
prevalent in the early vocabulary (Nelson, 1973; Gentner, 1982) and entities corresponding
to nominals are likely to populate the early experience. Therefore, these concepts appear to
be a good starting point in thinking about conceptual development.

The remainder of the paper consists of four parts. First, I consider what may develop in the
course of conceptual development. Second, I consider some of the critical components of
category learning: the structure of input, the multiple competing learning systems, and the
asynchronous developmental time course of these systems. Third, I consider evidence for
interactions among these components in category learning and category representation. And,
finally, I consider how conceptual development may proceed from perceptual groupings to
abstract concepts.

2. The Origins of Conceptual Knowledge
In an attempt to explain developmental origins of conceptual knowledge, a number of
theoretical accounts have been proposed. Some argue that input is dramatically
underconstrained to enable acquisition of complex knowledge and some knowledge has to

1For the moment, I will ignore a relatively small class of abstract concepts – “electron” would be a good example -- that start out as a
lexical entry. However, I will return to this issue later in the paper.
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come a priori from the organism, thus constraining future knowledge acquisition. Others
suggest that there is much regularity (and thus many constraints) in the environment, with
additional constrains stemming from biological specifications of the organism (e.g., limited
processing capacity, especially early in development). In the remainder of this section I
review these theoretical approaches.

2.1. Skeletal Principles, Core Knowledge, Constraints, and Biases
According to this proposal, structured knowledge cannot be recovered from perceptual input
because the input is too indeterminate to enable such recovery (cf. R. Gelman, 1990). This
approach is based on an influential idea that was originally proposed for the case of
language acquisition but was later generalized to some other aspects of cognitive
development, including conceptual development. The original idea is that linguistic input
does not have enough information to enable the learner to recover a particular grammar,
while ruling out alternatives (Chomsky, 1980). Therefore, some knowledge has to be innate
to enable fast, efficient, and invariable learning under the conditions of impoverished input.
This argument (known as the Poverty of the Stimulus argument) has been subsequently
generalized to perceptual, lexical, and conceptual development. If input is too impoverished
to constrain possible inductions and to license the concepts that we have, the constraints
have to come from somewhere. It has been proposed that these constraints are internal –
they come from the organism, and they are a priori and top-down (i.e., they do not come
from data). A variety of such constraints have been proposed, including, but not limited to,
innate knowledge within “core” domains (Carey, 2009; Carey & Spelke, 1994, 1996;
Spelke, 2000; Spelke & Kinzler, 2007), skeletal principles (e.g., R. Gelman, 1990),
ontological knowledge (Keil, 1979; Mandler, Bauer, & McDonough, 1991; Pinker, 1984;
Soja, Carey, & Spelke, 1991), conceptual assumptions (S. Gelman, 1988; S. Gelman &
Coley, 1991; E. Markman, 1989), and word learning biases (E. Markman, 1989; see also
Golinkoff, Mervis, & Hirsh-Pasek, 1994).

However, there are several lines of evidence challenging (a) the explanatory machinery of
this account with respect to language (Chater & Christiansen, this issue) and (b) the
existence of particular core abilities (e.g., Twyman & Newcome, this issue). Furthermore,
while the Poverty of the Stimulus argument is formally valid, its premises and therefore its
conclusions are questionable. Most importantly, very little is known about the information
value of input with respect to knowledge in question. Therefore it is not clear whether input
is in fact as impoverished as it has been claimed. In addition, there are several lines of
evidence suggesting that input might be richer than it is expected under the Poverty of the
Stimulus assumption.

First, the fact that infants, great primates, monkeys, rats, and birds all can learn a variety of
basic level perceptual categories (Cook & Smith, 2006; Quinn, et al, 1993; Smith, Redford,
& Haas, 2008; Zentall, et al, 2008) strongly indicates that perceptual input (at least for basic
level categories) is not impoverished. Otherwise, one would need to assume that all these
species have the same constraints as humans, which seems implausible given vastly different
environments in which these species live.

In addition, there is evidence that perceptual input (Rakison & Poulin-Dubois, 2001) or a
combination of perceptual and linguistic input (Jones & Smith, 2002; Samuelson & Smith,
1999; Yoshida & Smith, 2003) can jointly guide acquisition of broad ontological classes.
Furthermore, cross-linguistic evidence suggests that ontological boundaries exhibit greater
cross-linguistic variability than could be expected if they were fixed (Imai & Gentner, 1997;
Yoshida & Smith, 2003). Therefore there might be enough information in the input for the
learner to form both basic-level categories and broader ontological classes. There is also
modeling work (e.g., Gureckis & Love, 2004; Rogers & McClelland, 2004) offering a
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mechanistic account of how coherent covariation in the input could guide acquisition of
broad ontological classes as well as more specific categories.

In short, there are reasons to doubt that input is in fact impoverished, and if it is not
impoverished, then a priori assumptions are not necessary. Therefore, to understand
conceptual development, it seems reasonable to shift the focus away from a priori
constraints and biases and towards the input and the way it is processed.

2.2. Similarity, Correlations, and Attentional Weights
According to an alternative approach, conceptual knowledge as well as some of the biases
and assumptions are a product rather than a precondition of learning (see Rogers &
McClelland, 2004, for a connectionist implementation of these ideas). Early in development
cognitive processes are grounded in powerful learning mechanisms, such as statistical and
attentional learning (Smith, 1989; Smith, Jones, & Landau, 1996; French, Mareschal,
Mermillod, & Quinn, 2004; Mareschal, Quinn, & French, 2002; Rogers & McClelland,
2004; Saffran, Johnson, Aslin, & Newport, 1999; Sloutsky, 2003; Sloutsky & Fisher,
2004a).

According to this view, input is highly regular and the goal of learning is to extract these
regularities. For example category learning could be achieved by detecting multiple
commonalities, or similarities, among presented entities. In addition, not all commonalities
are the same – features may differ in salience and usefulness for generalization, with both
salience and usefulness of a feature reflected in its attentional weight. However, unlike the a
priori assumptions, attentional weights are not fixed and they can change as a result of
learning: attentional weights of more useful features increase while these weights decrease
for less useful features (Kruschke, 1992; Nosofsky, 1986; Opfer & Siegler, 2004; Sloutsky
& Spino, 2004, see also Hammer & Diesendruck, 2005).

There are several lines of research presenting evidence that both basic level categories (e.g.,
dogs) and broader ontological classes (e.g., animates vs. inanimates) have multiple
perceptual within-category commonalities and between-category differences (French, et al.,
2004; Rakison & Poulin-Dubois, 2001; Samuelson & Smith, 1999). Some researchers argue
that additional statistical constraints come from language in the form of syntactic cues, such
as count noun and mass noun syntax (Samuelson & Smith, 1999). Furthermore, cross-
linguistic differences in the syntactic cues (e.g., between English and Japanese) can push
ontological boundaries in speakers of respective languages (Imai & Gentner, 1997; Yoshida
& Smith, 2003). Finally, different categories could be organized differently (e.g., living
things could be organized by multiple similarities, whereas artifacts could be organized by
shape), and there might be multiple correlations between category structure, perceptual cues
and linguistic cues. All this information could be used to distinguish between different
kinds. As children acquire language, they may become sensitive to these correlations, which
may affect their attention to shape in the context of artifacts versus living things (Jones &
Smith, 2002).

This general approach may offer an account of conceptual development that does not posit a
priori knowledge structures. It assumes that input is sufficiently rich to enable the young
learner to form perceptual groupings. Language provides learners with an additional set of
cues that allow them to form more abstract distinctions. Finally, lexicalization of such
groupings as well as of some unobservable conceptual features could result in acquisition of
concepts at progressively increasing levels of abstraction. In the next section, I will outline
how conceptual development could proceed from perceptual groupings to abstract concepts.
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2.3. From Percepts to Concepts: What Develops?
If people start out with perceptual groupings, how do they end up with sophisticated
conceptual knowledge? According to the proposal presented here, conceptual development
hinges on several critical steps. These include the ability to learn similarity-based uni-modal
categories, the ability to integrate cross-modal information, the lexicalization of learned
perceptual groupings, the lexicalization of conceptual features, and the development of
executive function. The latter development is of critical importance for acquiring abstract
concepts that are not grounded in similarity. Examples of such concepts are unobservables
(e.g., love, doubt, thought), relational concepts (e.g., enemy or barrier), as well as a variety
of rule-based categories (e.g., island, uncle, or acceleration). Because these concepts require
focusing on unobservable abstract features, their acquisition may depend on the maturity of
executive function.

This developmental time course is determined in part by an interaction of several critical
components. These components include: (a) the structure of the to-be-learned category, (b)
the competing learning systems that might sub-serve learning categories of different
structures, and (c) developmental course of these learning systems. First, categories differ in
their structure. For example, some categories (e.g., most of natural kinds, such as cat or dog)
have multiple intercorrelated features relevant for category membership. These features are
jointly predictive, thus yielding a highly redundant (or statistically dense) category. These
categories often have graded membership (i.e., a typical dog is a better member of the
category than an atypical dog) and fuzzy boundaries (i.e., it is not clear whether a cross
between a dog and a cat is a dog). At the same time, other categories are defined by a single
dimension or a relation between or among dimensions. Members of these categories have
very few common features, with the rest of the features varying independently and thus
contributing to irrelevant or “surface” variance. Good examples of such sparse categories are
mathematical and scientific concepts. Consider the two situations: (1) increase in a
population of fish in a pond and (2) interest accumulation in a bank account. Only a single
commonality – exponential growth – makes both events instances of the same mathematical
function. All other features are irrelevant for membership in this category and can vary
greatly.

Second, there might be multiple systems of category learning (e.g., Ashby, et al., 1998)
evolved to learn categories of different structures. In particular, a compression-based system
may sub-serve category learning by reducing perceptually-rich input to a more basic format.
As a result of this compression, features that are common to category members (but not to
non-members) become a part of representation, whereas idiosyncratic features get washed
out. In contrast, the selection-based system may sub-serve category learning by shifting
attention to category-relevant dimension(s) and away from irrelevant dimension(s). Such
selectivity may require the involvement of brain structures associated with executive
function. The compression-based system could have an advantage for learning dense
categories, which could be acquired by mostly perceptual means. At the same time, the
selection-based system could have an advantage for learning sparse categories, which
require focusing on few category-relevant features (Kloos & Sloutsky, 2008; see also Blair,
Watson and Meire, 2009, for a discussion).

The involvement of each system may also affect what information is encoded in the course
of category learning, and, subsequently, how a learned category is represented. In particular,
the involvement of the compression-based system may result in a reduced yet fundamentally
perceptual representation of a category, whereas the involvement of the selection-based
system may result in a more abstract (e.g., lexicalized) representation. Given that many real-
life categories (e.g., dogs, cats, or cups) are acquired by perceptual means and later undergo
lexicalization, there are reasons to believe that these categories combine perceptual
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representation with a more abstract lexicalized representation. These abstract lexicalized
representations are critically important for the ability to reason and form arguments that
could be all but impossible to form by strictly perceptual means. For example, it is not clear
how purely perceptual representation of constituent entities would support a counterfactual
of the form “If my grandmother were my grandfather…”

And third, the category learning systems and associated brain structures may come on-line at
different points in development, with the system sub-serving learning of dense categories
coming on-line earlier than the system sub-serving learning of sparse categories. In
particular, there is evidence that many components of executive function critical for learning
sparse categories exhibit late developmental onset (e.g., Davidson, Amso, Anderson, &
Diamond, 2006). If this is the case, then able learning and representation of dense categories
should precede that of sparse categories. Under this view, “conceptual” assumptions do not
have to underlie category learning, as most categories that children acquire spontaneously
are dense and can be acquired implicitly, without a teaching signal or supervision. At the
same time, some of these “conceptual” assumptions could be a product of later development.

The current proposal of conceptual development has three parts (see Sections 3-5). In the
next section (Section 3), I consider in detail components of category learning: category
structure, the multiple competing learning systems, and the potentially different maturational
course of these systems. I suggest that categories in the world differ in their structure and
consider ways of quantifying this structure. I then present another argument that there might
be different learning systems (sub-served by different brain mechanisms) that evolved to
learn categories of differing structures. Finally, I argue that these systems exhibit differential
maturational course, which affects how categories of different structures are learned in the
course of development. Then, in Section 4, I consider an interaction of these components.
This interaction is important because it may result in the developmental transition from
perceptual groupings to abstract concepts. These arguments point to a more nuanced
developmental picture (presented in Section 5), in which learning of perceptual categories,
cross-modal integration, lexicalization, learning of conceptual properties, the ability to focus
and shift attention, and the development of lexicalized concepts are logical steps in
conceptual development.

3. Components of Category Learning: Input, Learning System, and the
Learner
3.1. Characteristics of Input: Category Structure

It appears almost self-evident that categories differ in their structure. Some categories are
coherent: their members have multiple overlapping features and are often similar (e.g., cats
or dogs are good examples of such categories). Other categories seem to be less coherent:
their members have few overlapping features (e.g., square things). These differences have
been noted by a number of researchers who pointed to different category structures between
different levels of ontology (e.g., Rosch, Mervis, Gray, Johnson, & Boyes-Braem, 1976) and
between animal and artifact categories (Jones & Smith, 2002; Jones, Smith, & Landau,
1991; E. Markman, 1989). Category structure can be captured formally and one such
treatment of category structure has been offered recently (Kloos & Sloutsky, 2008). The
focal idea of this proposal is that category structure can be measured by statistical density of
a category. Statistical density is a function of within-category compactness and between-
category distinctiveness, and may have profound effects on category learning. In what
follows, I flesh out this idea.

Sloutsky Page 6

Cogn Sci. Author manuscript; available in PMC 2011 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



3.1.1. Statistical Density as a Measure of Category Structure—Any set of items
can have a number of possible dimensions (e.g., color, shape, size), some of which might
vary and some of which might not. Categories that are statistically dense have multiple
intercorrelated (or covarying) features relevant for category membership, with only a few
features being irrelevant. Good examples of statistically dense categories are basic-level
animal categories such as cat or dog. Category members have particular distributions of
values on a number of dimensions (e.g., shape, size, color, texture, number of parts, type of
locomotion, type of sounds they produce, etc.). These distributions are jointly predictive,
thus yielding a dense (albeit probabilistic) category. Categories that are statistically sparse
have very few relevant features, with the rest of the features varying independently. Good
examples of sparse categories are dimensional groupings (e.g., “round things”), relational
concepts (e.g., “more”), scientific concepts (e.g., “accelerated motion”), or role-governed
concepts (e.g., cardinal number, see A. Markman & Stillwell, 2001, for a discussion of role-
governed categories).

Conceptually, statistical density is a ratio of variance relevant for category membership to
the total variance across members and non-members of the category. Therefore, density is a
measure of statistical redundancy (Shannon & Weaver, 1948), which is an inverse function
of relative entropy.

Density can be expressed as

(1)

where Hwithin is the entropy observed within the target category, and Hbetween is the entropy
observed between target and contrasting categories.

A detailed treatment of statistical density and ways of calculating it is presented elsewhere
(Kloos & Sloutsky, 2008); thus, only a brief overview of statistical density is presented
below. Three aspects of stimuli are important for calculating statistical density: variation in
stimulus dimensions, variation in relations among dimensions, and attentional weights of
stimulus dimensions.

First, a stimulus dimension may vary either within a category (e.g., members of a target
category are either black or white) or between categories (e.g., all members of a target
category are black, whereas all members of a contrasting category are white). Within-
category variance decreases density, whereas between-category variance increases density.

Second, dimensions of variation may be related (e.g., all items are black circles), or they
may vary independently of each other (e.g., items can be black circles, black squares, white
circles or white squares). Co-varying dimensions result in smaller entropy than dimensions
that vary independently. It is not unreasonable to assume that only dyadic relations (i.e.,
relations between two dimensions) are detected spontaneously, whereas relations of higher
arity (e.g., a relation among color, shape, and size) are not (cf., Whitman & Garner, 1962).
Therefore, only dyadic relations are included in the calculation of entropy.

The total entropy is the sum of the entropy due to varying dimensions (Hdim), and the
entropy due to varying relations among the dimensions (H rel). More specifically,

(2a)
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(2b)

The concept of entropy was formalized by the information theory (Shannon & Weaver,
1948), and we use these formalisms here. First consider the entropy due to dimensions. This
within-category and between-category entropy is presented in equations 3a and 3b
respectively.

(3a)

(3b)

where M is the total number of varying dimensions, wi is the attentional weight of a
particular dimension (the sum of attentional weights equals to a constant), and pj is the
probability of value j on dimension i (e.g., the probability of a color being white). The
probabilities could be calculated within a category or between categories.

The attentional-weight parameter is of critical importance – without this parameter, it would
be impossible to account for learning of sparse categories. In particular, when a category is
dense, even relatively small attentional weights of individual dimensions add up across
many dimensions. This makes it possible to learn the category without supervision.
Conversely, when a category is sparse, only few dimensions are relevant. If attentional
weights of each dimension are too small, supervision could be needed to direct attention to
these relevant dimensions.

Next, consider entropy that is due to a relation between dimensions. To express this entropy,
we need to consider the co-occurrences of dimensional values. If dimensions are binary,
with each value coded as 0 or 1 (e.g., white = 0, black = 1, circle = 0, and square = 1), then
the following four co-occurrence outcomes are possible: 00 (i.e., white circle), 01 (i.e., white
square), 10 (i.e., black circle), and 11 (i.e., black square). The within-category and between-
category entropy that is due to relations are presented in equations 4a and 4b, respectively.

(4a)

(4b)
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where O is the total number of possible dyadic relations among the varying dimensions, wk
is the attentional weight of a particular relation (again, the sum of attentional weights equals
to a constant), and pmn is the probability of a co-occurrence of values m and n on a binary
relation k (which conjoins two dimensions of variation).

3.1.2. Density, Salience, and Similarity—The concept of density is closely related to
the ideas of salience and similarity, and it is necessary to clarify these relations. First,
density is a function of weighted entropy, with attentional weight corresponding closely to
the salience of a feature. Therefore, feature salience can affect density by affecting the
attentional weight of the feature in question. Of course, as mentioned above, attentional
weights are not fixed and they can change as a result of learning. Second, perceptual
similarity is a sufficient, but not necessary condition of density – all categories bound by
similarity are dense, but not all dense categories are bound by similarity. For example, some
categories could have multiple overlapping relations rather than overlapping features (e.g.,
members of a category have short legs and short neck or long legs and long neck). It is
conceivable that such non-linearly-separable categories could be relatively dense, yet not
bound by similarity.

3.1.3. Category Structure and Early Learning—Although it is difficult to precisely
calculate density of categories surrounding young infants, some estimates can be made. It
seems that many of these categories, while exhibiting within-category variability in color
(and sometime in size), have similar within-category shape, material, and texture (ball, cup,
bottle, shoe, book, or apple are good examples of such categories); these categories should
be relatively dense. As I show below, dense categories can be learned implicitly, without
supervision. Therefore, it is possible that pre-linguistic infants implicitly learn many of the
categories surrounding them. Incidentally, the very first noun words that infants learn denote
these dense categories (see Dale & Fenson, 1996; Nelson, 1973). Therefore, it is possible
that some of early word learning consists of learning lexical entries for already known dense
categories. This possibility, however, is yet to be tested empirically.

Characteristics of the Learning System: Multiple Competing Systems of Category
Learning: The role of category structure in category learning has been a focus of the
neuroscience of category learning. Recent advances in that field suggest that there might be
multiple systems of category learning (e.g., Ashby, et al, 1998; Cincotta & Seger, 2007;
Nomura & Reber, 2008; Seger, 2008; Seger & Cincotta, 2002) and an analysis of these
systems may elucidate how category structure interacts with category learning. I consider
these systems in this section.

There is an emerging body of research on brain mechanisms underlying category learning
(see Ashby & Maddox, 2005; Seger, 2008, for reviews). While the anatomical localization
and the involvement of specific circuits remain a matter of considerable debate, there is
substantial agreement that “wholistic” or “similarity-based” categories (which are typically
dense) and “dimensional” or “rule-based” categories (which are typically sparse) could be
learned by different systems in the brain.

There are several specific proposals identifying brain structures that comprise each system
of category learning (Ashby, et al, 1998; Cincotta & Seger, 2007; Nomura & Reber, 2008;
Seger, 2008; Seger & Cincotta, 2002). Most of the proposals involve three major
hierarchical structures: cortex, basal ganglia, and thalamus. There is also evidence for the
involvement of the medial temporal lobe (MTL) in category learning (e.g., Nomura, et al,
2007; see also Love & Gureckis, 2007). However, because the maturational time course of
the MTL is not well understood (Alvarado & Bachevalier, 2000), I will not focus here on
this area of the brain.
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One influential proposal (e.g., Ashby et al, 1998) posited two cortical-striatal-pallidal-
thalamic-cortical loops, which define two acting in parallel circuits. The circuit responsible
for learning of similarity-based categories originates in extrastriate visual areas of the cortex
(such as, inferotemporal cortex) and includes the posterior body and tail of the caudate
nucleus. In contrast, the circuit responsible for the learning of rule-based categories
originates in the prefrontal and anterior cingulated cortices (ACC) and includes the head of
the caudate (Lombardi et al., 1999; Rao et al., 1997; Rogers et al., 2000).

In a similar vein, Seger and Cincotta (2002) propose the visual loop, which originates in the
inferior temporal areas and passes through the tail of the caudate nucleus in the striatum, and
the cognitive loop, which passes through the prefrontal cortex and the head of the caudate
nucleus. The visual loop has been shown to be involved in visual pattern discrimination in
nonhuman animals (Buffalo, et al., 1999; Fernandez-Ruiz et al., 2001; Teng et al., 2000),
and Seger and Cincotta (2002) have proposed that this loop may sub-serve learning of
similarity-based visual categories. The cognitive loop has been shown to be involved in
learning of rule-based categories (e.g., Rao et al., 1997; Seger & Cincotta, 2002; see also
Seger, 2008).

There is also evidence that category learning is achieved differently in the two systems. The
critical feature of the visual system is the reduction of information or compression, with only
some but not all stimulus features being encoded. Therefore, I will refer to this system as the
compression-based system of category learning. A schematic representation of processing in
this system is depicted in Figure 1A. The feature map in the top layer gets compressed in the
bottom layer, with only some features of the top layer represented in the bottom layer.

This compression is achieved by many-to-one projections of the visual cortical neurons in
the inferotemporal cortex onto the neurons of the tail of the caudate (Bar-Gad, Morris,
Bergman, 2003; Wilson, 1995). In other words, many cortical neurons converge on an
individual caudate neuron. As a result of this convergence, information is compressed to a
more basic form, with redundant and highly probable features likely to be encoded (and thus
learned) and idiosyncratic and rare features likely to be filtered out.

Category learning in this system results in a reduced (or compressed) yet fundamentally
perceptual representation of stimuli. If every stimulus is compressed, then those features and
feature relations that are frequent in category members should survive the compression,
whereas rare or unique features/relations should not. Because compression does not require
selectivity, compression-based learning could be achieved implicitly, without supervision
(such as feedback or even more explicit forms of training), and it should be particularly
successful in learning of dense categories.

In short, there is a critical feature of the compression-based system – it can learn dense
categories without supervision. Under some conditions, the compression-based system may
also learn structures defined by a single dimension of variation (e.g., color or shape). For
example, when there is a small number of dimensions of variation (e.g., color and shape,
with shape distinguishing among categories), compression may be sufficient for learning a
category relevant dimension. However, if categories are sparse, with only few relevant
dimensions and multiple irrelevant dimensions, learning of the relevant dimensions by
compression could be exceedingly long or not possible at all.

The critical aspect of the second system of category learning is the cognitive loop which
involves (in addition to the striatum) the dorsolateral prefrontal cortex and the Anterior
Cingulate Cortex (ACC) -- the cortical areas that sub-serve attentional selectivity, working
memory, and other aspects of executive function (cf. Posner & Petersen, 1990). I will
therefore refer to this system as selection-based. The selection-based system enables
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attentional learning – allocation of attention to some stimulus dimensions and ignoring
others (e.g., Kruschke, 1992, Kruschke, 2001; Mackintosh, 1975; Nosofsky, 1986). Unlike
the compression-based system where learning is driven by reduction and filtering of
idiosyncratic features (while retaining features and feature correlations that recur across
instances), learning in the selection-based system could be driven by error reduction. As
schematically depicted in Figure 1B, attention is shifted to those dimensions that predict
error reduction and away from those that do not (e.g., Kruschke, 2001, but see Blair et al,
2009).

Given that attention has to be shifted to a relevant dimension, the task of category learning
within the selection-based system should be easier when there are fewer relevant dimensions
(see Kruschke, 1993, 2001 for related arguments). This is because it is easier to shift
attention to a single dimension than to allocate it to multiple dimensions. Therefore, the
selection-based system is better suited to learn sparse categories (recall that the
compression-based system is better suited to learn dense categories). For example, Kruschke
(1993) describes an experiment where participants learned a category in a supervised
manner, with feedback presented on every trial. For some categories, a single dimension was
relevant, whereas for other categories, two related dimensions were relevant for
categorization. Participants were shown to learn better in the former than in the latter
condition. Given that learning was supervised (i.e., category learning and stimulus
dimensions that might be relevant for categorization were mentioned explicitly, and
feedback was given on every trial), it is likely that the selection-based system was engaged.

The selection-based system depends critically on prefrontal circuits as these circuits enable
the selection of a relevant stimulus dimension (or rule), while inhibiting irrelevant
dimensions. The selected (and perhaps amplified) dimension is likely to survive the
compression in the striatum, whereas the non-selected (and perhaps weakened) dimensions
may not. Therefore, there is little surprise that young children (whose selection-based
system is still immature) tend to exhibit successful categorization performance when
categories are based on multiple dimensions than when they are based on a single dimension
(e.g., L. B. Smith, 1989).

How are the systems deployed? Although the precise mechanism remains unknown, several
ideas have been proposed. For example, Ashby et al (1998) posited competition between the
systems, with the selection-based system being deployed by default. This idea stems from
evidence that participants exhibited more able learning when categories were based on a
single dimension than when categories are based on multiple dimensions (e.g., Ashby, et al.,
1998; Kruschke, 1993). However, it is possible that the selection-based system was triggered
by feedback and explicit learning regime, whereas in the absence of supervision the
compression-based system is a default (cf. Kloos & Sloutsky, 2008). Furthermore, it seems
unlikely that the idea of the default deployment of the selection-based system describes
accurately what happens early in development. As I argue in the next section, because some
critical cortical components of the selection-based system mature relatively late, it is likely
that early in development the competition is weakened (or even absent), thus making the
compression-based system default.

If the compression-based system is deployed by default early in development (and, when
supervision is absent, it is deployed by default in adults as well), this default deployment
may have consequences for category learning. In particular, if a category is sparse, the
compression-based system may fail to learn it due to a low signal-to-noise ratio in the sparse
category. In contrast, the selection-based system may have the ability to increase the signal-
to-noise ratio by shifting attention to the signal, thus either amplifying the signal or by
inhibiting noise.
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The idea of multiple systems of category learning has been supported by both fMRI and
neuropsychological evidence. In one neuroimaging study reported by Nomura et al. (2007)
participants were scanned while learning two categories of sine wave gratings. The gratings
varied on two dimensions: spatial frequency and orientation of the lines. In the rule-based
condition, category membership was defined only by the spatial frequency of the lines (see
Figure 2a), whereas in the “wholistic” condition, both frequency and orientation determined
category membership (see Figure 2b). Note that each point in Figure 2 represents an item
and the colors represent distinct categories. Rule-based categorization showed greater
differential activation in the hippocampus, the ACC, and medial frontal gyrus. At the same
time, the wholistic categorization exhibited greater differential activation in the head and tail
of the caudate.

Some evidence for the possibility of the two systems of category learning stem from
neuropsychological research. One of the most frequently studied populations are patients
with Parkinson’s disease (PD), because the disease often affects frontal cortical areas in
addition to striatal areas (e.g., van Domburg & ten Donkelaar, 1991). As a result, these
patients often exhibit impairments in both the compression-based and the selection-based
systems of category learning. Therefore, this group provides only indirect rather than clear
cut evidence for the dissociation between the systems. For example, impairments of the
compression-based system in PD were demonstrated in a study by Knowlton, Mangles, and
Squire (1996), in which patients with Parkinson’s disease (which affects the release of
dopamine in the striatum) had difficulty learning probabilistic categories that were
determined by co-occurrence of multiple perceptual cues. Impairments of the selection-
based learning system have been demonstrated in patients with damage to the prefrontal
cortex (which also often include PD patients). Specifically, in the multiple studies using the
Wisconsin Card Sorting Test (WCST: Berg, 1948; Brown & Marsden, 1988; Cools et al.,
1984), it was found that the patients often exhibit impaired learning of categories based on
verbal rules, as well as impairments in shifting attention from successfully learned rules to
new rules (see Ashby, et al., 1998, for a review).

In the WCST, participants have to discover an experimenter-defined matching rule (e.g.,
“objects with the same shape go together”) and respond according to the rule. In the middle
of the task, the rule may change and participants must sort according to the new rule. Two
aspects of the task are of interest, rule learning and response shifting, with both being likely
to be sub-served by the selection-based system (see Ashby, et al., 1998, for a discussion).
There are several types of shifts, with two being of particular interest for understanding of
the selection-based system – the reversal shift and the extradimensional shift.

The reversal shift consists of a reassignment of a dimension to a response. For example, a
participant could initially learn that “if Category A (say the color is green), then press button
1, and if Category B (say the color is red), then press button 2.” The reversal shift requires a
participant to change the pattern of responding, such that “if Category A, then press button
2, and if Category B, then press button 1.” In contrast, the extradimensional shift consists of
change in which dimension is relevant. For example, if a participant initially learned that “if
Category A (say the color is green), then press button 1, and if Category B (say the color is
red), then press button 2,” the extradimensional shift would require a different pattern of
responding: “if Category K (say the size is small), then press button 1, and if Category M
(say the size is large), then press button 2.” Findings indicate that patients with lesions to
prefrontal cortices had substantial difficulties with extradimensional, but not with the
reversal shifts on the WCST (e.g., Rogers, Andrews, Grasby, Brooks, & Robbins, 2000).
Therefore, these patients did not have a difficulty inhibiting the previously learned pattern of
responding but rather had difficulty shifting attention to a formerly irrelevant dimension,
which is indicative of a selection-based system impairment.
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In sum, there is evidence that the compression-based and the selection-based system may be
dissociated in the brain. Furthermore, although both systems involve parts of the striatum,
they differ with respect to other areas of the brain. Whereas the selection-based system relies
critically on the prefrontal cortex and the ACC, the compression-based system relies on
inferotemporal cortex. As I argue in the next section, the inferotemporal and the prefrontal
cortices may exhibit differential maturational time course. The relative immaturity of
prefrontal cortices early in development coupled with a relative maturity of the
inferotemporal cortex and the striatum should result in young children having a more mature
compression-based than selection-based system and thus being more efficient in learning
dense than sparse categories (cf., L. B. Smith, 1989; J. D. Smith & Kemler-Nelson, 1984).

3.3. Characteristics of the Learner: Differential Maturational Course of Brain Systems
Underlying Category Learning

Many vertebrates have a brain structure analogous to the inferotemoral cortex (IT) and the
striatum, whereas only mammals have a developed prefrontal cortex (Striedter, 2005).
Studies of normal brain maturation (Jernigan et al., 1991; Pfefferbaum et al., 1994; Caviness
et al., 1996; Giedd et al., 1996a; 1996b; Sowell and Jernigan, 1999; Sowell et al., 1999a, b)
have indicated that brain morphology continues to change well into adulthood. As noted by
Sowell, et al. (1999a), maturation progresses in a programmed way, with phylogenetically
more primitive regions of the brain (e.g., brain stem and cerebellum) maturing earlier, and
more advanced regions of the brain (e.g., the association circuits of the frontal lobes)
maturing later. In addition to the study of brain development focused on the anatomy,
physiology, and chemistry of the changing brain, researchers have studied the development
of function that is sub-served by particular brain areas.

Given that the two learning systems differ primarily with respect to the cortical structures
involved (the basal ganglia structures are involved in both systems), I will focus primarily
on the maturational course of these cortical systems. I will first review data pertaining to the
maturational course of IT and associated visual recognition functions and then pertaining to
the prefrontal cortex and associated executive function.

3.3.1. Maturation of the Inferotemoral (IT) Cortex—Maturation of the IT cortex has
been extensively studied in monkeys using single cell recording techniques. As
demonstrated by several researchers (e.g., Rodman, 1994; Rodman, Skelly, & Gross, 1991)
many fundamental properties of IT emerge quite early. Most importantly, as early as 6
weeks, neurons in this cortical area exhibit adult-like patterns of responsiveness. In
particular, researchers presented subjects with different images (e.g., monkey faces and
objects varying in spatial frequency), while recording electrical activity of IT neurons. The
found that in both infant and adult monkeys, IT neurons exhibited a pronounced form of
tuning, with different neurons responding selectively to different types of stimuli. These and
similar findings led researchers to conclude that the IT cortex is predisposed to rapidly
develop major neural circuitry necessary for basic visual processing. Therefore, while some
aspects of the IT circuitry may exhibit a more prolonged development, the basic components
develop relatively early. These findings contrast sharply with findings indicating a lengthy
developmental time course of prefrontal cortices (e.g., Bunge & Zelazo, 2006).

3.3.2. Maturation of the Prefrontal Cortex (PFC)—There is a wide range of
anatomical, neuroimaging, neurophysiological, and neurochemical evidence indicating that
the development of the PFC continues well into adolescence (e.g., Sowell, et al. 1999b; see
also Luciana & Nelson, 1998; Rueda, Fan, McCandliss, Halparin, Gruber, Lercari, &
Posner, 2004, Davidson et al., 2006, for extensive reviews).
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The maturational course of the PFC has been studied in conjunction with research on
executive function -- the cognitive function that depends critically on the maturity of the
PFC (Davidson et al., 2006; Diamond & Goldman-Rakic, 1989; Fan, McCandliss, Sommer,
Raz, & Posner, 2002; Goldman-Rakic, 1987; Posner & Petersen, 1990). Executive function
comprises of a cluster of abilities such as holding information in mind while performing a
task, switching between tasks or between different demands of a task, inhibiting a dominant
response, deliberate selection of some information and ignoring other information, selection
among different responses, and resolving conflicts between competing stimulus properties
and competing responses.

There is a large body of behavioral evidence that early in development children exhibit
difficulties in deliberately focusing on relevant stimuli, inhibiting irrelevant stimuli, and
switching attention between stimuli or stimulus dimensions (Diamond, 2002; Kirkham,
Cruess, & Diamond, 2003; Napolitano & Sloutsky, 2004; Shepp & Swartz, 1976; Zelazo,
Frye, & Rapus, 1996; Zelazo, Müller, Frye, & Marcovitch, 2003; see also Fisher, 2007, for a
more recent review).

Maturation of the prefrontal structures in the course of individual development results in
progressively greater efficiency of executive function, including the ability to deliberately
focus on what is relevant while ignoring what is irrelevant. This is a critical step in acquiring
the ability to form abstract, similarity-free representations of categories and use these
representations in both category and property induction. Therefore, the development of
relatively abstract category-based generalization may hinge on the development of executive
function. As suggested above, while the selection-based system could be deployed by
default in adults when learning is supervised (e.g., Ashby et al, 1998), it could be that early
in development, it is the compression-based system that is deployed by default.

Therefore, there are reasons to believe that the cortical circuits that sub-serve the
compression-based learning system (i.e., IT) come on-line earlier than the cortical circuits
that sub-serve the selection-based learning system (i.e., PFC). Thus, it seems likely that
early in development children would be more efficient in learning dense, similarity-bound
categories (as these could be efficiently learned by the compression-based system) than
sparse, similarity-free ones (as these require the involvement of the selection-based system).

In sum, understanding category learning requires understanding an interaction of at least
three components: (a) the structure of the input, (b) the learning system that evolved to
process this input, and (3) the characteristics of the learner in terms of the availability and
maturity of each of the system. Understanding the interaction among these components leads
to several important predictions. First, dense categories should be learned more efficiently
by the non-deliberate, compression-based system, whereas sparse categories should be
learned more efficiently by the more deliberate selection-based system. Second, because the
critical components of the selection-based system develop late (both phylo- and
ontogenetically) relative to the compression-based system, learning of dense categories
should be more universal, whereas learning of sparse categories should be limited to those
organisms that have a developed PFC. Third, because the selection-based system of category
learning undergoes a more radical developmental transformation, learning of sparse
categories should exhibit greater developmental change than learning of dense categories.
Fourth, young children can spontaneously learn dense categories that are based on multiple
overlapping features, whereas they should have difficulty spontaneously learning sparse
categories that have few relevant features or dimensions and multiple irrelevant features.
Note that the critical aspect here is not whether a category is defined by a single dimension
or by multiple dimensions, but whether the category is dense or sparse. For example, it
should be less difficult to learn a color-based categorization if color is the only dimension
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that varies across the categories, whereas it should be very difficult to learn a color-based
categorization if items vary on multiple irrelevant dimensions. And finally, given the
immaturity of the selection-based system of category learning and of executive function it
seems implausible that early in development children can spontaneously use a single
predictor as a category marker overriding all other predictors. In particular, this immaturity
casts doubt on the ability of babies or even young children to spontaneously use linguistic
labels as category markers in category representation. Because the issue of the role of
category labels in category representation is of critical importance for understanding of
conceptual development, I will focus on it in one of the sections below.

In what follows, I review empirical evidence that has been accumulated over the years, with
particular focus on research generated in my lab. Although many issues remain unknown, I
will present two lines of evidence supporting these predictions. First, I present evidence that
category structure, learning system, and developmental characteristics of the learner interact
in category learning and category representation. In particular, early in development the
compression-based system exhibits greater efficiency than the selection-based system. In
addition, early in development, categories are represented perceptually, and only later do
participants form more abstract, dimensional, rule-based or lexicalized representations of
categories. And second, the role of words in category learning is not fixed; rather, it
undergoes developmental change: words initially affect processing of visual input, and only
gradually they become category markers.

4. Interaction among Category Structure, Learning System and
Characteristics of the Learner: Evidence from Category Learning and
Category Representation

Recall that I hypothesized an interaction among (a) the structure of the category (in
particular, its density), (b) the learning system that evolved to process this input, and (3) the
characteristics of the learner in terms of the availability and maturity of each system. In what
follows, I consider components of this interaction with respect to category learning and
category representation.

4.1. Category Learning
As discussed above, there are reasons to believe that in the course of individual
development, the compression-based system comes online earlier than the selection-based
system (i.e., due to the protracted immaturity of the executive function that sub-serves the
selection-based system). Therefore, it seems plausible that at least early in development the
compression-based system is deployed by default, whereas the selection-based system has to
be triggered explicitly (see Ashby, et al, 1998 for arguments that this may not be the case in
adults). It is also possible that there are experimental manipulations that could trigger the
non-default system. In particular, the selection-based system could be triggered by explicit
supervision or an error signal.

If the systems are dissociated, then sparse categories that depend critically on selective
attention (as they require focusing on a few relevant dimensions, while ignoring irrelevant
dimensions) may be learned better under the conditions triggering the selection-based
system. At the same time, dense categories that have much redundancy may be learned
better under the conditions of implicit learning. Finally, because dense categories could be
efficiently learned by the compression-based system, which is more primary, both phylo-
and ontogenetically, learning of dense categories should be more universal than learning of
sparse categories. In what follows, I review evidence exemplifying these points.
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4.1.1. Interactions between Category Structure and the Learning System—In a
recent study (Kloos & Sloutsky, 2008), we demonstrated that category structure interacts
with the learning system as well as with characteristics of the learner. In this study, 5-year-
olds and adults were presented with a category learning task where they learned either dense
or sparse categories. These categories consisted of artificial bug-like creatures that had a
number of varying features: sizes of tail, wings, and fingers; the shadings of body, antenna,
and buttons; and the numbers of fingers and buttons (see Figure 3, for examples of
categories). Category learning was administered under either an unsupervised, spontaneous
learning condition (i.e., participants were merely shown the items) or under a supervised,
deliberate learning condition (i.e., participants were told the category inclusion rule). Recall
that the former learning condition was expected to trigger the compression-based system of
category learning, whereas the latter was expected to trigger the selection-based system. If
category structure interacts with the learning system, then implicit, unsupervised learning
should be more optimal for learning dense categories, whereas explicit, supervised learning
should be more optimal for learning sparse categories. This is exactly what was found: for
both children and adults, dense categories were learned better under the unsupervised,
spontaneous learning regime, whereas sparse categories were learned more efficiently under
the supervised learning regime. Critical data from this study are presented in Figure 4. The
figure presents categorization accuracy (i.e., the proportion of hits, or correct identification
of category members minus the proportion of false alarms, or confusion of non-members for
members) after the category learning phase.

These findings dovetail with results reported by Yamauchi, Love, & A. Markman (2002)
and Yamauchi & A. Markman (1998) in adults. In these studies, participants completed a
category learning task that had two learning conditions, classification and inference. In the
classification condition, participants learned categories by predicting category membership
of each study item. In the inference condition, participants learned categories by predicting a
feature shared by category members. Across the conditions, results revealed a category
structure by learning condition interaction. In particular, non-linearly-separable (NLS)
categories (which are typically sparser) were learned better in the classification condition,
whereas prototype-based categories (which are typically denser) were learned better in the
inference condition.

The interaction between the category structure and the learning system has been recently
demonstrated by Hoffman & Rehder (submitted), with respect to the cost of selectivity in
category learning. Similar to Yamauchi & A. Markman (1998), participants learned
categories either by classification or by feature inference. In the classification condition,
participants were presented with two categories (e.g., A and B). On each trial, they saw an
item and their task was to predict whether the item in question is a member of A or B. In the
inference condition, participants were also presented with categories A and B. On each trial,
they saw an item that had one missing feature and their task was to predict whether it was a
feature common to A or common to B. In both conditions, upon responding, participants
received feedback.

Each category had three binary dimensions whose values were designated as 0 or 1. There
were two learning phases. In Phase 1, participants learned two categories A and B, with
dimensions 1 and 2 distinguishing between the categories and dimension 3 being fixed
across the categories (e.g., all items had a value of 0 on the fixed dimension 3). In Phase 2,
participants learned two other categories C and D, with dimensions 1 and 2 again
distinguishing between the categories and dimension 3 being fixed again (e.g., now items
had a value of 1 on the fixed dimension 3). After the two training phases, participants were
given categorization trials involving contrasts between categories that were not paired
during training (e.g., A vs. C). Note that correct responding on these novel contrasts required
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attending to dimension 3 which had been previously irrelevant during training. If
participants attend selectively to dimensions, their attention should have been allocated to
dimensions 1 and 2 during learning, which should have attenuated attention to dimension 3.
This attenuated attention represents the cost of selectivity. Alternatively, if no selectivity is
involved, there should be little or no attenuation, and therefore, little or no cost. It was found
that the cost was higher for classification learners than for inference learners, thus
suggesting that classification learning, but not inference learning, engages the selection-
based system.

4.1.2. Developmental Primacy of the Compression-Based System—Zentall et al.
(2008) present an extensive literature review indicating that although birds, monkeys, apes,
and humans are capable of learning categories consisting of highly similar yet discriminable
items (i.e., dense categories), only some apes and humans could learn sparse relational
categories, such as “sameness” when an equivalence class consisted of dissimilar items (e.g.,
a pair of red squares and a pair of blue circles are members of the same sparse category).
However, even here it is not clear that subjects were learning a sparse category. As shown
by Wasserman and colleagues (e.g., Wasserman, Young, & Cook, 2004), non-human
animals readily distinguish situations with no variability in the input (i.e., zero entropy) from
situations where input has stimulus variability (i.e., non-zero entropy). Therefore, it is
possible that learning was based on the distinction between zero entropy in each of the
“same” displays and non-zero entropy in each of the “different” displays.

The idea of the developmental primacy of the compression-based system is supported by
data from Kloos and Sloutsky (2008) reviewed above. In particular, data presented in Figure
4 clearly indicate that for both children and adults, sparse categories were learned better
under the explicit, supervised condition, whereas dense categories were learned better under
the implicit, unsupervised condition. Also note that adults learned the sparse category even
in the unsupervised condition, whereas young children exhibited no evidence of learning.
These data support the contention that the compression-based system is the default in young
children.

In addition, data from Kloos and Sloutsky (2008) indicate that the while both children and
adults exhibited able spontaneous learning of a dense category, there were marked
developmental differences in spontaneous learning of sparse categories. Categorization
accuracy in the spontaneous condition by category density and age are presented in Figure 5.
Two aspects of these data are worth noting. First, there was no developmental difference in
spontaneous learning of the very dense category, which suggests that the compression-based
system of category learning exhibits the adult level of functioning in 4-5-year-olds. And
second, there were substantial developmental differences in spontaneous learning of sparser
categories, which suggests that adults, but not young children, may spontaneously deploy
the selection-based system of category learning. Therefore, the marked developmental
differences pertain mainly to the deployment and functioning of the selection-based system,
but not of the compression-based system (see also Hammer, Diesendruck, Weinshall, &
Hochstein, 2009, for related findings).

Additional evidence for the developmental primacy of the compression-based learning
system stems from research demonstrating that young children can learn complex
contingencies implicitly, but not explicitly (Sloutsky & Fisher, 2008). The main idea behind
the Sloutsky and Fisher (2008) experiments was that implicit (and perhaps compression-
based) learning of complex contingencies might underlie seemingly selective generalization
behaviors of young children. There is much evidence suggesting that even early in
development, people’s generalization could be selective – depending on the situation, people
may rely on different kinds of information. This selectivity has been found in a variety of
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generalization tasks, including lexical extension, categorization, and property induction. For
example, in a lexical extension task (Jones, Smith, & Landau, 1991), 2- and 3-year-olds
were presented with a named target (i.e., “this is a dax”), and then were asked to find
another dax among test items. Children extended the label by shape alone when the target
and test objects were presented without eyes. However, they extended the label by shape and
texture when the objects were presented with eyes.

Similarly, in a categorization task, 3- and 4-year-olds were more likely to group items on the
basis of color if the items were introduced as food, but group on the basis of shape if the
items were introduced as toys (Macario, 1991). More recently, Opfer and Bulloch (2007)
examined flexibility in lexical extension, categorization, and property induction tasks. It was
found that across these tasks, 4- to 5-year-olds relied on one set of perceptual predictors
when the items were introduced as “parents and offspring,” whereas they relied on another
set of perceptual predictors when items were introduced as “predators and prey”. These
finding pose an interesting problem – is this putative selectivity sub-served by the selection-
based system or by the compression-based system? Given critical immaturities of the
selection-based system early in development, the latter possibility seems more plausible.
Sloutsky and Fisher’s (2008) study supported this possibility.

A key idea is that many stimulus properties inter-correlate, such that some clusters of
properties co-occur with particular outcomes, and other clusters co-occur with different
outcomes, thus resulting in a dense “context-outcome” structures (cf. with the idea of
“coherent covariation” presented in Rogers & McClelland, 2004). Learning these
correlations may result in differential allocation of attention to different stimulus properties
in different situations or contexts, with flexible generalizations being a result of this
learning. In particular, participants could learn the following set of contingencies: in Context
1, Dimension 1 (say, color) was predictive, while Dimension 2 (say, shape) was not,
whereas the reverse is true in Context 2. If, as argued above, the system of implicit
compression-based learning is fully functioning even early in development, then the greater
the number of contextual variables correlating with the relevant dimension (i.e., the greater
the density), the greater the likelihood of learning. However, if learning is selection-based
the reverse may be the case. This is because the larger the number of relevant dimensions,
the more difficult it could be to formulate a contingency as a simple rule.

These possibilities have been tested in multiple experiments reported in Sloutsky and Fisher
(2008). In these experiments, 5-year-olds were presented with triads of geometric objects
differing in color and shape. Each triad consisted of a Target and two Test items.
Participants were told that a prize was hidden behind the Target and their task was to
determine the Test item that had a prize behind it. Children were trained that in Context 1
shape of an item was predictive of an outcome, whereas in Context 2 color was predictive.
Context was defined as the color of the background on which stimuli appeared and the
location of the stimuli on the screen. Therefore, in Context 1, training stimuli appeared on a
yellow background in the upper-right corner of the computer screen, and on a green
background in the bottom-left corner of the computer screen in Context 2. Training stimuli
were triads each consisting of a target and two test items. Participants were given
information about a target item and they had to generalize this information to one of the test
items. Each participant was given three training blocks. In one training block, only color was
predictive, in another training block, only shape was predictive, whereas the third block was
a mixture of the former two blocks. Participants were then presented with testing triads that
had an important difference from training triads. Whereas training triads were
“unambiguous” in that only one dimension of variation (either color or shape) was
predictive and only one test item matched the target on the predictive dimension, this was
not the case for testing triads. In particular, testing triads were “ambiguous” in that one test
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item matched the target on one dimension and the other test item matched the target on the
other dimension. The only disambiguating factor was the context.

It was found that participants had no difficulty learning the contingency between the context
and the predictive dimension when there were multiple contextual variables correlating with
the predictive dimension. In particular, children tested in Context 1 primarily relied on shape
and children tested in Context 2 primarily relied on color. Learning, however, attenuated
markedly when the number of contextual variables was reduced, which should not have
happened if learning was selection-based. And finally, when presented with testing triads
and explicitly given a simple rule (e.g., children were asked to make choices by focusing
either on color or on shape), they were unable to focus on the required dimension. These
findings present further evidence for the developmental asynchrony of the two learning
systems: while 5-year-old children could readily perform the task when relying on the
compression-based learning system, they were unable to perform the task when they had to
rely on the selection-based system. In sum, there is emerging body of evidence from
category learning suggesting an interaction between the category structure and the learning
system, pointing to developmental asynchronies in the two systems. Future research should
re-examine category structure and category learning in infancy. In particular, given the
critical immaturity of the selection-based system, most (if not all) of category learning in
infancy should be accomplished by the compression-based system.

4.2. Category Representation
In the previous section, I reviewed evidence indicating that category learning is affected by
an interaction among category structure, the learning systems processing this structure, and
the characteristics of the learner. In this section, I will review evidence demonstrating
components of this interaction for category representation. Most of the evidence reviewed in
this section pertains to developmental asynchronies between the learning systems. Two
interrelated lines of evidence will be presented: (1) the development of selection-based
category representation and (2) the changing role of linguistic label in category
representation.

4.2.2. The Development of Selection-based Category Representation—If the
compression-based and the selection-based learning systems mature asynchronously, such
that early in development the former system exhibits greater maturity than the latter, then it
is likely that most of the spontaneously acquired categories are learned implicitly by the
compression-based learning system. If this is the case, it is unlikely that young children form
abstract rule-based representations of spontaneously acquired categories, whereas they are
likely to form perceptually-rich representations. A representation of a category is abstract if
category items are represented by either a category inclusion rule or by a lexical entry. A
representation of a category is perceptually-rich if category representation retains (more or
less fully) perceptual detail of individual exemplars.

One way of examining category representation is focusing on what people remember about
category members. For example, Kloos and Sloutsky (2008, Experiment 4B) presented 5-
year-olds and adults with a category learning task. Similar to the above-described
experiment by Kloos and Sloutsky (2008), there were two between-subjects conditions, with
some participants learning a dense category and some learning a sparse category. Both
categories consisted of the described above artificial bug-like creatures that had a number of
varying features: sizes of tail, wings, and fingers; the shadings of body, antenna, and
buttons; and the numbers of fingers and buttons. The relation between the two latter features
defined the arbitrary rule: Members of the target category had either many buttons and many
fingers or few buttons and few fingers. All the other features constituted the appearance
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features. Members of the target category had a long tail, long wings, short fingers, dark
antennas, a dark body, and light buttons (target appearance AT), whereas members of the
contrasting category had a short tail, short wings, long fingers, light antennas, a light body,
and dark buttons (contrasting appearance AC). All participants were presented with the same
set of items; however, in the sparse condition participants’ attention was focused on the
inclusion rule, whereas in the dense condition it was focused on appearance information.
This was achieved by varying the description of items across the conditions. In the sparse-
category condition, the description was: “Ziblets with many aqua fingers on each yellow
wing have many buttons, and Ziblets with few aqua fingers on each yellow wing have few
buttons.” In the dense-category condition, in addition to the above-described rule, the
appearance of exemplars was described. In both conditions, appearance features were
probabilistically related to category membership, whereas the rule was fully predictive.
After training, participants were tested on their category learning and then presented with a
surprise recognition task. During the recognition phase, they were presented with four types
of recognition items: ATRT (the items that had both the appearance and the rule of the
Target category), ACRC (the items that had both the appearance and the rule of the Contrast
category), ATRC (the items that had the appearance of Target category and the rule of the
Contrast category), and ACRT (the items that had the appearance of the Contrast category
and the rule of the Target category). If participants learned the category, they should accept
ATRT items and reject ACRC items. In addition, if participants’ representation of the
category is based on the rule, they may false alarm on ACRT, but not on ATRC items.
However, if participants’ representation of the category is based on appearance, they should
false alarm on ATRC, but not on ACRT items.

False alarm rates by age and test item type are presented in Figure 6. As can be seen in the
figure, adults were more likely to false alarm on same appearance items (i.e., ATRC) in the
dense condition and on same rule items (i.e., ACRT) in the sparse condition. In contrast,
young children were likely to false alarm on same appearance items (i.e., ATRC) in both
conditions. These results suggest that in adults dense and sparse categories could be
represented differently: the former are represented perceptually, whereas the latter are
represented more abstractly. At the same time, 5-year-old children are likely to represent
perceptually both dense and sparse categories. These data suggest that representation of
sparse (but not dense) categories changes in the course of development.

These findings, however, were limited to newly learned categories that were not lexicalized.
What about representation of lexicalized dense categories? One possibility is that lexicalized
dense categories are also represented perceptually, similar to newly learned dense
categories. In this case, there should be no developmental differences in representation of
lexicalized dense categories. However, representations of lexicalized dense categories may
include the linguistic label (which could be the most reliable guide to category membership).
In particular, it is possible that lexicalization of a perceptual grouping eventually results in
an abstract label-based representation (in the limit, a member of a category could be
represented just by its label). If this is the case, then there should be substantial
developmental differences in representation of lexicalized dense categories. Furthermore, in
this case, adults should differently represent highly familiar lexicalized dense categories
(e.g., cat) and newly learned non-lexicalized dense categories (e.g., categories consisting of
bug-like creatures). In particular, they should form an abstract representation of the former,
but not the later.

These possibilities have been examined in a set of recognition memory experiments (e.g.,
Fisher & Sloutsky, 2005; Sloutsky & Fisher, 2004a, 2004b). If participants form abstract
representation of category items, then a task that prompts categorization of items may result
in attenuated memory for appearance information. This reasoning is based on a long
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tradition of false memory research demonstrating that deep semantic processing of studied
items (including grouping of items into categories) often increases memory intrusions –
false recognition and recall of non-presented “critical lures” or items semantically associated
with studied items (e.g., Koutstaal & Schacter, 1997; Thapar & McDermott, 2001). Thus
“deeper” processing can lead to lower recognition accuracy when critical lures are
semantically similar to studied items. In contrast to deep processing, focusing on perceptual
details of pictorially presented information results in accurate recognition (Marks, 1991).

Therefore, if a recognition memory task is presented after a task that encourages access to
the abstract representation of familiar categories, patterns of recognition errors may reveal
information about how categories are represented. If participants processed items relatively
abstractly as members of a category, then they would be more likely to have difficulty
discriminating studied targets from conceptually similar critical lures. If, on the other hand,
they processed items more concretely, focusing on perceptual details, then they should
discriminate relatively well.

In a set of experiments, Fisher and Sloutsky (2005) presented adults with one of two tasks.
In the Baseline condition, the task was to remember items as accurately as possible, whereas
in the Induction condition, the task was to generalize a property from a target item to each
presented item. In both conditions, study phase items consisted of several categories, with
multiple items per category. Following this study phase, participants in both conditions were
presented with a surprise recognition task. Recognition items included Old Items (those
presented during the Study phase), Critical Lures (novel items from studied categories), and
Unrelated Items (novel items from new categories). If participants accept Old Items and
Critical Lures, but reject Unrelated Items, then it is likely that they represented only abstract
category information, not appearance information. However, if they accept only Old Items,
but reject Critical Lures and Unrelated Items, then it is likely that they represented
appearance information.

In one experiment reported by Fisher and Sloutsky (2005), adults were presented with
familiar lexicalized dense categories (e.g., cats, bears, etc.), whereas in another condition,
dense categories included artificial bug-like creatures, similar to those used by Kloos and
Sloutsky (2008). Memory accuracy (which is a function of hits and false alarms on Critical
Lures) by condition and category type in adults is presented in Figure 7. Note that the
dependent variable is A-prime (A-prime is a non-parametric analogue of the signal-detection
d-prime statistic), and the value of 0.5 represents no discrimination between Old Items and
Critical Lures. When categories were familiar, adults were accurate in the Baseline
condition, whereas they did not distinguish between Old Items and Critical Lures in the
Induction condition. This category processing effect indicates that adults form a relatively
abstract representation of familiar (and lexicalized) dense categories. It is also possible that
category label plays an important role in such a representation (cf. findings reported by
Tipper & Driver, 2000 on priming between pictures of objects and their labels in adults). At
the same time, when categories were novel, adults were accurate in both the Baseline and
Induction condition. Therefore, perceptual information plays an important role in
representation of novel dense categories in adults.

In contrast to adults, young children do not exhibit evidence of abstract representation of
even familiar dense categories. As shown in Figure 8, after performing induction with
pictures of members of familiar categories (e.g., cats), young children exhibited greater
recognition accuracy than did adults, with recognition gradually decreasing with increasing
age (Fisher & Sloutsky, 2005;Sloutsky & Fisher, 2004a,2004b). The figure depicts A-prime
scores across the conditions and the difference in A-prime score between the Baseline and
Induction conditions reflects the “category processing effect” – a decreased recognition of
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categorized items compared to the baseline. As shown in the figure, there is no evidence of
the category processing effect early in development, and even in preadolescence the
magnitude of the effect is smaller than that in adults. Recall that when adults were given the
same task with novel items for which they did not have compressed category representation,
their recognition accuracy increased to the level of young children (see Figure 7).

These findings in conjunction with the relative immaturity of the executive function in 4-
and 5-year-olds suggests that these participants, even if they learn a sparse rule-based
category, would be unable to use this learned category in other tasks. It has been often
argued that one of the most important roles of categories is to support inductive
generalization. If one learns that an individual has a particular property (e.g., a particular
dog likes bones), one could generalize this property to other members of this category.
While most transient properties (e.g., is awake) cannot be generalized, many stable
properties can. Therefore, examining the pattern of inductive generalization could elucidate
how categories are represented. If participants do not form an abstract representation of a
sparse category, they would be unable to use the category in induction.

One way of addressing this issue is to teach participants a novel sparse rule-based category.
Once participants learn the category, they could be presented with a property induction task,
in which they could rely either on the rule or on appearance information, which is irrelevant
for category membership. If young children represent the category by an abstract rule, they
should use this representation when performing inductive generalization. Conversely, if they
represent appearance of the items, then young children (even when they successfully learn
the category) should rely on appearance information, while disregarding category
membership information. These possibilities were tested in a set of experiments reported by
Sloutsky, Kloos, and Fisher (2007). In these experiments, participants were first presented
with a category learning task during which they learned two categories of artificial animals.
Category membership was determined by a rule, whereas perceptual similarity was not
predictive of category membership. Children were then given a categorization task with
items that differed from those used during training. Participants readily acquired these
categories and accurately sorted the items according to their category information. Then
participants were presented with a triad induction task. Each triad consisted of a target and
two test items, with one test item sharing the target’s category membership, and the other
test item being similar to the target (without sharing category membership). Participants
were familiarized with a quasi-biological property of the target, and asked to generalize this
property to one of the test items. Finally, participants were given a final (i.e., post-induction)
categorization task using the same items as the induction task. The results indicate that,
while participants learned the category-inclusion rule, they did not use it in the course of
induction, rather basing their induction on perceptual information.

In sum, early in development similarity plays an important role in representation of even
sparse categories, whereas later in development categories may be represented in a more
abstract manner. One possibility is that later in development labels begin to play a more
central role in category representation.

The Developing Role of Linguistic Labels in Category Representation: In the previous
section, I reviewed evidence that in young children (in contrast to adults) a category label
does not figure prominently in category representation. This developmental change in the
role of category labels represents another source of evidence for the developmental
asynchronies between the two systems of category learning. In this section, I focus on the
changing role of category labels in greater detail.
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To examine the role of linguistic labels in category representation of adults, Yamauchi and
colleagues conducted a series of studies supporting the idea that for adults a label is a
symbol that represents a category (Yamauchi & A. Markman, 2000; Yamauchi & Yu, 2008).
The overall reasoning behind this work is that if labels are category markers, they should be
treated differently from the rest of features (such shape, color, size, etc). However, this may
not be the case if labels are features. Therefore, inferring a label when features are given
(i.e., a classification task) should elicit different performance from a task of inferring a
feature when the label is given (i.e., a feature induction task).

To test these ideas, Yamauchi and A. Markman (2000) used the described above category
learning task that was presented under either classification or feature induction learning
condition. There were two categories, C1 and C2 denoted by two labels, L1 and L2. Stimuli
were bug-like artificial creatures that varied on several dimensions, with one range of values
determining C1 and another range of values determining C2. In the feature induction task,
participants were shown a creature with one missing feature and were given a category label.
Their task was to predict the missing feature. In the classification task, they were presented
with a creature that was not labeled, and the task was to predict the category label. The
critical condition was the case when an item was a member of C1, but was similar to C2,
with the dependent variable being the proportion of C1 responses. The results indicated that
there were significantly more category-based responses in the induction condition (where
participants could rely on the category label) than in the categorization condition (where
participants had to infer the category label). It was concluded therefore that category labels
differed from other features in that participants treated labels as category markers. These
findings have been replicated in a series of follow-up studies (Yamauchi, Kohn, & Yu,
2007; Yamauchi & Yu, 2008; see also A. Markman & Ross, 2003, for a review). For
example, Yamauchi, Kohn, and Yu (2007) examined patterns of mouse-tracking (a
procedure that is similar to eye tracking) to examine attention allocated to labels when labels
were introduced as category markers (e.g., “This is a dax”) or as denoting category features
(e.g., “This one has a dax”). Results indicated that participants viewed these visually
presented labels more often in the former condition than in the latter condition. In sum, there
is a body of evidence indicating that adults tend to treat the category label as a category
marker rather than a category feature.

However, the reliance on category labels in category representation requires the involvement
of the selection-based system. At the same time, if the selection-based system exhibits a
slow developmental course, the ability to use category labels as a category markers should
be limited early in development. Furthermore, simultaneous processing of auditory and
visual input (e.g., an object and corresponding sound) requires the ability to integrate
information coming from different modalities. This ability also exhibits a relatively slow
maturational course (see Robinson & Sloutsky, 2010, for a review) and is unlikely to be
fully functional in infancy. In part, this slow maturational course in the ability to integrate
cross-modal information could be related a slow maturational course of neurons processing
multisensory information. For example, there is evidence from animal models indicating that
multisensory neurons located in the superior colliculus and at various cortical locations do
not mature until the sufficient visual experience is accumulated (see Wallace, 2004, for a
review).

If the contribution of labels to categorization and category learning hinges on (a) the ability
to process cross-modal information and (b) the ability to attend selectively, with both
abilities undergoing substantial developmental change, then the role linguistic labels play in
categorization and category learning may change across development. In what follows, I
review evidence indicating the changing role of category labels and consider possible
mechanisms underlying these developmental changes.
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As my colleagues and I have argued elsewhere, auditory input may affect attention allocated
to corresponding visual input (Napolitano & Sloutsky, 2004; Robinson & Sloutsky, 2004;
Sloutsky & Napolitano, 2003; Sloutsky & Robinson, 2008), and these effects may change in
the course of learning and development. In particular, linguistic labels may strongly interfere
with visual processing in prelinguisitic children, but these interference effects may weaken
when children start acquiring language (Sloutsky & Robinson, 2008, see also Robinson &
Sloutsky, 2007a; 2007b).

In one experiment, Sloutsky and Robinson (2008) familiarized 10- and 16-month-olds with
auditory-visual compounds. The familiarization compound consisted of a three-shape
pattern and a word presented at the same time (both the word and the three-shape pattern
were ably processed by infants of these age groups when presented uni-modally). The
familiarization phase was followed by the test phase, in which participants were presented
with four different auditory-visual test items. One test item was the familiarization
compound (AUDTargetVISTarget), one had a changed visual component (AUDTargetVISNew),
one had a changed auditory component (AUDNewVISTarget), and one had both components
changed (AUDNewVISNew).

The dependent variable was looking time at each test item. If participants considered a test
item to be different from the familiarization item, looking time to this item should increase
compared to the end of familiarization. Because the AUDTargetVISTarget is the
familiarization item, it should elicit looking that is comparable with looking at the end of
familiarization phase. Because the AUDNewVISNew is a novel item, it should elicit longer
looking. At the same time, looking at AUDTargetVISNew and AUDNewVISTarget items should
depend on whether participants processed auditory and visual components of the
familiarization compound. If infants did, they should increase looking to both test items. If
infants processed only the auditory component, they should increase looking only to
AUDNewVISTarget item, whereas if they processed only the visual component, they should
increase looking only to AUDTargetVISNew item. Looking times to AUDTargetVISNew,
AUDNewVISTarget, and AUDNewVISNew items compared to the AUDNewVISTarget item are
presented in Figure 14. These results clearly indicate that while 10-month-old infants failed
to process the visual component, 16-month-old infants processed both components. It was
concluded therefore that linguistic input interfered with processing of visual input at 10
months of age, but these interference effects weakened by 16 months of age.

In another experiment, Robinson & Sloutsky (2007a) presented 8- and 12-month-olds with a
categorization task. Participants were familiarized with category exemplars under one of the
three conditions: (1) all items were accompanied by the same label, (2) all items were
accompanied by the same sound, or (3) all items were presented in silence. At test,
participants were presented with two types of test trials: (a) recognition trials (i.e., a studied
item was paired with a new item) and (b) categorization trials (i.e., a novel in-category
exemplar was paired with a novel out-of-category exemplar). If participants recognize the
studied item, they should prefer looking to the novel item, and if they learned the category,
they should prefer looking to an out-of-category item. Results indicated that performance
was significantly better in the silent condition, thus suggesting that both sounds and labels
interfered with the categorization task. Similar results were reported for individuation tasks
(Robinson & Sloutsky, 2008).

By the onset of word learning, children should start acquiring the ability to integrate
linguistic and visual input (Robinson & Sloutsky, 2007b; Sloutsky & Robinson, 2008).
However, even then cross-modal processing may not reach the full level of maturity and
therefore linguistic labels may attenuate processing of corresponding visual input. As
discussed below, this attenuated processing may result in an increased similarity of entities
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that have the same label and thus in an increased tendency to group them together (e.g.,
Sloutsky & Fisher, 2004a, Sloutsky & Lo, 1999; Sloutsky, Lo, & Fisher, 2001).

While interference effects attenuate with development, they do not disappear completely.
This issue has been examined in depth in a series of recognition experiments (e.g.,
Napolitano & Sloutsky, 2004; Robinson & Sloutsky, 2004; Sloutsky & Napolitano, 2003).

In these recognition experiments, 4-year-olds and adults were presented with a compound
Target stimulus, consisting of simultaneously presented auditory and visual components
(AUDTargetVISTarget). These experiments were similar to the described above experiment,
except that no learning was involved. Participants were presented with a Target, which was
followed immediately by a Test item and the task was to determine whether the Target and
Test items were exactly the same.

There were four types of test items: (1) AUDTargetVISTarget, which was the Old Target item,
(2) AUDTargetVISNew, which had the target auditory component and a new visual
component, (3) AUDNewVISTarget, which had the target visual component and a new
auditory component, or (4) AUDNewVISNew, which had a new visual component and a new
auditory component. The task was to determine whether each presented test item was
exactly the same as the Target (i.e., both the same auditory and visual components) or a new
item (i.e., differed on one or both components).

Similar to the experiment with infants (Robinson & Sloutsky, 2004), it was reasoned that if
participants process both auditory and visual stimuli, they should correctly respond to all
items by accepting Old Target items and rejecting all other test items. Alternatively, if they
fail to process the visual component, they should falsely accept AUDTargetVISNew items,
while correctly responding to other items. Finally, if they fail to process the auditory
component, they should falsely accept AUDNewVISTarget items, while correctly responding
to other items. In one experiment (Napolitano & Sloutsky, 2004), speech sounds were paired
with either geometric shapes or pictures of unfamiliar animals. Results indicated that while
children ably processed either stimulus in the uni-modal condition, they failed to process
visual input in the cross-modal condition. Furthermore, a yet unpublished study by
Napolitano and Sloutsky indicates that interference effects attenuate gradually in the course
of development, with very little evidence of interference in adults.

There is also evidence that this dominance of auditory input is not under strategic control:
even when instructed to focus on visual input young children had difficulties doing so
(Napolitano & Sloutsky, 2004; Robinson & Sloutsky, 2004). In one of the experiments
described in Napolitano and Sloutsky (2004), 4-year-olds were explicitly instructed to attend
to visual stimuli, with instructions repeated before each trial. However, despite the repeated
explicit instruction to attend to visual stimuli, 4-year-olds continued to exhibit auditory
dominance. These results suggest that auditory dominance is unlikely to stem from
deliberate selective attention to a particular modality, but it is more likely to stem from
automatic pulls on attention.

If linguistic labels attenuate visual processing, such that children ably process a label, but
they do so to a lesser extent the corresponding visual input, then these findings can explain
the role of labels in categorization tasks. In particular, items that share a label may appear
more similar than the same items presented without a label. In other words, early in
development, labels may function as features contributing to similarity, and their role may
change in the course of development. In fact, there is evidence supporting this possibility
(e.g., Sloutsky & Fisher, 2004a; Sloutsky & Lo, 1999).
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The key idea behind these experiments is if two items have a particular degree of visual
similarity, then adding a common label would increase this similarity due the described
above attenuated visual processing. These effects have been demonstrated with a frequently
used forced choice task, where participants are expected to make either a similarity
judgment (i.e., which one of the several test items looks more like the target) or a
categorization judgment (i.e., which one of the several test items belongs to the same kind as
the target).

In this case, the probability of selecting a particular test item is a function of a ratio of the
similarity of a given test item to the Target to the summed similarity of other test items to
the Target. In this case, the common label affects the similarity ratio. These ideas have been
implemented in model SINC (for Similarity, Induction, Naming, and Categorization,
Sloutsky & Lo, 1999; Sloutsky & Fisher, 2004a) that accurately predicted similarity and
categorization judgment in young children when labels were and were not introduced.

In these experiments, young children were presented with triads of items (a Target and two
Test items) and were asked which of the Test items looked more similar to the Target. One
of the test items (e.g., Test A) was very similar to the Target, whereas similarity of the other
test item (say Test B) varied across trials from very similar to very different. In the Baseline
condition, labels were not provided, whereas in the Label condition, one of the Test items
shared the label with the Target, whereas the other Test item did not. The labels were
artificial bi-syllabic count nouns. Proportions of selecting Test B as more similar to the
Target by condition and similarity ratio (Test B-Target/Test A-Target) are presented in
Figure 10 (Panel A). As can be seen in the figure, the presence of labels increased similarity
for all levels of similarity. However, when the same task was given to adults (Panel B),
labels had no effect on similarity judgment.

Therefore, it seems that labels function differently across development: whereas labels are
likely to contribute to similarity of compared items in children (e.g., Sloutsky & Fisher,
2004a; Sloutsky & Lo, 1999), they are not likely to do so in adults (cf. Yamauchi & A.
Markman, 2000).

There is also evidence that labels have similar effects on categorization – these effects are
also graded rather than rule-like, with labels affecting, but not overriding perceptual
similarity (e.g., Sloutsky & Fisher, 2004a). In several experiments conducted by Sloutsky
and Fisher, 4- and 5-year-olds performed a match-to-sample categorization task. On each
trial, they were presented with a triad of pictures, a target and two test items. All items were
labeled and only one of the test items shared the label with the target. Participants were
asked to decide which of the test items belongs to the same kind as the Target. Strikingly
similar patterns were observed for categorization and feature induction tasks in young
children: again, participants’ categorization and induction responses were affected by the
similarity ratio, with labels contributing to these effects of similarity rather than overriding
them.

In yet another experiment, Sloutsky and Fisher (2004) used items that had been previously
used by Gelman and Markman (1986), which turned out to vary widely in terms of
appearance similarity. Again, there was little evidence that in their induction responses, 4-
and 5-year-olds relied exclusively on linguistic labels.

In short, the reviewed evidence supports the idea that young children treat labels as
perceptual features that contribute to similarity of compared entities. It seems that these
effects of labels stem from critical immaturities of cross-modal processing coupled with
immaturities of selective attention. Further development of cross-modal processing and the
selection-based system, coupled with acquired knowledge that a category label is highly
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predictive of category membership may result in category labels becoming category markers
in adults (e.g., Yamauchi & Markman, 2000; Yamauchi & Yu, 2008; see also Markman &
Ross, 2003). However, additional research is needed to establish a detailed understanding of
the changing role of linguistic labels in category representation.

4.3. Summary
In this section I considered interactions among category structure, the learning system, and
characteristics of the learner in category learning and category representation. First, I
reviewed evidence demonstrating that dense categories could be learned efficiently by the
compression-based system, whereas sparse categories require the involvement of the
selection-based system. Second, while the compression-based system exhibits able
functioning even early in development, the selection-based system undergoes developmental
transformations. As a result, early in development learning sub-served by the compression-
based system exhibits greater efficiency than learning sub-served by the selection-based
system. Third, representation of sparse categories changes in the course of development:
while adults form an abstract representation of sparse categories, young children form
similarity-based representations of sparse categories. Fourth, there are developmental
differences in representation of dense lexicalized categories: adults, but not young children,
can represent these categories abstractly. And finally, there is evidence that the role of
category labels in category representation changes in the course of development; not until
late in development do labels become category markers (although see Waxman & Markow,
1995; Xu, 2002).

5. Conceptual Development: From Perceptual Categories to Abstract
Concepts

On the basis of the formulated characteristics of the input, of the learning systems, and of
the learner, we can propose a rough sketch of how conceptual development proceeds. The
early functioning of the compression-based system suggests that even young infants should
ably learn dense perceptual categories. The ability to learn perceptual categories from
relatively dense input has been demonstrated in non-human animals as well as in 3- and 4-
month-old human infants (Quinn, et al, 1993; Cook & Smith, 2006; Smith, Redford, &
Haas, 2008; Zentall, et al, 2008). Although some of these perceptual categories (e.g., cats,
dogs, or food) will undergo lexicalization, others (e.g., some categories of speech sounds)
will not.

The next critical step is the development of the ability to integrate cross-modal information
that may sub-serve word learning and learning of dense cross-modal categories. There is
evidence that very young infants have difficulty integrating input coming from different
modalities, unless both modalities express the same amodal relation (e.g., when the same
amodal relation (such as rhythm or rate) is presented cross-modally, cross-modal
presentation is likely to facilitate processing of the amodal relation (see Lewkowicz, 2000;
Lickliter & Bahrick, 2000, for reviews). Initially the sensory systems are separated from one
another, with multi-sensory integration being a product of development and learning. There
is much recent neuroscience evidence pointing to slow postnatal maturation of multisensory
neurons, coupled with slow maturation of functional corticotectal connections (see Wallace,
2004, for a review). Cross-modal integration is at the heart of the ability to learn cross-
modal perceptual categories, which permeate early experience (e.g., dogs bark, cats meow,
and humans speak).

Once the ability to integrate cross-modal information is somewhat functional, infants can
start learning words, which requires binding auditory and visual input. However, given the
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immaturity of cross-modal processing, it is easier to learn words that denote perceptual
categories that the child already knows. Furthermore, infants may spontaneously learn
categories of items that are frequent in their environment and these categories would be the
first to be labeled by parents. There is evidence (e.g., Nelson, 1973) that the most frequent
type of words among the first 100 words produced by babies is a count noun, with most of
these count nouns denoting perceptual categories of entities in the child’s environment.
Therefore, learning the first words could be a way of lexicalizing those perceptual categories
that the child already learned. Lexicalization also opens the possibility of acquiring
knowledge of unobservable properties about category members, as well as generalizing this
knowledge. Unobservable information includes properties that one does not typically
observe (e.g., that one’s pet dog has a heart) as well as properties that cannot be observed in
principle, but have to be inferred from the observed properties (e.g. “that another person has
thoughts and feelings”). Once acquired, these unobservable properties can be entered into
the computation of similarity, thus enabling the development of more abstract superordinate
categories. Therefore, lexicalization is a critical step in the transition from perceptual
groupings to concepts. The ability to process cross-modal input also enables children to use
a combination of perceptual and linguistic cues in acquiring broad ontological distinctions
(Jones & Smith, 2002; Samuelson & Smith, 1999; Yoshida & Smith, 2003).

The next important step is learning of dimensional words, denoting dimensional values (e.g.,
“green” or “square”). Learning of these words coupled with further maturation of the
prefrontal cortex and the development of executive function may result in lexicalization of
some stimulus dimensions (such as color, shape or size). As argued by many researchers
(Carey, 1982; Gasser & Smith, 1998), learning of dimensional words follows learning of
count nouns. One explanation is that perceptual groupings, such as “dog” or “cup” denoted
by count nouns are dense -- they are based on an intercorrelated set of features and feature
dimensions. In contrast, dimensional groupings (e.g., “red things”) are sparse. Therefore, the
later, but not the former, requires selective attention, which appears later in development
than the ability to learn perceptual groupings and to integrate cross-modal information.

Further development of the prefrontal cortex coupled with learning of abstract words lays
the foundation for the development of abstract concepts. However, unlike their concrete
counterparts (such as “dog” or cup”) where category learning may precede word learning,
there are reasons to believe that words denoting abstract concepts are learned prior to the
concept itself (e.g., Vygotsky, 1964/1934). For example, according to the MacArthur
Lexical Development Norms (Dale & Fenson, 1996) a 30-month-old toddler may produce
words, such as love, time, and same; however, it is unlikely that these children have concepts
of LOVE, TIME, or EQUIVALENCE. Furthermore, because these abstract concepts refer to
exceedingly sparse categories, it is likely that acquisition of these categories requires
supervision. The relative maturity of the prefrontal cortex is of critical importance because
learners need to focus on a small set of category-relevant features, while ignoring irrelevant
features. The ability to lexicalize categories and the ability to acquire abstract concepts
paves the way to acquisition of abstract mathematical and scientific concepts. However,
some of these concepts are so sparse and put so much demand on selectivity that supervision
alone may not be sufficient – and sophisticated explicit instruction is needed – for successful
learning of these concepts (e.g., Kaminski, Sloutsky, & Heckler, 2008).

In sum, the proposal presented here attempts to connect conceptual development with the
structure of input and the availability of the learning system necessary for processing of this
input. This rough sketch, however is just a first step in uncovering the great mystery of
conceptual development – a progression from a newborn who has difficulty perceiving the
world to an adult who has the ability of changing the world.
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6. Concluding Comments
In this paper, I considered the possibility of conceptual development progressing from
simple perceptual grouping to highly abstract scientific concepts. I reviewed evidence
suggesting that conceptual development is a product of an interaction of the structure of
input, the category learning system that processes this input, and maturational characteristics
of the learner.

I also considered three steps that are critical for conceptual development. First, the
development of the selection-based system of category learning that depends critically on
maturation of cortical regions sub-serving executive function. The second critical step is the
ability to integrate cross-modal information. This ability is critical for word learning and
lexicalization of spontaneously acquired perceptual groupings, as well as for forming broad
ontological classes. And the third critical step, depending on the former two, is the ability to
learn and use abstract categories. Unlike their concrete counterparts that can be acquired by
perceptual means and lexicalized later, for learning of some abstract categories
lexicalization might be a pre-requisite.

The proposal presented here considers a complex developmental picture that depends on a
combination of maturational and experience factors in conceptual development. Under this
view, learning of perceptual categories, cross-modal integration, lexicalization, learning of
conceptual properties, the ability to focus and shift attention, and the development of
lexicalized concepts are logical steps in conceptual development. This proposal offers a
theoretical alternative to the idea of innate knowledge structures specific to various
knowledge domains. However, much research is needed to move from a rough sketch to
detailed understanding of conceptual development.

Acknowledgments
Writing of this article was supported by grants from the NSF (BCS-0720135), from the Institute of Education
Sciences, U.S. Department of Education (R305B070407), and from NIH (R01HD056105).

References
Alvarado MC, Bachevalier J. Revisiting the maturation of medial temporal lobe memory functions in

primates. Learning & Memory. 2000; 7:244–256. [PubMed: 11040255]
Ashby FG, Maddox TW. Human category learning. Annual Review of Psychology. 2005; 56:149–78.
Ashby FG, Alfonso-Reese LA, Turken AU, Waldron EM. A neuropsychological theory of multiple

systems in category learning. Psychological Review. 1998; 105:442–481. [PubMed: 9697427]
Balaban MT, Waxman SR. Do words facilitate object categorization in 9-month old infants? Journal of

Experimental Child Psychology. 1997; 64:3–26. [PubMed: 9126625]
Bar-Gad I, Morris G, Bergman H. Information processing, dimensionality reduction and reinforcement

learning in the basal ganglia. Progress in Neurobiology. 2003; 71:439–473. [PubMed: 15013228]
Berg EA. A simple objective test for measuring flexibility and thinking. Journal of General

Psychology. 1948; 39:15–22. [PubMed: 18889466]
Blair MR, Watson MR, Kimberly M, Meier KM. Errors, efficiency, and the interplay between

attention and category learning. Cognition. 2009; 112:330–336. [PubMed: 19481733]
Brown RG, Marsden CD. Internal versus external cues and the control of attention in Parkinson’s

disease. Brain. 1988; 111:323–345. [PubMed: 3378139]
Buffalo EA, Ramus SJ, Clark RE, Teng E, Squire LR, Zola SM. Dissociation between the effects of

damage to perirhinal cortex and area TE. Learning & Memory. 1999; 6:572–599. [PubMed:
10641763]

Bunge SA, Zelazo PD. A Brain-based account of the development of rule use in childhood. Current
Directions in Psychological Science. 2006; 15:118–121.

Sloutsky Page 29

Cogn Sci. Author manuscript; available in PMC 2011 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Carey, S. Semantic development: State of the art. In: Wanner, E.; Gleitman, LR., editors. Language
acquisition: The state of the art. Cambridge University Press; Cambridge, England: 1982. p.
347-389.

Carey, S. The Origin of Concepts. Oxford University Press; New York: 2009.
Carey S, Spelke E. Science and core knowledge. Philosophy of Science. 1996; 63:515–533.
Carey, S.; Spelke, E. Domain specific knowledge and conceptual change. In: Hirschfeld, L.; Gelman,

S., editors. Mapping the mind: Domain specificity in cognition and culture. Cambridge University
Press; Cambridge, MA: 1994. p. 169-200.

Caviness VS, Kennedy DN, Richelme C, Rademacher J, Filipek PA. The human brain age 7–11 years:
A volumetric analysis based on magnetic resonance images. Cerebral Cortex. 1996; 6:726–736.
[PubMed: 8921207]

Chomsky, N. Rules and representations. Blackwell; Oxford: 1980.
Cincotta CM, Seger CA. Dissociation between striatal regions while learning to categorize via

observation and via feedback. Journal of Cognitive Neuroscience. 2007; 19:249–265. [PubMed:
17280514]

Cook RG, Smith JD. Stages of abstraction and exemplar memorization in pigeon category learning.
Psychological Science. 2006; 17:1059–1067. [PubMed: 17201788]

Cools AR, van den Bercken JHL, Horstink MWI, van Spaendonck KPM, Berger HJC. Cognitive and
motor shifting aptitude disorder in Parkinson’s disease. Journal of Neurology, Neurosurgery and
Psychiatry. 1984; 47:443–453.

Dale PS, Fenson L. Lexical development norms for young children. Behavior Research Methods,
Instruments, & Computers. 1996; 28:125–127.

Davidson MC, Amso D, Anderson LC, Diamondd A. Development of cognitive control and executive
functions from 4 to 13 years: Evidence from manipulations of memory, inhibition, and task
switching. Neuropsychologia. 2006; 44:2037–2078. [PubMed: 16580701]

Diamond, A. Normal development of prefrontal cortex from birth to young adulthood: Cognitive
functions, anatomy, and biochemistry. In: Stuss, DT.; Knight, RT., editors. Principles of frontal
lobe function. Oxford University Press; London, UK: 2002. p. 466-503.

Diamond A, Goldman-Rakic PS. Comparison of human infants and rhesus monkeys on Piaget’s AB
task: Evidence for dependence on dorsolateral prefrontal cortex. Experimental Brain Research.
1989; 44:24–40.

Fan J, McCandliss BD, Sommer T, Raz A, Posner MI. Testing the efficiency and independence of
attentional networks. Journal of Cognitive Neuroscience. 2002; 14:340–347. [PubMed: 11970796]

Fernandez-Ruiz J, Wang J, Aigner TG, Mishkin M. Visual habit formation in monkeys with
neurotoxic lesions of the ventrocaudal neostriatum. Proceedings of the National Academy of
Sciences. 2001; 98:4196–4201.

Fisher AV. Are developmental theories of learning paying attention to attention? Cognition, Brain, and
Behavior. 2007; 11:635–646.

Fisher AV, Sloutsky VM. When induction meets memory: Evidence for gradual transition from
similarity-based to category-based induction. Child Development. 2005; 76:583–597. [PubMed:
15892780]

French RM, Mareschal D, Mermillod M, Quinn PC. The role of bottom-up processing in perceptual
categorization by 3- to 4-month-old infants: Simulations and data. Journal of Experimental
Psychology: General. 2004; 133:382–397. [PubMed: 15355145]

Gasser M, Smith LB. Learning nouns and adjectives: A connectionist account. Language and
Cognitive Processes. 1998; 13:269–306.

Gelman SA. The development of induction within natural kind and artifact categories. Cognitive
Psychology. 1988; 20:65–95. [PubMed: 3338268]

Gelman R. Structural constraints on cognitive development: Introduction to a special issue of
Cognitive Science. Cognitive Science. 1990; 14:3–10.

Gelman, SA.; Coley, J. Language and categorization: The acquisition of natural kind terms. In:
Gelman, SA.; Byrnes, JP., editors. Perspectives on language and thought: Interrelations in
development. Cambridge University Press; New York: 1991. p. 146-196.S.

Sloutsky Page 30

Cogn Sci. Author manuscript; available in PMC 2011 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Gelman SA, Markman E. Categories and induction in young children. Cognition. 1986; 23:183–209.
[PubMed: 3791915]

Gentner, D. Why nouns are learned before verbs: Linguistic relativity versus natural partitioning. In:
Kuczaj, SA., editor. Language development: Vol. 2. Language, thought and culture. Erlbaum;
Hillsdale, NJ: 1982. p. 301-334.

Giedd JN, Snell JW, Lange N, Rajapakse JC, Casey BJ, Kozuch PL, Vaituzis AC, Vauss YC,
Hamburger SD, Kaysen D, Rapoport JL. Quantitative magnetic resonance imaging of human brain
development: Ages 4–18. Cerebral Cortex. 1996a; 6:551–560. [PubMed: 8670681]

Giedd JN, Vaituzis AC, Hamburger SD, Lange N, Rajapakse JC, Kaysen D, Vauss YC, Rapoport JL.
Quantitative MRI of the temporal lobe, amygdala, and hippocampus in normal human
development: Ages 4–18 years. Journal of Comparative Neurology. 1996b; 366:223–230.
[PubMed: 8698883]

Goldman-Rakic PS. Development of cortical circuitry and cognitive function. Child Development.
1987; 58:601–622. [PubMed: 3608641]

Golinkoff RM, Mervis CB, Hirsh-Pasek K. Early object labels: The case for a developmental lexical
principles framework. Journal of Child Language. 1994; 21:125–155. [PubMed: 8006089]

Gureckis TM, Love BC. Common mechanisms in infant and adult category learning. Infancy. 2004;
5:173–198.

Hammer R, Diesendruck G. The role of dimensional distinctiveness in children’s and adults’ artifact
categorization. Psychological Science. 2005; 16:137–144. [PubMed: 15686580]

Hammer R, Diesendruck G, Weinshall D, Hochstein S. The development of category learning
strategies: What makes the difference? Cognition. 2009; 112:105–119. [PubMed: 19426967]

Hoffman AB, Rehder B. The costs of supervised classification: The Effect of learning task on
conceptual flexibility. submitted.

Imai M, Gentner D. A cross-linguistic study of early word meaning: universal ontology and linguistic
influence. Cognition. 1997; 62:169–200. [PubMed: 9141906]

Jernigan TL, Trauner DA, Hesselink JR, Tallal PA. Maturation of the human cerebrum observed in
vivo during adolescence. Brain. 1991; 114:2037–2049. [PubMed: 1933232]

Jones SS, Smith LB. How children know the relevant properties for generalizing object names.
Developmental Science. 2002; 5:219–232.

Jones SS, Smith LB, Landau B. Object properties and knowledge in early lexical learning. Child
Development. 1991; 62:499–516. [PubMed: 1914622]

Kaminski JA, Sloutsky VM, Heckler AF. The advantage of abstract examples in learning math.
Science. 2009; 230:454–455. 18.

Keil, FC. Semantic and conceptual development: An ontological perspective. Harvard University
Press; Cambridge, MA: 1979.

Keil, FC. Concepts, kinds, and cognitive development. MIT Press; Cambridge, MA: 1989.
Kirkham NZ, Cruess L, Diamond A. Helping children apply their knowledge to their behavior on a

dimension-switching task. Developmental Science. 2003; 6:449–476.
Kloos H, Sloutsky VM. What’s behind different kinds of kinds: Effects of statistical density on

learning and representation of categories. Journal of Experimental Psychology: General. 2008;
137:52–72. [PubMed: 18248129]

Knowlton BJ, Mangels JA, Squire LR. A neostriatal habit learning system in humans. Science. 1996;
273:1399–1402. [PubMed: 8703077]

Koutstaal W, Schacter DL. Gist-based false recognition of pictures in older and younger adults.
Journal of Memory & Language. 1997; 37:555–583.

Kruschke JK. ALCOVE: An exemplar-based connectionist model of category learning. Psychological
Review. 1992; 99:22–44. [PubMed: 1546117]

Kruschke JK. Human category learning: Implications for back propagation models. Connection
Science. 1993; 5:3–36.

Kruschke JK. Toward a unified model of attention in associative learning. Journal of Mathematical
Psychology. 2001; 45:812–863.

Sloutsky Page 31

Cogn Sci. Author manuscript; available in PMC 2011 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Lewkowicz DJ. Development of intersensory temporal perception: An epigenetic systems/limitations
view. Psychological Bulletin. 2000; 126:281–308. [PubMed: 10748644]

Lickliter R, Bahrick LE. The development of infant intersensory perception: Advantages of a
comparative convergent-operations approach. Psychological Bulletin. 2000; 126:260–280.
[PubMed: 10748643]

Lombardi WJ, Andreason PJ, Sirocco KY, Rio DE, Gross RE, Umhau JC, Hommer DW. Wisconsin
Card Sorting Test performance following head injury: dorsolateral fronto-striatal circuit activity
predicts perseveration. Journal of Clinical and Experimental Neuropsychology. 1999; 21:2–16.
[PubMed: 10420997]

Love BC, Gureckis TM. Models in search of a brain. Cognitive, Affective, & Behavioral
Neuroscience. 2007; 7:90–108.

Luciana M, Nelson CA. The functional emergence of prefrontally-guided working memory systems in
four- to eight-year-old children. Neuropsychologia. 1998; 36:273–293. [PubMed: 9622192]

Macario JF. Young children’s use of color in classification: Foods and canonically colored objects.
Cognitive Development. 1991; 6:17–46.

Mackintosh NJ. A theory of attention: Variations in the associability of stimuli with reinforcement.
Psychological Review. 1975; 82:276–298.

Mandler, JB. The foundations of mind: Origins of conceptual thought. Oxford University Press; New
York: 2004.

Mandler JB, Bauer PJ, McDonough L. Separating the sheep from the goats: differentiating global
categories. Cognitive Psychology. 1991; 23:263–298.

Mareschal D, Quinn PC, French RM. Asymmetric interference in 3- to 4-month-olds’ sequential
category learning. Cognitive Science. 2002; 26:377–389.

Markman AB, Stilwell CH. Role-governed categories. Journal of Experimental and Theoretical
Artificial Intelligence. 2001; 13:329–358.

Markman AB, Ross BH. Category use and category learning. Psychological Bulletin. 2003; 129:592–
613. [PubMed: 12848222]

Markman, EM. Categorization and naming in children: Problems of induction. MIT Press; Cambridge,
MA: 1989.

Marks W. Effects of encoding the perceptual features of pictures on memory. Journal of Experimental
Psychology: Learning, Memory, and Cognition. 1991; 17:566–577.

Napolitano AC, Sloutsky VM. Is a picture worth a thousand words? The flexible nature of modality
dominance in young children. Child Development. 2004; 75:1850–1870. [PubMed: 15566384]

Nelson K. Structure and strategy in learning to talk. Monographs of the Society for Research in Child
Development. 1973; 38(1-2)

Nomura EM, Reber PJ. A review of medial temporal lobe and caudate contributions to visual category
learning. Neuroscience and Biobehavioral Reviews. 2008; 32:279–291. [PubMed: 17868867]

Nomura EM, Maddox WT, Filoteo JV, Ing AD, Gitelman DR, Parrish TB, Mesulam MM, Reber PJ.
Neural correlates of rule-based and information-integration visual category learning. Cerebral
Cortex. 2007; 17:37–43. [PubMed: 16436685]

Nosofsky RM. Attention, similarity and the identification categorization relationship. Journal of
Experimental Psychology: General. 1986; 115:39–57. [PubMed: 2937873]

Opfer JE, Bulloch MJ. Causal relations drive young children’s induction, naming, and categorization.
Cognition. 2007; 105:206–217. [PubMed: 17045580]

Opfer JE, Siegler RS. Revisiting preschoolers’ living things concept: A microgenetic analysis of
conceptual change in basic biology. Cognitive Psychology. 2004; 49:301–332. [PubMed:
15342257]

Pfefferbaum A, Mathalon DH, Sullivan EV, Rawles JM, Zipursky RB, Lim KO. A quantitative
magnetic resonance imaging study of changes in brain morphology from infancy to late adulthood.
Archives of Neurology. 1994; 51:874–887. [PubMed: 8080387]

Pinker, S. Language Learnability and Language Development. Harvard University Press; Cambridge,
MA: 1984.

Sloutsky Page 32

Cogn Sci. Author manuscript; available in PMC 2011 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Posner MI, Petersen SE. The attention system of the human brain. Annual Review of Neuroscience.
1990; 13:25–42.

Quinn PC, Eimas PD, Rosenkrantz SL. Evidence for representations of perceptually similar natural
categories by 3-month-old and 4-month-old infants. Perception. 1993; 22:463–475. [PubMed:
8378134]

Rakison DH, Poulin-Dubois D. Developmental origin of the animate-inanimate distinction.
Psychological Bulletin. 2001; 127:209–228. [PubMed: 11316011]

Rao SM, Bobholz JA, Hammeke TA, Rosen AC, Woodley SJ, Cunningham JM, Cox RW, Stein EA,
Binder JR. Functional MRI evidence for subcortical participation in conceptual reasoning skills.
NeuroReport. 1997; 8:1987–1993. [PubMed: 9223090]

Robinson CW, Sloutsky VM. Auditory dominance and its change in the course of development. Child
Development. 2004; 75:1387–1401. [PubMed: 15369521]

Robinson CW, Sloutsky VM. Linguistic labels and categorization in infancy: Do labels facilitate or
hinder? Infancy. 2007a; 11:233–253.

Robinson CW, Sloutsky VM. Visual processing speed: Effects of auditory input on visual processing.
Developmental Science. 2007b; 10:734–740. [PubMed: 17973789]

Robinson CW, Sloutsky VM. Effects of auditory input in individuation tasks. Developmental Science.
2008; 11:869–881. [PubMed: 19046156]

Robinson CW, Sloutsky VM. Development of cross-modal processing. WIRES: Cognitive Science.
2010; 1:1–7.

Rodman HR. Development of inferior temporal cortex in the monkey. Cerebral Cortex. 1994; 4:484–
498. [PubMed: 7833650]

Rodman HR, Skelly JP, Gross CG. Stimulus selectivity and state dependence of activity in inferior
temporal cortex of infant monkeys. Proceedings of the National Academy of Sciences. 1991;
88:7572–7575.

Rogers RD, Andrews TC, Grasby PM, Brooks DJ, Robbins TW. Contrasting cortical and subcortical
activations produced by attentional-set shifting and reversal learning in humans. Journal of
Cognitive Neuroscience. 2000; 12:142–162. [PubMed: 10769312]

Rogers, TT.; McClelland, JL. Semantic cognition: A parallel distributed processing approach. MIT
Press; Cambridge, MA: 2004.

Rosch EH, Mervis CB, Gray WD, Johnson DM, Boyes-Braem P. Basic objects in natural categories.
Cognitive Psychology. 1976; 8:382–439.

Rueda M, Fan J, McCandliss BD, Halparin J, Gruber D, Lercari L, Posner MI. Development of
attentional networks in childhood. Neuropsychologia. 2004; 42:1029–1040. [PubMed: 15093142]

Saffran JR, Johnson EK, Aslin RN, Newport EL. Statistical learning of tone sequences by human
infants and adults. Cognition. 1999; 70:27–52. [PubMed: 10193055]

Samuelson LK, Smith LB. Early noun vocabularies: do ontology, category structure and syntax
correspond? Cognition. 1999; 73:1–33. [PubMed: 10536222]

Seger CA. How do the basal ganglia contribute to categorization? Their roles in generalization,
response selection, and learning via feedback. Neuroscience and Biobehavioral Reviews. 2008;
32:265–278. [PubMed: 17919725]

Seger CA, Cincotta CM. Striatal activation in concept learning. Cognitive, Affective, & Behavioral
Neuroscience. 2002; 2:149–161.

Shannon, CE.; Weaver, W. The mathematical theory of communication. University of Illinois Press;
Chicago: 1948.

Shepp BE, Swartz KB. Selective attention and the processing of integral and nonintegral dimensions:
A developmental study. Journal of Experimental Child Psychology. 1976; 22:73–85. [PubMed:
1003096]

Sloutsky VM, Napolitano AC. Is a picture worth a thousand words? Preference for auditory modality
in young children. Child Development. 2003; 74:822–833. [PubMed: 12795392]

Sloutsky VM. The role of similarity in the development of categorization. Trends in Cognitive
Sciences. 2003; 7:246–251. [PubMed: 12804690]

Sloutsky Page 33

Cogn Sci. Author manuscript; available in PMC 2011 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Sloutsky VM, Fisher AV. Attentional learning and flexible induction: How mundane mechanisms give
rise to smart behaviors. Child Development. 2008; 79:639–651. [PubMed: 18489418]

Sloutsky VM, Fisher AV. Induction and categorization in young children: A similarity-based model.
Journal of Experimental Psychology: General. 2004a; 133:166–188. [PubMed: 15149249]

Sloutsky VM, Fisher AV. When development and learning decrease memory: Evidence against
category-based induction in children. Psychological Science. 2004b; 15:553–558. [PubMed:
15271001]

Sloutsky VM, Lo Y-F. How much does a shared name make things similar? Part 1: Linguistic labels
and the development of similarity judgment. Developmental Psychology. 1999; 35:1478–1492.
[PubMed: 10563736]

Sloutsky VM, Robinson CW. The role of words and sounds in visual processing: From overshadowing
to attentional tuning. Cognitive Science. 2008; 32:354–377.

Sloutsky VM, Spino MA. Naive theory and transfer of learning: When less is more and more is less.
Psychonomic Bulletin and Review. 2004; 11:528–535. [PubMed: 15376806]

Sloutsky VM, Kloos H, Fisher AV. When looks are everything: Appearance similarity versus kind
information in early induction. Psychological Science. 2007; 18:179–185. [PubMed: 17425540]

Sloutsky VM, Lo Y-F, Fisher A. How much does a shared name make things similar? Linguistic
labels, similarity and the development of inductive inference. Child Development. 2001;
72:1695–1709. [PubMed: 11768140]

Smith JD, Redford JS, Haas SM. Prototype abstraction by monkeys (Macaca mulatta). Journal of
Experimental Psychology: General. 2008; 137:390–401. [PubMed: 18473665]

Smith JD, Kemier-Nelson DG. Overall similarity in adults’ classification: The child in all of us.
Journal of Experimental Psychology: General. 1984; 113:137–159.

Smith LB. A model of perceptual classification in children and adults. Psychological Review. 1989;
96:125–144. [PubMed: 2928416]

Smith LB, Jones SS, Landau B. Naming in young children: A dumb attentional mechanism?
Cognition. 1996; 60:143–171. [PubMed: 8811743]

Soja N, Carey S, Spelke E. Ontological categories guide young children’s inductions of word
meanings: object terms and substance terms. Cognition. 1991; 38:179–211. [PubMed: 2049905]

Sowell ER, Jernigan TL. Further MRI evidence of late brain maturation: Limbic volume increases and
changing asymmetries during childhood and adolescence. Developmental Neuropsychology.
1999; 14:599–617.

Sowell ER, Thompson PM, Holmes CJ, Batth R, Jernigan TL, Toga AW. Localizing age-related
changes in brain structure between childhood and adolescence using statistical parametric
mapping. NeuroImage. 1999a; 9:587–597. [PubMed: 10334902]

Sowell ER, Thompson PM, Holmes CJ, Jernigan TL, Toga AW. In vivo evidence for post-adolescent
brain maturation in frontal and striatal regions. Nature Neuroscience. 1999b; 2:859–861.

Spelke ES, Kinzler KD. Core knowledge. Developmental Science. 2007; 10:89–96. [PubMed:
17181705]

Spelke ES. Core knowledge. American Psychologist. 2000; 55:1233–1243. [PubMed: 11280937]
Striedter, GF. Principles of brain evolution. Sinauer; Sunderland, MA: 2005.
Teng E, Stefanacci L, Squire LR, Zola SM. Contrasting effects on discrimination learning after

hippocampal lesions and conjoint hippocampal-caudate lesions in monkeys. Journal of
Neuroscience. 2000; 20:3853–3863. [PubMed: 10804225]

Thapar A, McDermott KB. False recall and false recognition induced by presentation of associated
words: Effects of retention interval and level of processing. Memory and Cognition. 2001;
29:424–432.

Tipper, SP.; Driver, J. Negative priming between pictures and words in a selective attention task:
Evidence for semantic processing of ignored stimuli. In: Gazzaniga, MS., editor. Cognitive
Neuroscience: A Reade. Blackwell Publishing; Malden, MA: 2000. p. 176-187.

van Domburg, PHME.; ten Donkelaar, HJ. The human substantia nigra and ventral tegmental area.
Springer-Verlag; Berlin: 1991.

Sloutsky Page 34

Cogn Sci. Author manuscript; available in PMC 2011 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Vygotsky, LS. Thought and Language. MIT Press; Cambridge, MA: 1964. Original work published in
1934

Wallace MT. The development of multisensory processes. Cognitive Processing. 2004; 5:69–83.
Wasserman EA, Young ME, Cook RG. Variability discrimination in humans and animals:

Implications for adaptive action. American Psychologist. 2004; 59:879–890. [PubMed:
15584822]

Waxman SR, Markow DB. Words as invitations to form categories: Evidence from 12- 13-month-old
infants. Cognitive Psychology. 1995; 29:257–302. [PubMed: 8556847]

Welder AN, Graham SA. The influence of shape similarity and shared labels on infants’ inductive
inferences about nonobvious object properties. Child Development. 2001; 72:1653–1673.
[PubMed: 11768138]

Whitman JR, Garner WR. Free recall learning of visual figures as a function of form of internal
structure. Journal of Experimental Psychology. 1962; 64:558–564. [PubMed: 14000394]

Wilson, C. The contribution of cortical neurons to the firing pattern of striatal spiny neurons. Bradford,
Cambridge, MA: 1995.

Xu F. The role of language in acquiring object kind concepts in infancy. Cognition. 2002; 85:223–250.
[PubMed: 12169410]

Yamauchi T, Markman AB. Category learning by inference and classification. Journal of Memory and
Language. 1998; 39:124–148.

Yamauchi T, Markman AB. Inference using categories. Journal of Experimental Psychology:
Learning, Memory, and Cognition. 2000; 26:776–795.

Yamauchi T, Yu N-Y. Category labels versus feature labels: Category labels polarize inferential
predictions. Memory & Cognition. 2008; 36:544–553.

Yamauchi T, Kohn N, Yu N-Y. Tracking mouse movement in feature inference: Category labels are
different from feature labels. Memory & Cognition. 2007; 35:852–863.

Yamauchi T, Love BC, Markman AB. Learning nonlinearly separable categories by inference and
classification. Journal of Experimental Psychology: Learning, Memory, and Cognition. 2002;
28:585–593.

Yoshida H, Smith LB. Shifting ontological boundaries: How Japanese- and English speaking children
generalize names for animals and artifacts. Developmental Science. 2003; 6:1–34.

Zelazo PD, Frye D, Rapus T. An age-related dissociation between knowing rules and using them.
Cognitive Development. 1996; 11:37–63.

Zelazo PD, Muller U, Frye D, Marcovitch S. The development of executive function in early
childhood. Monographs of the Society for Research on Child Development. 2003; 68:vii–137.

Zentall TR, Wasserman EA, Lazareva OF, Thompson RKR, Rattermann MJ. Concept learning in
animals. Comparative Cognition & Behavior Reviews. 2008; 3:13–45.

Sloutsky Page 35

Cogn Sci. Author manuscript; available in PMC 2011 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1.
A. Schematic depiction of the compression-based system. The top layer represents stimulus
encoding in inferotemporal cortex. This rich encoding gets compressed to a more basic form
in the striatum represented by the bottom layer. Although some of the features are left out,
much perceptual information present in the top layer is retained in the bottom layer. B.
Schematic depiction of the selection-based system. The top layer represents selective
encoding in the prefrontal cortex. The selected dimension is then projected to the striatum
represented by the bottom layer. Only the selected information is retained in the bottom
layer.
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Figure 2.
(After Nomura & Reber, 2008). RB (A) and II stimuli (B). Each point represents a distinct
Gabor patch (sine-wave) stimulus defined by orientation (tilt) and frequency (thickness of
lines). In both stimulus sets, there are two categories (red and blue points). RB categories are
defined by a vertical boundary (only frequency is relevant for categorization) whereas II
categories are defined by a diagonal boundary (both orientation and frequency are relevant).
In both RB and II stimuli there are examples of a stimulus from each category.
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Figure 3.
Examples of items used in Kloos and Sloutsky (2008), Experiment 1. In the dense category,
items are bound by similarity, whereas in the sparse category, the length of the tale is the
predictor of the category membership.
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Figure 4.
Mean accuracy scores by category type and learning condition in adults (A) and in children
(B). In this and all other figures error bars represent standard errors of the mean. For the
dense category D = 1 and for the sparse category D = 0.17
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Figure 5.
Unsupervised category learning by density and age group in Kloos and Sloutsky (2008).
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Figure 6.
False alarm rate by category structure and foil type in adults and children in Kloos and
Sloutsky (2008), Experiment 4.
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Figure 7.
Recognition accuracy in adults by category familiarity and study phase condition in Fisher
and Sloutsky (2005).
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Figure 8.
Recognition accuracy by age and study phase condition in Fisher and Sloutsky (2005).
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Figure 9.
Differences in looking times by Age and Test item type in Sloutsky and Robinson (2008).
Note: * -- Difference scores > 0, p < .05.
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Figure 10.
Similarity judgment by similarity ratio and labeling condition in (A) children and (B) adults
in Sloutsky and Fisher (2004).
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