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Abstract
This paper considers generalized partially linear models. We propose empirical likelihood based
statistics to construct confidence regions for the parametric and nonparametric componenets. The
resulting statistics are shown to be asymptotically chi-squared distributed. Finite sample
performance of the proposed statistics is assessed by simulation experiments. The proposed
methods are applied to a dataset from an AIDS clinical trial.
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1 Introduction
Generalized partially linear models (GPLM), a generalization of partially linear models to
possibly non-Gaussian responses, assume that the conditional expectation of the response
variables given the covariates can be represented as

(1)

where μ = μ{X′β + θ(T)}, μ(·) is a known link function, V (·) is a known function, β is an
unknown p × 1 vector, T ∈ Rq, θ is an unknown smooth function, and σ2 is an unknown
scalar parameter. Assume that T takes values in  a closed rectangle in Rq. We assume that
(Yi, Xi, Ti), i = 1, 2, ⋯, n, are independent and identically distributed data from model (1).
GPLMs allow easier interpretation of the effect of each variables and are preferable to
general nonparametric models (Stone, 1980) since they provides a partial remedy to the
“curse of dimensionality,” especially when q is small as is often the case. GPLMs are more
flexible than the standard GLM because they combine both parametric and nonparametric
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components when it is believed that the E(Y|X, T) depends on variable X in a linear way but
is nonlinearly related to other independent variables, T.

A special class of the GPLMs, partially linear models, have been intensively studied in
literature. See for example, Engle et al. (1986), Speckman, (1988), Härdle, Liang & Gao
(2000) and references therein. For GPLMs, Severini & Staniswalis (1994) applied the
quasilikelihood principle proposed by Severini & Wong (1992), and Carroll et al. (1997)
proposed two different estimation algorithms based on quasilikelihood and local kernel
methods. Related topics have recently been studied by Lin & Carroll (2001) for longitudinal
data, and Liang & Ren (2005) for measurement errors. It is worth pointing out that the
quasilikelihood approach for the GPLM is different from the kernel-based smoothing
method for partially linear models. The latter is simple and noniterative because the closed
form of the estimators is available, while the former needs an iterative algorithm and an
undersmoothing bandwidth.

Under mild regularity conditions, Severini & Staniswalis (1994) derived the asymptotics for
the estimators of β and θ(t) that they proposed. In principle, these asymptotic results can be
used to construct asymptotically correct confidence intervals of the parameters and
pointwise confidence intervals for the nonparametric function. The finite-sample
performance of the resulting confidence intervals may not be appealing because the complex
structure of the covariance matrix, which needs to be estimated with estimates plugged-in
for several parameters. In this paper, we propose an alternative for constructing regions for β
and θ(t) using the empirical likelihood principle, which was originally studied by Hartley &
Rao (1968) for sample surveys and by Thomas & Grunkemeier (1975) for survival analysis.
Owen (2001) gave a comprehensive survey for empirical likelihood methods and related
topics. The empirical likelihood method has many advantages over its competitors such as
the normal-approximation-based method and the bootstrap method (see Hall & La Scala,
1990). These advantages include improvement of the confidence region, increase of
accuracy of coverage because of using auxiliary information, easy implementation, avoiding
estimating variances, and studentising automatically. Because of these features, the
applications of empirical likelihood in parametric and nonparametric models have received a
great amount of attention.

More recently, empirical likelihood based inference has been developed for semiparametric
models, e.g., by Zhu & Xue (2006) who developed empirical likelihood confidence regions
for the parameters of partially linear single-indexmodels. However, most research on
empirical likelihood inference for semiparametric models has focused on the finite-
dimensional parameter and has assumed a continuous response variables. In this paper, we
study empirical likelihood inference for both the finite-dimensional parameters and the
nonparametric functions in semiparametric models and we allow the response variable to be
discrete. Our procedure is a generalization of empirical likelihood procedure to a
combination of generalized linear models and nonparametric regression. This generalization
is by no means straightforward. In Section 2, we will define the empirical likelihood ratio
statistics for β and θ(t), derive the asymptotic distributions of the resulting empirical
likelihood statistics, and explain how to establish the corresponding CI. In Section 3 we
report the results of a simulation experiment to explore the finite sample performance of the
proposed confidence intervals. The proposed methods will used to analyze a real dataset in
Section 4. Section 5 gives a discussion. All technical derivations are given in the Appendix.

2 Empirical Likelihood Methods
Several authors have applied empirical likelihood to partially linear models, a special case of
the GPLM. For example, Shi & Lau (1999) proposed an empirical likelihood based
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confidence interval for the parameters of a partially linear model. Qin & Jing (2001) and
Wang & Li (2002) considered the case in which the response variables Yi are random
censored. These authors proposed an empirical likelihood ratio for β and derived its
asymptotic distribution, which is a sum of independent chi-squared distributions with
unknown weights.

We first review briefly the quasi-likelihood estimators of β and θ(t) proposed by Severini &
Staniswalis (1994). Denote the quasi-likelihood function by

Under some regularity conditions, ∑i Q(μ, Yi) behaves like a log-likelihood function for μ
based on Y1, ⋯, Yn and Q(μ, y) behaves like the logarithm of a density function for Y. Let K
denote a kernel on Rq, and h = hn denote a sequence of bandwidths. For each fixed t and β,
let θ̂β(t) denote the solution in η of

(2)

Let 0 denote a compact subset of int(T) and let Ii = 1 if Ti ∈ 0 and 0 otherwise. Given
the estimator θ̂β(t), an estimator of β, β̂ is then obtained by solving

(3)

The quasi-likelihood estimator of θ(t) is given by θ̂β̂(t). The trimming by Ii of data near the
boundary is employed to reduce boundary bias, which, for kernel regression estimators, can
be quite serious and converges to zero at a slower rate than in the interior. In the univariate
case, when q = 1, either a boundary-corrected kernel estimator or locally linear kernel
estimator may be used instead. Although either of these methods may be extended to the
multivariate case, the resulting technical details for the development of the asymptotic
theory become cumbersome. For ease of notation, we present our results for the case q = 1 in
the remainder of this paper.

2.1 Confidence region for β
Let β0 denote the true value of β. Write

Based on the estimating equation (3) for β, we propose the empirical likelihood ratio statistic
for β as follows.
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where pi, i = 1, ⋯, n, are nonnegative numbers which satisfy

By the Lagrange multiplier method, it can be shown that

where λ1 is determined by

(4)

The asymptotic distribution of the empirical likelihood ratio statistic ℓ1(β0) is established in
Theorem 2.1. Its proof is given in the Appendix.

Theorem 2.1—Suppose that nh4 → 0 and the conditions (a)–(e) in the Appendix are
satisfied. Then, as n → ∞,

where β0 is the true parameter value and  is a chi-square distributed random variable
with p degrees of freedom.

Therefore, CIβ = {β|ℓ1(β) ≤ cα} is a 1 − α confidence region for β0 where cα satisfies

.

2.2 Pointwise confidence region for θ(t)

Let η = θ(t) for fixed t ∈ 0, and β̂ be a −consistent estimator of β0. Denote

where K(·) is a kernel function and h is a bandwidth. Based on the estimating equation (2)
for η, we propose the empirical likelihood ratio statistic for η:

where pi, i = 1, ⋯, n, are nonnegative numbers which satisfy
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A direct calculation implies that

where λ2 is determined by

(5)

The asymptotic distribution of the empirical likelihood ratio statistic ℓ2(η) is given in
Theorem 2.2. Its proof is given in the Appendix.

Theorem 2.2—Suppose that nh4 → 0 and that the conditions (a)–(e) in the Appendix are
satisfied. Then, as n →∞,

From Theorem 2.2, the confidence region for η with coverage probability 1 − α(0 < α < 1)
can be constructed by CIη = {η|ℓ2(η) ≤ cα}, where cα satisfies .

Remark 1: Theorems 2.1 and 2.2 indicate that undersmoothing is still needed as for the
normal approximation theory (Carroll et al., 1997). To meet this requirement, we use
existing bandwidth selection techniques to obtain the optimal bandwidth, ĥopt, An ad hoc
bandwidth is generated by ĥopt × n−1/20 log−1/5 n, which ensures the bandwidth has correct
order required in Theorems 2.1 and 2.2.

3 Simulations
To illustrate the numerical performance for the proposed method, we conducted a small
simulation experiment in which n = 80, 100, 120. We generated data from a logistic model

where Xi is independent uniform (−0.5, 0.5) component and Ti is uniformly distributed on
(0, 2). The parameter β is equal to 1, and the nonparametric function is θ(z) = sin{(z − a)/(b
− a)π} with .

In our nonparametric estimation implementation, to save computational time, we tried the
simple bandwidth h = an−1/4(log n)−1/5 for a = 0.75, 1, 1.25, 1.5, 2, which satisfy the
condition in Theorems 1 and 2. We finally selected bandwidth via h = 1.5n−1/4(log n)−1/5.
The numerical results are fairly stable against shifting values of the selected bandwidth. We
used the quartic kernel, K(u) = 15/16(1 − u2)2I(|u|≤1). We generated 200 data sets in each
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configuration. The empirical likelihood-based and normal approximation based confidence
intervals for β are reported in Table 1. The lower and upper values are the averages of 200
simulated lower and upper values. The columns “AL” give the average length of the
confidence intervals, while the column “CP(%)” gives the corresponding coverage
probabilities of the 200 simulated datasets. The pointwise confidence intervals for the
nonparametric function θ(t) at the selected four points t = 0.3, 0.8, 1.5 and 1.9 are presented
in Table 2. A referee has asked us how the confidence intervals proposed compare to
bootstrap confidence intervals, for which we used the naive bootstrap, i.e., resampled (X, Y,
T), for 500 times. We provided the results for β in Table 1 and for the nonparametric
component θ(t) in Table 2. These results basically coincide with those the results based on
the normal approximation, and slightly deviate from those based on the proposed method in
this paper. But the bootstrap implementation took a significantly longer amount of time
compared to the empirical likelihood method. From the tables we may conclude that the
coverage probabilities based on empirical likelihood method are mostly closer to the
nominal level than those based on the normal approximation method, while the lengths of
the empirical likelihood based intervals are slightly shorter than those based on the normal
approximation method. The length of the estimated confidence intervals of β decreases with
the increase of sample size.

4 Real Data Analysis
In recent years, one of the areas focused upon by AIDS researchers has been the relationship
between viral load and CD4+ cell counts (Liang, Wu & Carroll, 2003; Liang, et al., 2004).
This relationship is used to investigate the concordance and discordance between virologic
and immunologic variables, which may help clinicians more deeply understand AIDS
pathogenesis and improve therapy. Although antiretroviral therapy for HIV-1 infected
patients has greatly improved in recent years, and administration of drug cocktails consisting
of three or more drugs can reduce and maintain the viral load below the detection limit in
many patients, it is unlikely that any combination of therapies can eradicate HIV in infected
patients because of the existence of long-lived infected cells and sites within the body where
drugs may not be effective. With the success of highly active antiretroviral therapy
(HAART) against HIV infection, viral load (measured as viral RNA copies/mL) is
suppressed and maintained at magnitudes that are below the limit of quantification, and the
infection is considered chronic. Clinicians and patients are therefore nowadays more
interested in achieving a viral load that is below the detection limit and in monitoring the
immunologic system (measured by CD4+ cell counts).

In this section we analyze a dataset from the AIDS study PACTG 345 (Scott et al., 2001).
Let Y be the indicator of a undetectable viral load level, let X be the CD4 cell count, and let
T be the treatment time. In this study, 33 patients were enrolled as cohort II. Specimens were
obtained on days 0, 1, 3, 7, 14, 28, 56, then irregularly through to the day 1155. A total of
559 HID-1 RNA measurements were obtained with 256 of these below the detection limit of
400 copies/mL. Thus, 45% of the viral loads were observed to be suppressed below the
detection limit. Figure 1 presents the individual observations of plasma HID RNA
concentration (viral load) after initial antiretroviral treatments. A main objective of the
treatment is to suppress the viral load below the limit of detection.

We are interested in the relationship between the binary viral load measurement and CD4+
cell counts. A parsimonious model of this relationship is biologically and clinically
important because these variables are good biomarkers for anti-HIV treatment and may be
used to evaluate antiretroviral therapies. An obvious model is logistic regression, with X and
T having linear effects on the logit scale, because it is easily implemented and interpreted. A
concern, however, is whether this model can appropriately capture curvature in the effect of
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T due to drug resistance or noncompliance. To address this concern, we used the method of
Härdle, Mammen & Müller (1998) to check if a logistic model is appropriate, and obtained a
p-value less than 10−4, which reflects that the traditional logistic regression is not flexible
enough to fit this data set well. We therefore used a partially logistic model, described in (6),
to fit the dataset and use the proposed method to obtain the confidence intervals for
parametric and nonparametric components.

(6)

where θ(t) is a unknown smooth function. The estimate of β is 0.216, the positive value of
which reflects the increased chance of RNA below the detection limit at higher levels of
CD4+ counts. The 95%confidence intervals for β based on the normal approximation and
the proposed empirical likelihood methods are (−0.202, 0.634) and (0.081, 0.514). These
two confidence intervals convey different messages. The former interval indicates that the
chance of RNA below the detection limit is not statistically significantly related to CD4 cell
count, but the latter interval yields an inverse impression. We prefer to the conclusion based
on the empirical likelihood method according to biological meanings and the simulation
performance of this method. The pointwise estimates of θ(t) and associated confidence
regions based on these two methods are shown in Figure 2, in which the solid line is the
estimated pattern of θ(t), the dotted lines and broken lines are the confidence regions based
on empirical likelihood and normal approximation methods. The former gives a narrower
region than the latter.

5 Discussion
To simply inference for GPLMs, we proposed an empirical likelihood-based approach to
constructing confidence regions for β and θ(t). The proposed approach is remarkably simpler
than its counterpart based on the asymptotic normality of quasilikelihood estimators
(Severini & Staniswalis, 1994) and easily executable. The finite-sample performance of the
proposed statistics shows promise. In this article, we used local linear regression when we
handled nonparametric function θ(t). There are many different alternatives to the local
constant kernel regression in (2), including higher degree local polynomial kernel methods,
smoothing splines, and regression splines. The details for these methods need further
investigation in our setting. We chose the constant kernel regression because theoretical
results can be derived (Severini & Staniswalis, 1994).

Model (1) may be extended to a generalized additive partially linear model in the form of

where Ti = (T1,i, …, TK,i)′ is a K-dimensional vector. The study of this model is interesting
and requires additional efforts, but it is beyond the scope of this paper.
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Appendix

Conditions
The following assumptions are standard in studies of GPLMs, and we assume these hold
throughout the article. Write ρ1(u) = {dμ(u)/du} V−1{μ(u)}, and q1(u, y) = {y−μ(u)}ρ1(u).

a. The density function f(t) of T is positive and continuous at the point t0 ∈ 

b. The function μ(u) is twice differentiable in u.

c. The function θ(2)(t) is continuous at the point t0 ∈ 

d. With , and  are
twice differentiable in t.

e. , for some δ > 2.

Proof of Theorem 2.1

Denote AA′ by A⊗2,  for i = 1, …, n. Ξn = max1≤i≤n
‖ω1{β0, θ ̂β0(Ti), Yi, Xi, Ti}‖. We first show that

(7)

(8)

and

(9)

where Г is a positive definite matrix in form of

Recall that Q(μ, y) behaves like the logarithm of a density function for Y, and that θβ(t) is a
least favorable curve and thus proposition 2 of Severini &Wong (1992) holds, which are
shown in the proof of proposition 1 of Severini and Staniswalis (1994). Accordingly,

applying (2) in Section 6 of Severini & Wong (1992) (here our 

corresponds to  of Severini & Wong (1992)), we obtain

(10)

Liang et al. Page 9

Scand Stat Theory Appl. Author manuscript; available in PMC 2010 November 26.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Furthermore,

(11)

(7) follows from (10), (11) and a central limit theorem. The proofs of (8) and (9) are trivial.

From (7), (8) and (9), and the arguments similar to the proof of (2.14) in Owen (1990), we
can show that

(12)

Recall (4). It is readily seen by a direct calculation and (12) that

Thus, using Taylor expansion, we have

The proof is complete from (7) and (8).

Proof of Theorem 2.2
Denote by f0(·) the probability density function of T. Write

We first show that

(13)
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(14)

where Г0 = ∫ K2(u)du · f0(t)E{H2(Y, X, T)|T = t}.

From Taylor expansion and the fact that

it can been shown that

(15)

Moreover,

(16)

Thus (13) follows from (15), (16) and a central limiting theorem. The proof of (14) is trivial.

Write

From (15), using a central limiting theorem, it can be shown that

Combining with (5), (13) and (14), we have

Furthermore, by Taylor expansion, we obtain

Liang et al. Page 11

Scand Stat Theory Appl. Author manuscript; available in PMC 2010 November 26.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(17)

Theorem 2.2 follows from (13), (14), and (17).
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Figure 1.
Viral load measurements of plasma HID RNA concentration in the PACTG 345 study. The
detection limit of 400 copies of HID RNA per mL of plasma is indicated by the horizontal
line.
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Figure 2.
Confidence intervals of θ(t) obtained by using the normal approximation and empirical
likelihood methods. The solid line is the estimated curve of θ(t), while the dotted and broken
lines are the pointwise confidence intervals based on empirical likelihood and normal
approximation methods.
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