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Abstract

The development of cortical axonal pathways in the human brain begins during the transition between the

embryonic and fetal period, happens in a series of sequential events, and leads to the establishment of major

long trajectories by the neonatal period. We have correlated histochemical markers (acetylcholinesterase (AChE)

histochemistry, antibody against synaptic protein SNAP-25 (SNAP-25-immunoreactivity) and neurofilament 200)

with the diffusion tensor imaging (DTI) database in order to make a reconstruction of the origin, growth pat-

tern and termination of the pathways in the period between 8 and 34 postconceptual weeks (PCW). Histologi-

cal sections revealed that the initial outgrowth and formation of joined trajectories of subcortico-frontal

pathways (external capsule, cerebral stalk–internal capsule) and limbic bundles (fornix, stria terminalis, amygda-

loid radiation) occur by 10 PCW. As early as 11 PCW, major afferent fibers invade the corticostriatal junction. At

13–14 PCW, axonal pathways from the thalamus and basal forebrain approach the deep moiety of the cortical

plate, causing the first lamination. The period between 15 and 18 PCW is dominated by elaboration of the peri-

ventricular crossroads, sagittal strata and spread of fibers in the subplate and marginal zone. Tracing of fibers

in the subplate with DTI is unsuccessful due to the isotropy of this zone. Penetration of the cortical plate occurs

after 24–26 PCW. In conclusion, frontal axonal pathways form the periventricular crossroads, sagittal strata and

‘waiting’ compartments during the path-finding and penetration of the cortical plate. Histochemistry is advan-

tageous in the demonstration of a growth pattern, whereas DTI is unique for demonstrating axonal trajectories.

The complexity of fibers is the biological substrate of selective vulnerability of the fetal white matter.
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Introduction

The establishment of long-range axonal pathways is a cru-

cial neurogenetic event in the development of the

expanded cerebral cortex of the large primate brain. The

long-range axonal pathways form a basis for expanded con-

nectivity related to the increased number and size of corti-

cal areas which, in turn, have also increased the number

and size of cortico–subcortical connections. The process of

axonal growth of the long pathways is the most complex in

the human cerebrum, where an increased number of areas

and projection neurons (Rakic, 1988, 2009) is accompanied

by an enormous expansion of axonal pathways (Von

Monakow, 1905; Polyak, 1927, 1932; Makris et al. 1997; Sch-

mahmann & Pandya, 2006; Petrides & Pandya, 2007). The

expanded system of axonal pathways in the human cere-

brum develops over a prolonged period of time. It begins

at the end of the embryonic period (His, 1904; Hochstetter,

1909; Bartelmez & Dekaban, 1962, Kostović, 1990a,b) and

lasts until the neonatal period (Kostović, 1990b; Kostović &

Judaš, 2002, 2006; Berman et al. 2005; Huang et al. 2006,

2009; Huppi & Dubois, 2006; Kostović & Jovanov-Milošević,

2006; Counsell et al. 2007; Kasprian et al. 2008; Kostović

et al. 2008; Ment et al. 2009). During this period of

growth, the axonal pathways (i) pass the critical morphoge-

netic points at the diencephalic–telencephalic border and

corticostriatal junction (pallial–subpallial boundary) and (ii)

change the direction of the growth trajectory passing

through the periventricular crossroads (Judaš et al. 2005).
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They ‘wait’ in the subplate compartment before penetra-

tion into the cortical plate (Rakic, 1976, 1977; Kostović &

Goldman-Rakic, 1983; Kostović & Rakic, 1984, 1990; Kostović

& Jovanov-Milošević, 2006; Kostović & Judaš, 2007). Some

of the fiber systems show transient phenomena, such as

overgrowth and retraction of axon branches, which extend

into the postnatal period (Innocenti & Price, 2005; Tau &

Peterson, 2010). The peak of growth of the long axonal

pathways, connecting the cortex with the subcortical cen-

ters, corresponds to the period when preterm infants are

born [22–34 postconceptual weeks (PCW)] and survive due

to the support provided by modern neonatal care (Counsell

et al. 2007; Volpe, 2008, 2009; Ment et al. 2009; Miller &

Ferriero, 2009). In this period the axonal pathways (the

‘white’ matter) are very vulnerable to hypoxic–ischemic

injury, which is the basis of selective vulnerability (Miller &

Ferriero, 2009; Sherlock et al. 2009; Volpe, 2009).

The application of modern diffusion tensor imaging (DTI)

allows the in-vivo analysis of abnormal changes of the axo-

nal pathways during vulnerable periods (Huang et al. 2006,

2009; Kasprian et al. 2008; Kim et al. 2008; Rutherford et al.

2008; Aeby et al. 2009; Hoon et al. 2009; Ment et al. 2009;

Ramenghi et al. 2009). It has been shown that the DTI tech-

nique is very useful for the 3D study of the macroscopic

fiber bundle architecture and their maturational changes.

However, from a microscopic point of view, there are sev-

eral important limitations of DTI. DTI cannot identify the

points of origin, chemical properties and ‘waiting’ periods

of axonal pathways. When axonal anatomy is complex in

terms of the pixel dimension, such anatomical information

(e.g. non-uniform tract orientations within a pixel) could be

lost. These issues would lead to unknown validity of DTI

results if the results deviate from existing anatomical knowl-

edge. Although sophisticated data acquisition and analysis

methods have been postulated to ameliorate these issues,

we cannot expect that they will be completely resolved.

Careful histological studies based on the histochemical

preparations of the sequential histological sections of the

brain specimens within different developmental phases

(Kostović & Molliver 1974; Kostović & Goldman-Rakic, 1983;

Krmpotić-Nemanić et al. 1983; Kostović & Rakic, 1984, 1990;

Kostović, 1986, 1990b; Kostović et al. 1988, 1989a; Mrzljak

et al. 1988, 1992; Kostović & Judaš, 2002, 2006, 2007;

Kostović et al. 2002; Judaš et al. 2005; Kostović & Jovanov-

Milošević, 2006; Radoš et al. 2006; Petanjek et al. 2008,

Jovanov-Milošević et al. 2009, Kostović & Vasung, 2009) will

also be important in future DTI analysis.

The objective of this review is to compare evidence from

the DTI analysis of fetal postmortem brains with the data

on histochemically identified pathways. We have correlated

the histochemical evidence (acetylcholinesterase (AChE) his-

tochemistry, SNAP-25-immunoreactivity and neurofilament

200 staining) with the DTI reconstruction of pathways

[code no. N01-HD-4-3368 and N01-HD-4-3383, University of

Maryland Brain and Tissue Bank, for details on DTI data

acquisition; for imaging protocol, postprocessing and visual-

ization of DTI, DTI-based fiber tractography and region of

interest drawing strategy see Huang et al.( 2009)] in order

to reconstruct the origin, growth pattern and termination

of the axonal pathways. In addition, we have scanned 3-T

DTI of the postmortem specimen at 24 PCW [Fig. 9C, similar

to the protocol of Huang et al. (2009) but with lower reso-

lution] as well as T2-weighted magnetic resonance imaging

(MRI) (Fig. 9D) to elaborate different structural MRI charac-

teristics of the fetal brain. We have examined the period

between 8 and 34 PCW.

Our basic approach in the study of the long axonal path-

ways of the human fetal cerebrum is illustrated in Fig. 1.

This approach uses a combination of structural, histochemi-

cal and imaging data of the growing fiber system obtained

at the different developmental ages, expressed in the refer-

ence to common spatial (cellular, laminar and areal) land-

marks. For a detailed timetable of thalamocortical as well as

cerebral connection development see Kostović & Jovanov-

Milošević (2006) and Kostović & Judaš (2010).

Using these histological and DTI techniques we have

compared the development of axonal pathways of the pre-

frontal cortex and limbic bundles (Vasung et al. 2009). Our

goal was not only to show the differences between the

neocortical and allocortical patterns but also to show the

possible developmental relationships between these diverse

but functionally connected cortical systems (Nauta, 1971;

Goldman-Rakic, 1987; Schmahmann & Pandya, 2006;

Barbas, 2007; Petrides & Pandya, 2007). We believe that the

review of existing data on the development of cerebral con-

nections is a necessary step in studying the consequences of

the white matter damage and will facilitate the analysis of

structural organization and the possible recovery after peri-

natal brain damage.

Early initial outgrowth and formation of
‘joint trajectories’ of cerebral pathways
(before 10 PCW)

Classical studies on the developing brain have demon-

strated that fiber bundles of the major projection pathways

appear very early, at the end of the embryonic period,

around 8 PCW (His, 1904; Hochstetter, 1909; Bartelmez &

Dekaban, 1962; Molliver et al. 1973; Kostović, 1990a;

O’Rahilly & Müller, 2006). The standard techniques applied

in this study did not stain the fibers directly and the fibers

were identified on the basis of topography and pale

appearance in the Nissl type of staining (Fig. 2B–D). Applica-

tions of histochemical staining techniques showed that the

basal forebrain is the early source of afferents in the telen-

cephalon (Fig. 2A). The basal forebrain neurons belong to

the magnocellular cholinergic system (Matthews et al. 1974;

Mesulam et al. 1983, 1984; Kostović, 1986). These early basal

forebrain afferents travel to the pallium via the external

capsule, which is well delineated in this early phase (Fig. 2B,
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curved arrow). Cholinesterase staining also helps in visualiz-

ing pathways from the tegmentum, which are probably

dopaminergic (Fig. 2A, double curved arrows). Other mono-

aminergic early afferents were demonstrated with mono-

amine-fluorescence techniques (Nobin & Bjorklund, 1973;

Olson et al. 1973; Zecevic & Verney, 1995). Early afferents

from the thalamus form a massive bundle, the so-called

cerebral stalk (Fig. 2C, cs) (His, 1904; Hemisferenstiel by

Hochstetter, 1909). This massive thalamocortical bundle

almost fills the diencephalic–telencephalic (Fig. 2C, red

arrows) junction, appearing as a real cerebral stalk (Fig. 2C,

cs). Thus, the two major afferent cortical systems from the

thalamus and basal telencephalon show early outgrowth

and join two major fiber trajectories: (i) the developing

cerebral stalk – internal capsule (Fig. 2C, cs) and (ii) the

external capsule (Fig. 2B, curved arrow).

The limbic bundles develop along the midline and, at a

very early stage, form the compact, well-delineated bundles

Fig. 1 Schematic illustration of our approach to the development of the cortical connectivity in the human brain. DTI, diffusion tensor imaging;

ECM, extracellular matrix; EM, electron microscopy; MRI, magnetic resonance imaging.
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(Fig. 2D). The most prominent limbic bundle is the fornix

(Fig. 2D, double arrow) (His, 1904; Hochstetter, 1909;

Macchi, 1951; Bartelmez & Dekaban, 1962; Humphrey,

1967; Rakic & Yakovlev, 1968; Stephan, 1975). The early for-

nix is a short, slightly curved bundle that connects the hip-

pocampus with the septal area. It is not known whether the

early fornix contains more hippocampal-septal or septo-

hippocampal fibers. Due to the fact that the pyramidal

neurons, at that very early age, are in the process of

proliferation of the ventricular zone (Nowakowski & Rakic,

1981), it is very likely that the early fornix contains mostly

septo-hippocampal fibers. This is consistent with the early

development of the septal area (Kostović et al. 1980).

Afferent pathways invade the corticostriatal
junction (around 11 PCW)

A crucial step in axonal pathway development is crossing

the border between the pallium and striatum–ganglionic

eminence complex, the so-called corticostriatal junction

(Molnar & Butler, 2002). An even better term for the corti-

costriatal junction would be the corticocaudate junction

because, in the human brain, only the caudate nucleus is sit-

uated in the proximity of the ventricles. From the evolution-

ary point of view, this corresponds to the pallial-subpallial

border (Molnar & Butler, 2002). From the practical, human

neuroanatomical point of view, this border is frequently

described as the lateral angle of the developing lateral ven-

tricles or thalamocaudate grove. At this border, thalamocor-

tical axons cross with efferent axons and turn towards

various pallial regions. The axons for the frontal pallium

turn towards the intermediate zone of the frontal portion

of the telencephalic vesicles as described for the animal

models (Molnar & Blakemore, 1995; Molnar et al. 1998;

Sestan et al. 2001; Lopez-Bendito et al. 2002; Molnar &

Butler, 2002; Bishop et al. 2003; Lopez-Bendito & Molnar,

2003; Bolz et al. 2004; Price et al. 2006).

This period of development is characterized by the mas-

sive invasion of projection fibers into the corticostriatal

junction. The fibers arising from the basal telecephalon

extend via the external capsule to the outermost portion of

the intermediate zone of the developing neopallium

(Fig. 3A, curved arrow). For the first time, the external cap-

sule attains a bifurcated appearance where one branch is

oriented to the frontal and the other to the parieto-occipi-

tal pallium (Fig. 3B). The process of growth of the afferents

from the nucleus basalis complex was described in detail by

Kostović (1986).

A

C D

B

Fig. 2 Development of fibre bundles before

10 PCW. Appearance of basal forebrain

revealed by AChE histochemistry (A); nucleus

basalis complex (asterisk), supraoptic

commisure fibres (A, red arrow) and

pathways from tegmentum (double dotted

arrows) at 9.5 PCW. At 9.5 PCW external

capsule (B, along the curved arrow) can be

shown by Nissl staining technique. Early

formation (at 8.5 PCW) of cerebral stalk

(C, cs) and diencephalic-telencephalic sulcus

(border- C, shown by two red arrows) as well

as the formation of fornix bundle at 9.5 PCW

can be shown as Nissl pale staining

(D, double arrow). cs, cerebral salk.
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The fibers for the temporal and occipital pallium change

their trajectory, bending in the ventrocaudal direction

(Fig. 3C). The continuity of the thalamocortical projection

from the thalamic nuclei, cerebral stalk and internal cap-

sule fanning out into the early thalamic radiation is obvi-

ous only in histochemical preparations. DTI imaging

(Fig. 3D) shows only the proximal, thick body of the main

thalamocortical fiber system. The thickness of the dience-

phalic–telencephalic junction has increased significantly

(Fig. 3C, red arrows) making the diencephalic–telencephalic

border less obvious on coronal images through the fetal

brain.

The process of growth of the limbic bundles is more

advanced than in neopallial regions. The bundle of fornix

has a semicircular shape and shows considerable compact-

ness (Fig. 4C). Projection of the amygdala, the neuroendo-

crine pathway of the stria terminalis, which connects the

amygdala with the septal area, is very advanced (Fig. 4A).

The fibers connected to the amygdala radiate in all

directions (Fig. 4B), providing evidence that the amygdala

establishes connections to the different parts of the cortex

(Fig. 5C) at a very early stage (13 PCW). The early develop-

ment of the amygdala fiber system is consistent with the

early cytoarchitectonic differentiation of the amygdala

(Nikolić & Kostović, 1986) and early origin of the amygda-

loid nuclear complex of the human and non-human pri-

mate brain (Kordower et al. 1992). It is not possible at this

early stage of development to attribute individual fibers

from ⁄ to the individual nuclei.

Morphogenetic interaction of afferents with
the cortical plate (around 13 PCW)

The appearance of thalamocortical (Fig. 5A,B) and basal

forebrain afferents in the intermediate zone at an early

phase of development raises the question of the develop-

mental and synaptic interactions with the early born and

differentiated cortical cells. Before 13 PCW, the cortical

plate is composed of densely packed postmigratory neu-

rons, arranged in vertical columns, without significant fibril-

lar (axonal) content. The fibrillar elements (axons) are

distributed in two laminas: the presubplate (below the cor-

tical plate) and marginal zone (above the cortical plate). In

these two fibrillar layers the synapses can be found, desig-

nating these layers as synaptic strata (Molliver et al. 1973;

Kostović & Molliver, 1974; Kostović & Rakic, 1990; Kostović

& Judaš, 2007). The prospective postsynaptic elements in

the early synaptic strata are the early differentiated presub-

plate neurons that lie below the cortical plate at the inter-

face with the intermediate zone (Kostović & Rakic, 1990;

Meyer, 2007). At around 13 PCW the deep portion of the

cortical plate changes dramatically; the cortical cells lose

their radial orientation and become constituents of a new

layer – the subplate zone. The subplate zone was first

described by Kostović & Molliver (1974) (see also Kostović &

Jovanov-Milošević 2008). This loose portion of the cortical

plate was described as the ‘second’ cortical plate by Polia-

kov (Poliakov, 1949; Kostović & Rakic, 1990). The neuropil

of the ‘second’ cortical plate is plexiform, with a random

orientation of the axonal and dendritic processes as well as

the fast developing synapses (Kostović & Rakic, 1990;

Kostović & Judaš, 2002). This phase of cortical development

exists in both human and monkey but was not described in

the rodent brain (Bayer & Altman, 1990; De Carlos &

O’Leary, 1992; Molnar et al. 1998; Del Rio et al. 2000; Smart

et al. 2002). Based on the fact that this ‘second’ cortical

plate contains an old neuronal population, randomly ori-

ented neuronal elements and synapses, this event corre-

sponds to the appearance of the thick subplate and was

described as the subplate formation stage by Kostović &

Rakic (1990). In subsequent phases (15–24 PCW), the cortical

A

C D

B

Fig. 3 Development of afferent fibres at 11PCW revealed by AChE

histochemical staining (A, C) and DTI (B, D). The diencephalo-

telencephalic junction (C, red arrows) and external capsule

(A, curved arrow) can be seen on AChE stained section. The DTI

tractography reconstruction shows bifurcating appearance of external

capsule (B) and AChE histochemical staining with DTI reveals

thalamocortical fibres passing through the cerebral stalk (C, D, cs)

originating from the dorsomedial thalamic complex (C, D). cs, cerebral

stalk.
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plate again becomes condensed (secondary condensation)

and contains no synapses. It is not known what causes this

first transient lamination of the cortical plate but the pres-

ence of the fibrillar elements in the deep portion of the cor-

tical plate indicates the morphogenetic influence of the

afferent system. The mostly likely candidate fiber system is

the external capsule radiation because this system is the

closest to the cortical plate. The fibers from the cholinergic

magnocellular nuclei of the basal forebrain run via the

external capsule into the external sagittal stratum (Kostović,

1986). The external capsule–external sagittal stratum is an

important border between the intermediate zone and sub-

plate (Kostović et al. 2002). The afferents from the external

capsule remain permanently at this strategic border

between the white matter and cortex. These fibers are clos-

est to the permissive gradients of guidance molecules in the

rich extracellular matrix subplate compartment. The begin-

ning of lamination in the cortical plate is the initial step in

the establishment of regional differences within the cere-

bral cortex. Lamination is first observed in the lateral ne-

opallium, external to the angle of the lateral ventricle. The

developing subplate is thicker in this midlateral region than

in the dorsal neocortical regions. The second cortical plate

is thinner in the interhemispheric neopallium and the

A B C

Fig. 4 Development of limbic fibre bundles at

11 PCW revealed by DTI tractography; early

formation of subcortical (A, stria terminalis)

and cortical (B) amygdala connections as well

as the hippocampal pathways (C, fornix).

A B

C D

Fig. 5 Development of limbic (uncinate

fascicle, C), efferent (periventricular fibre

system with subcallosal fascicle of Muratoff

and cortico-striate fibres, D) and

thalamocortical fibres (ThCx A, B) at 13 PCW

revealed by Nissl (A) staining and DTI

tractography (B, C, D). ThCx,

Thalamo-cortical fibers.
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formation of the ‘second’ plate is absent in the limbic inter-

hemispheric mesocortex (cingular cortex) (Kostović et al.

1989b, 1993). The interpretation of the subplate zone, pre-

sented in the present review, differs from the recent revi-

sion of the Boulder Committee where the subplate layer is

defined immediately after formation of the cortical plate at

around 8 PCW (Bayatti et al. 2008b; Bystron et al. 2008).

In the limbic archicortex, the main fibrillar development

is in the marginal zone, which is much thicker than the sub-

plate zone of the limbic cortex.

Efferent pathways

At this early phase of fetal development the presence of all

efferent pathways cannot be expected, e.g. pyramidal pro-

jection neurons from cortical supragranular layers have not

yet been born or are in the process of migration (Rakic,

1974). However, cortical cells from the infragranular layer

are already in the cortical plate. There is little data about

the development of the corticospinal and corticopontine

pathways. Eyre et al. (2000) found that the corticospinal

pathway reaches the lower spinal cord as early as 24 PCW. It

seems that efferent pathways may be present even in the

earliest phases, which we present in this study. Indeed, pho-

tographs of serial sections through the developing brain

show the presence of crura cerebri at early phases (Fig. 5).

However, the material presented in this review does not

allow the reconstruction of terminal portions of the cortico-

pontine and corticospinal pathways below the brainstem.

In this period there is progress in the growth of the peri-

ventricular fiber systems. According to the classification of

Von Monakow (1905), the adult brain periventricular white

matter, from segments I and II, forms the first periventricular

system (Judaš et al. 2005). In segment 1, the corpus callosum

is visible after 11 PCW. The periventricular fiber system is situ-

ated along the caudate nucleus (Fig. 5D) and, in this position,

there are several fiber systems in transient topographical

relationships (Judaš et al. 2004). A great proportion of this

contingent of fibers is related to the striatum, i.e. the subcal-

losal fascicle of Muratoff and other corticostriatal fibers (Sch-

mahmann & Pandya, 2006, Vukšić et al. 2008).

Fetal pattern of axonal distribution: sagittal
strata and ‘waiting’ subplate compartment
(15–18 PCW)

The typical fetal pattern of axonal pathway organization is

characterized by the distribution of growing axons within

the axonal strata of the intermediate zone and the gradual

ingrowth into the deep cortical anlage of the subplate

zone. Afferents from the basal forebrain, pons and thala-

mus may be visualized in both histochemical preparations

and DTI tractography (Fig. 6A–D).

Thalamocortical axons run predominantly through the

internal sagittal stratum (Fig. 6C,D). Basal forebrain axons

to the cortex (from the external capsule radiation) run

through the most superficial portion of the external sagittal

stratum (Fig. 6A,B). The central sagittal stratum contains

AChE-negative fibers (Figs 6C and 7C), which are a feature

of efferent cortical pathways. All sagittal strata mentioned

are part of the intermediate zone fetal ‘white’ matter. For a

description of the layers see Kostović et al. (2002), Huang

et al. (2006) and Bystron et al. (2008). The intermediate

zone with its sagittal strata is situated between the subplate

zone and corpus callosum, which runs into the subventricu-

lar zone (Fig. 7A–D; CC). This relationship can be appreci-

ated in the section through the rostral portion of the

developing telecephalon (Fig. 7B–D).

A

C D

E

B

Fig. 6 Demonstration of the basal forebrain fibre bundles running

trough the external capsule (A, curved arrow) and external sagittal

stratum at 15 PCW (B; tractography reconstruction of basal forebrain

fibre system and external capsule). Reconstruction of thalamocortical

fibres running trough the internal sagittal stratum at 15 PCW (C) and

17 PCW (D) revealed by AChE staining and DTI tractography. At 15

PCW cortico pontine fibre bundles can be reconstructed using DTI

tractography (E).
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The most interesting finding is that the massive fiber sys-

tem from the corpus callosum occupies the subventricular

zone and that these fibers join the deep portion of the

intermediate zone (Fig. 7B). This laminar relationship shows

that there is continuity in fiber systems from the external

sagittal stratum (with the external capsule) to the prolifera-

tive periventricular zones. Joint fibers of the intermediate

zone and corpus callosum form the fiber corridor situated

between the differentiating cortical layers (subplate zone

and cortical plate) and periventricular proliferative layers

(ventricular and subventricular zone). This is the basic archi-

tecture of the fetal telecephalon where a central corridor

contains afferent and efferent systems. At present it is

unknown whether this fiber corridor contains the same axo-

nal guidance molecules as described for the corticostriatal

junction or pallial–subpallial boundary (Lopez-Bendito et al.

2006; Maroof & Anderson, 2006).

In our own material findings, we have found high activity

of chondroitin sulphate C, which is an essential portion of

glycosaminoglycans (Judaš et al. 2005). In addition, we have

found intensive staining of SNAP-25 in efferent fibers from

the intermedial zone (see also Ulfig et al. 2000). It is also a

matter of debate as to what lamina should be considered

as a cortical target at this early phase when the cortex is

composed of a thick subplate and thinner cortical plate.

According to Kostović & Rakic (1990), the subplate is four

times thicker than the cortical plate; it is a part of the fetal

cortex and separates the cortical plate from the axons in

the intermediate zone. We propose that the main source of

axonal guidance molecules for entrance into the cortex is

the subplate. The essential component of the subplate zone

is the extracellular matrix, which builds up to 70% of the

neuropil (Kostović et al. 2002). The extracellular matrix of

the subplate contains different attractant and repellent

molecules, such as fibronectin (Chun & Shatz, 1988; Tuttle

et al. 1995; Pearlman & Sheppard, 1996), semaphorins, eph-

rins and other molecules (Hoerder-Suabedissen et al. 2009;

for reviews see Judaš et al. 2003; Uziel et al. 2006). The pos-

sible cellular sources of the extracellular matrix and axonal

guidance molecules are subplate cells (neurons or glia).

Considering the high activity of extracellular markers and

guidance molecules in the subplate, this fetal compartment

should be called a ‘guidance compartment’, meaning that

afferent axons not only ‘wait’ but also are guided during

the growth through the subplate (Rakic, 1977; Kostović &

Rakic, 1990; Kostović & Judaš, 2002; Kostović & Jovanov-

Milošević, 2006, 2008). In general, the significance of the

subplate compartment for the guidance of axons in the cor-

tex is underestimated (Price et al. 2006). A possible reason

for this might be that the rodent brain subplate is very thin

and exists for a short time, which does not give sufficient

resolution in an experimental rodent model.

Different cellular components of the subplate may influ-

ence cellular interaction with afferent axons. The subplate

is composed of postmigratory neurons, migratory neurons,

radial glia, astroglia and microglia, which have a potential

A

B C D

Fig. 7 Demonstration of sagittal strata and

corpus callosum (CC) revealed by AChE (A, C)

and Nissl staining (B) at 18 PCW as well as

the MRI T1 weighted image of the same

brain (D). CC, corpus callosum.
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developmental role in axonal growth. It should be kept in

mind that all efferent axons have to pass through the sub-

plate in order to reach the subcortical trajectories and tar-

gets. It is very likely that some of the efferent axons in the

subplate interact with the afferent axons in early phases of

development. This is consistent with the ‘hand shake’

hypothesis of Molnar & Blakemore (1995). Limbic bundles

during the mid-fetal period, fiber pathways for the limbic

cortex and limbic subcortical structures are well developed;

an angular bundle can be traced from the frontal medial cor-

tex (precingulate, cingulate ventromedial and dorsomedial

cortical areas) to the posterior cingulate cortex (Fig. 8). In

addition, the cingulum fiber bundle can be well delin-

eated at this phase with the DTI and AChE staining

(Fig. 8A). This is the trajectory for most of the cingulate

pathways as described in the adult primate cortex

(Schmahmann & Pandya, 2006; Petrides & Pandya, 2007).

This is also consistent with previous observations in human

fetuses (Huang et al. 2006, 2009).

The other aspect of limbic pathway organization that

deserves special attention is the extremely rich connectivity

of the amygdala, which is connected to the orbital cortex

via the uncinate bundle (Fig. 8C, sea green). Another volu-

minous fiber system connects the amygdala with the tem-

poral cortex (Fig. 8B, green and red; Fig. 8C, yellow, pink

and blue). This fiber system has the shape of a hand with

fingers (Fig. 8B, red). We describe it as the amygdalo-tem-

poral (temporo-amygalar) bundle but tractography does

not permit determination of the pathway origin and termi-

nation. Other pathways that stream out of and into the

amygdala (Fig. 8C) form a part of the periventricular cross-

road of pathways (temporal crossroad C6) (Judaš et al.

2005). This periventricular crossroad is situated just in front

of the rostral tip of the temporal horn of the lateral

ventricle. Thus, our observation strongly indicates early

development of the cortico–cortical and cortico–subcortical

fronto-limbic connectivity (Kostović & Jovanov-Milošević,

2008; Kostović et al. 2008).

Periventricular crossroads

The analysis of DTI images and histochemical preparations

(Figs 6D,E and 8C,D) reveals that periventricular territories

adjacent to the internal capsule contain intersections (cross-

ing) of the projection, callosal and associative pathways.

These crossroads of pathways were described by von

A B

C

D

Fig. 8 Development of associative pathways

and crossroad formation during mid fetal

period. Formation of cingulum bundle at 17

PCW is shown by AChE staining and

comparative DTI tractography (A, red colour).

During 15 PCW (B) and 17 PCW (C) the

amygdala connections and crossroad C6

becomes more complex- as revealed by DTI

(C). During 19 PCW crossroad C1 formation

can be show by SNAP staining and DTI

tractography reconstruction (D). The crossroad

area C1 is organized by axonal pathways that

run in radial (thalamocortical), sagittal

(associative) and transverse (callosal) direction

(B, C). In D the different ROIs for the

crossroad C1 can be seen (I-VI) and thus

reconstructed with tractography (different

colours represent different ROIs).
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Monakow (1905) and more recently by Judaš et al. (2005).

According to Judaš et al. (2005), six crossroad areas can be

distinguished in the human telencephalon in fetuses older

than 14 PCW. In the crossroad areas, axonal pathways run

in radial (thalamocortical), sagittal (associative) and trans-

verse (callosal) directions. The most numerous axonal system

in the crossroad areas are projection fibers, which will later

form corona radiata. Crossroad areas contain hydrophilic

extracellular matrix, which is rich in axonal guidance mole-

cules (Judaš et al. 2005). In addition to thalamocortical

fibers, crossroads contain efferent fibers such as the promi-

nent corticopontine fiber system (Fig. 6E). DTI analysis

applied in this study allowed visualization of several fiber

systems in the periventricular crossroad areas (Figs 6D,E and

8D): thalamocortical, corticopontine, corticocaudate and

callosal fiber systems.

Accumulation of the thalamocortical fiber
system in the subplate (19–23 PCW)

In a series of studies using AChE histochemistry, Kostović

and co-workers (Kostović & Goldman-Rakic, 1983; Krmpotić-

Nemanić et al. 1983; Kostović, 1990a,b; Kostović & Rakic,

1990) have shown that thalamocortical fibers accumulate in

the superficial subplate after a prolonged ‘waiting’ period.

This event occurs almost simultaneously in neocortical

regions. The thalamocortical growing front can be traced

to the mediodorsal nucleus (Kostović & Goldman-Rakic,

1983). The intense AChE reactivity of the thalamocortical

growing front in the superficial subplate (shown in Fig. 9F

and marked with ·) is enhanced due to the overlap with

AChE staining in ‘cholinergic’ fibers from the magnocellular

basal forebrain (Kostović, 1986). The hydrophilic extracellu-

A B

C D

E F

Fig. 9 Development of thalamocortical fibres

at mid-fetal period. At 19 PCW fibres from

different thalamic nuclei ⁄ complex (ROI, B) are

taking different routs (anterior, superior and

posterior thalamic radiation) towards the

‘waiting compartment’-subplate (A) and

cortical plate. In C the waiting fibre bundles

in subplate, originating from thalamus can be

seen by DTI at 24 PCW. For DTI tractography

reconstruction in C we have lower the FA

threshold level (0.12) due to the highly

isotropic subplate in FA images (B).

Accumulation of the growing front of

thalamocortical fibres in superficial SP is

shown by AChE staining (F, X) embedding in

ECM rich neuropil shown by fibronectin

staining (E, X). In vivo T2 weighted images (D)

are also useful in showing subplate (sp) as

well as the hiperintense superficial subplate

part (D, +) due to the different T2 properties

of the fetal laminae. Hippocampus and the

enlarged marginal zone are showing similar

T2 tissue properties in in vivo T2 weighted

images (D, curved arrows). sp, subplate; ci,

internal capsule.
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lar matrix-rich zone of the subplate can be visualized in con-

ventional T2 in-vivo ⁄ in-vitro magnetic resonance images as

hyperintense zones beneath the cortical plate (shown in

Fig. 9D and marked with +) due to the different hydrophilic

organization of the subplate. The event of accumulation of

afferent pathways cannot be demonstrated convincingly in

DTI preparations (Huppi et al. 2001; Maas et al. 2004; Hu-

ang et al. 2006, 2009). In DTI images, thalamocortical path-

ways can be traced within the anterior, superior and

posterior thalamic radiations (Fig. 9A,B). Very few individ-

ual fiber bundles reach the subplate (Fig. 9C).

The developmental shifts in histochemical properties and

fibrillar organization (Fig. 9E) within the subplate show

that this cellular compartment permanently changes in its

fibrillar and cellular content. This concept is further sup-

ported by the shifts in molecular markers (Bayatti et al.

2008a,b). The molecular identification of subplate neurons

was the research goal for multiple groups (Chun & Shatz,

1988; Meinecke & Rakic, 1992; Delalle et al. 1997; Kwan

et al. 2008; Ayoub & Kostović, 2009; Hoerder-Suabedissen

et al. 2009; McKellar & Shatz, 2009; Osheroff & Hatten,

2009). Zečević and colleagues have shown that glial cells

also show differential distribution within the subplate

(Jakovcevski & Zecevic, 2005).

Limbic cortex and limbic bundles

It is not known whether the limbic axonal pathways,

related to the cingular, entorhinal and hippocampal cortex,

display a waiting period and accumulation phenomena

before the penetration of cortical or subcortical targets. In

the archipallium of the hippocampus the enlarged marginal

zone (Fig. 9D) shows the same histological properties as the

subplate zone of the neopallium: enlarged thickness, fibril-

lar content, extracellular matrix-rich neuropil and intensive

synaptogenesis (Kostović et al. 1989b). These basic features

were also observed in the marginal zone of limbic (ventral)

portions of the cingular cortex (Kostović & Krmpotić-

Nemanić, 1976; Kostović & Judaš, 2002) and entorhinal

cortex (Kostović et al. 1993).Thus, it is very likely that the

marginal zone serves as a ‘waiting’ compartment for limbic

axonal pathways. However, in contrast to the neocortical

pathways in the subplate, the period of growth of the lim-

bic pathways is shorter and growth trajectories are well

delineated. As stated before, the limbic pathways form

well-delineated bundles that are different from the neopal-

lium where fibers are arranged in sagittal strata. In addi-

tion, limbic pathways grow in the cortical target zones

tangentially (Kostović et al. 1989b).

Penetration of the cortical plate (after 24–26
PCW)

The major event in the axonal pathway development is

penetration of the thalamocortical and basal forebrain

fibers into the cortical plate (Fig. 9C). This event takes place

after 24 PCW although some fibers may enter the cortical

plate several weeks earlier (Kostović & Goldman-Rakic,

1983) as demonstrated in the AChE preparations. Histo-

chemical activity gradually invades the lower third of the

cortical plate (Fig. 10A). At around 28 weeks, the reactivity

occupies the deep two-thirds of the neocortical plate

(Fig. 10B) with an evident columnar distribution (see also

Kostović, 1990a,b). During later development the AChE

reactivity of the cortical plate becomes less dense (Fig. 10C).

The ingrowth of thalamocortical fibers into the cortical

plate (Counsell et al. 2007) was not directly illustrated in

DTI structures. However, the decrease in fractional anisot-

ropy in the frontal cerebrum after 24 PCW (Trivedi et al.

2009) and the decrease of the directionally averaged water

apparent diffusion coefficient after 30 PCW (McKinstry

et al. 2002) are very likely to be caused by the ingrowth of

the afferent fibers (Kostović & Jovanov-Milošević, 2008;

Kostović et al. 2008) and reorganization of embryonic

columnar organization (McKinstry et al. 2002; Huang et al.

2006). Innervation of the cortical plate with the thalamocor-

tical afferents is a crucial event in the histogenesis and func-

tional organization of the cortex. Thalamocortical afferents

cause visible lamination of the cortical plate (Kostović &

Judaš, 2002). The ingrowth of thalamocortical fibers is

guided with permissive influence or attraction by complex

molecular interactions (Molnar & Blakemore, 1995; Molnar

et al. 1998; Sestan et al. 2001; Price et al. 2006). The estab-

lishment of the first synapses in the human telencephalon

after 24 PCW (Molliver et al. 1973) marks possible functional

interactions between the thalamic afferents and cortical

plate cells. This interaction may induce functional differenti-

ation of cortical layer IV (Wilkemeyer & Angelides 1996;

Catalano & Shatz 1998; Anderson & Price 2002) and can be

studied by optical recording and current source density

analysis (Molnar et al. 2003; Higashi et al. 2005). The most

significant event related to the establishment of thalamo-

cortical connectivity is the appearance of somatosensory

evoked potentials (Molliver, 1967; Kostović & Jovanov-Miloše-

vić, 2006; Vanhatalo & Kaila, 2006; Kostović & Judaš, 2007;

Milh et al. 2007). The thalamocortical pathways conduct-

ing impulses for pain sensation mature in the same per-

iod (Slater et al. 2008; Lagercrantz & Changeux, 2009).

Long corticocortical pathways (commissural)
and development of the corona radiata (26
PCW and older)

The callosal corticocortical pathways develop very soon

after the thalamocortical fibers. This sequential callosal

growth is several weeks behind the thalamocortical fiber

growth. The most massive fiber system in the brain after

24 weeks is the corpus callosum. At the septal (rostral) lev-

els callosal fibers build the massive callosal plate

(Fig. 10A,B) (Kostović & Judaš, 2002), which almost fills the
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periventricular surface of the dorsal telencephalon. This

callosal relationship outlines the adult topographical posi-

tion of the corpus callosum. The massive size of the callo-

sal periventricular plate indicates the initial phase in

overgrowth events (Innocenti & Price, 2005). In the early

postnatal phases there is a significant decrease of callosal

fibers (LaMantia & Rakic, 1994; Innocenti & Price, 2005)

and callosal morphogenetic zones (Jovanov-Milošević et al.

2009), which occurs before the period of myelination.

The DTI reconstruction of callosal fibers during late

gestation demonstrates an elaborated callosal radiation in

all segments of the corpus callosum (Maas et al. 2004;

Huang et al. 2006, 2009; Counsell et al. 2007; Kasprian et al.

2008; Ment et al. 2009). These studies did not prove

whether ⁄ when the callosal fibers actually innervate the cor-

tical plate and did not even show if the callosal fibers pene-

trate ⁄ innervate the subplate. Kostović & Rakic (1990) have

proposed that the callosal fibers are the main constituent of

the subplate after the thalamocortical fibers have already

grown into the cortical plate. Some of the callosal fibers

probably never reach the cortical plate. (Schwartz &

Goldman-Rakic, 1991).

Classical neuroanatomical studies have encountered seri-

ous difficulties in demonstration of the growth of the long

associative fibers due to the fact that the glutamatergic

axons could not be stained with standard immunocyto-

chemical or histochemical techniques. These fibers are also

negative for the cholinesterase. Some of the deep associative

pathways, most notably the fronto-occipital fascicle (visual-

ized with SNAP-25), were shown early in midfetal brain by

Judaš et al. (2005). According to Huang et al. (2006) the infe-

rior longitudinal fascicle and inferior fronto-occipital fascicle

A B

C

Fig. 10 Histochemical demonstration of

thalamocortical penetration into the cortical

plate. At 26 PCW the histochemical activity

gradually invades the lower third of the

cortical plate (A; X). Around 28 PCW the

same reactivity occupies deep two third of

the neocortical plate (B; X) and during the

later development (36 PCW) the AChE

reactivity of the cortical plate becomes less

dense (C). After 24 PCW the most massive

fibre system is corpus callosum building the

massive callosal plate that can be well seen at

the coronal sections of the AChE

histochemistry (A, B, C; CC). After the 36

PCW the resolution of subplate (SP) can be

seen (C) but the external sagittal stratum can

be still well delineated (A, B, C; arrows). sp,

subplate; CC, corpus callosum.
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were seen around 17 PCW but do not undergo a significant

development during the second trimester. The superior

longitudinal fascicle is not prominent even at birth (Huang

et al. 2006; Zhang et al. 2007). Our preliminary observations

showed different properties of the extracellular matrix at

the locations of the associative pathways (Fig. 11).

We have interpreted the position of the superior cross-

road (Judaš et al. 2005) as a prospective trajectory of the

superior longitudinal fascicle in our postmortem MRI study.

During the late fetal period there is a major change in the

orientation and distribution of the projection fibers. The

projection fibers elongate, changing tangential fiber stratifi-

cation into the corona radiata system. According to Judaš

et al. (2005), ‘the transformation of fiber architectonic pat-

tern from predominantly tangential in fetuses to predomi-

nantly radial in preterm infants occurs concomitantly with

several other events: (i) the development of distal portions

of the corona radiata and the centrum semiovale proper, (ii)

the dissolution of the transient fetal subplate zone, (iii) the

relocation of cortical afferents from the subplate zone into

the cortical plate, and (iv) the onset of gyrification (Kostović

& Rakic, 1990; Kostović & Judaš, 2002)’ (Fig. 10C).

The individual projection fibers in the corona radiata

seem to pass even the border of the subplate (compare

with Fig. 8.3.d in Huang et al. 2006). The subplate is still

well developed in the cortical gyri, whereas it is reduced in

the bottom of the sulci. The presence of the subplate at late

fetal age (Kostović, 1990a,b; Kostović & Rakic 1990; Kostović

et al. 2002; Judaš et al. 2005) is the main marker of immatu-

rity of the fetal white matter.

In late preterm, the white matter consists of the follow-

ing segments: segment 1, with the callosum and periven-

tricular fibers; segment 2, the foot of the corona radiata

with the periventricular crossroads; segment 3, the centrum

semiovale; and segment 4, the gyral white matter. Seg-

ment 5 [the (intra)cortical white matter] is not developed

(Judaš et al. 2005). The subplate zone interrupts the conti-

nuity of the white matter and gyral cortex (Kostović et al.

2002; Judaš et al. 2005; see also classification in Von Mona-

kow, 1905).

Discussion on development of fiber
pathways in the cerebral cortex of the fetus

The data about the initial outgrowth, path-finding, trajec-

tories, waiting compartments and target distribution indi-

cate that the fetal part of gestation is the most important

for the growth of long projection, associative and commis-

sural pathways in the human cerebrum. It is evident that

the neocortical fiber pathways show a different pattern of

fiber growth than the limbic fiber systems. The main projec-

tion pathway of the limbic nuclei and cortex grows in the

form of the compact axonal bundles along the midline (for-

nix, stria terminalis and cingulum). These bundles elongate

and curve parallel to the growth of the hemispheres. How-

ever, neopallial fiber pathways change their trajectory at

the level of the lateral angles of the ventricles, forming the

crossroads, embedded in a rich extracellular matrix with

axonal guidance molecules (Molnar & Blakemore, 1995;

Molnar et al. 1998; Molnar & Butler, 2002; Judaš et al. 2005;

Price et al. 2006). This junction area was described (Molnar

& Butler, 2002) as a crucial junction point for the pathway

selection of the most commonly demonstrated cortico–sub-

cortical and subcortico–cortical pathways. The involvement

of guidance molecules in thalamocortical pathway forma-

tion was, among others, most convincingly demonstrated

for the Slit ⁄ Robo (Bagri et al. 2002), EphRTK ⁄ ephrins

(Dufour et al. 2003), Nrg1 ⁄ ErbB4 (Lopez-Bendito et al.

2006) and Semaphorin ⁄ Neuropilin1 (Wright et al. 2007)

families of proteins. At present it is not known whether the

same molecules guide corticostriatal and telencephalo–

diencephalic junction fibers in the intermediate zone and

sagittal strata. The current evidence is insufficient to form a

conclusion about the guidance within the external capsule.

The evidence presented in this review clearly shows that the

external capsule is a complex system that contains projec-

tion fibers from the basal forebrain (Kostović, 1986;

Mesulam et al. 1992), associative cortical and corticostriatal

pathways. The presence of basal forebrain pathways is not

described in the current imaging literature (Makris et al.

A B C

Fig. 11 Development of associative fibre

bundles revealed by DTI colour coded map

(A), GNG staining (B) and PAS staining (C).

The prospective trajectories of the associative

pathways were indicated by asterisks (A, B) or

outlined by colours (C). f. subcal, subcallosal

fasciculus; middle long. fasc., middle

longitudinal fasciculus; SFL, superior

longitudinal fasciculus; inf. long. fasc., inferior

longitudinal fasciculus.
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1997) and in experimental studies (Schmahmann & Pandya,

2006). The basal forebrain projections through the external

capsule were shown to be the earliest modulatory input to

the neopallium. The significance of this early afferent mod-

ulatory input for the early endogenous (Kostović, 1986;

Kostović & Judaš, 2007), oscillatory activity of the cortex was

stressed in recent experimental studies (Hanganu &

Luhmann, 2004; Hanganu et al. 2009; Luhmann et al. 2009;

Yang et al. 2009). The other modulatory inputs arriving at

the telencephalon at very early ages are from the monoam-

inergic nuclei in the brainstem (Nobin & Bjorklund, 1973;

Olson et al. 1973; Molliver & Kristt, 1975; Zecevic & Verney,

1995). These earliest afferent pathways, visualized by fluo-

rescent techniques, do not form distinct bundles, and are

formed by extremely fine fibers. Therefore, these pathways

cannot be demonstrated by a tractography or by the histo-

logical techniques presented in this review. The only possi-

ble trajectory where these early monoaminergic afferents

can be eventually visualized is the medial forebrain bundle

in the lateral hypothalamus (Nauta, 1971; Nobin & Bjorkl-

und, 1973; Olson et al. 1973).

The evidence presented in this review supports the con-

cept of the ‘waiting’ period and ‘waiting’ compartments.

As presented above, all of the thalamocortical afferents

and basal forebrain afferents invade the subplate after

13-14 PCW and ‘wait’ in the subplate compartment for a

prolonged period, until after 23 PCW. The concept of the

waiting period was introduced by Rakic (1977) and was fur-

ther corroborated in a series of articles on the development

in thalamocortical projection in human and monkey brain

(Kostović & Rakic, 1984; Kostović & Goldman-Rakic, 1983;

Kostović & Jovanov-Milošević, 2006; Kostović & Judaš, 2002,

2007, 2010). Within this period the tractography can trace

long pathways within the trajectories but not the ramifica-

tion within the subplate. This may be explained by the

plexiform isotropic nature of the fibrillar network ‘embed-

ded’ within the fluid rich extracellular matrix of the sub-

plate. It is only after 19 weeks, during the accumulation of

the thalamocortical fibers, that some of the fibers can be

traced across the subplate. However, the histochemical

cholinesterase method was shown to be efficient in the

demonstration of the ingrowth of the afferents into the

cortical plate.

The indirect evidence for the accumulation of the tha-

lamocortical circuitry within the cortical plate is lamination

(Kostović & Judaš, 2002) and changes in isotropy of the cor-

tical plate (Huppi et al. 2001; McKinstry et al. 2002).

Another observed phenomenon of the developmental

cerebrum is the axonal distribution and growth in sagittal

strata. This stratified pattern of distribution is the predomi-

nant pattern in the early development of the cerebral hemi-

sphere (Altman & Bayer, 2002; Bayer & Altman, 2002, 2004,

2005, 2006, 2008; Judaš et al. 2005). The crucial period of

the change in stratified development occurs after 28 PCW

when the thalamocortical afferents, together with other

projection pathways, develop the corona radiata (thalamic

radiation, Stabkrantz, Von Monakow, 1905). After this per-

iod, the sagittal strata remain well delineated only in the

occipital and frontal pole (Judaš et al. 2005).

In the current literature we have found different descrip-

tions and terminology for the classification of the sagittal

strata (Makris et al. 1997; Schmahmann & Pandya, 2006).

The results presented in this review suggest that the

minimum subdivision of the sagittal compartment is into

the three sagittal strata (external, central and internal stra-

tum) as suggested by Von Monakow (1905). From the evi-

dence presented in the previous paragraph it is obvious

that the data on the development of the sagittal strata are

very scanty. Because of this, further studies are needed to

describe the content of the individual sagittal strata. This is

a very interesting problem for the neuroimaging commu-

nity because these strata can be easily demonstrated by the

tractography method due to the fact that the fibers run in

a predominantly anterior–posterior direction.

Significance

The great significance of the prenatal growth of the cere-

bral pathways is widely accepted in the developmental and

prenatal neurological literature. The growing white matter

is considered to be the most vulnerable cellular compart-

ment in the preterm brain (Counsell et al. 2007; Leviton &

Gressens, 2007; Mathur & Inder, 2009; Ment et al. 2009;

Miller & Ferriero, 2009; Volpe, 2009). Lesions of the white

matter lead to cognitive impairment in 30–60% of very pre-

term children, whereas 40% display a mild motor deficit

(Mathur & Inder, 2009). A high percentage of very preterm

infants have a sensory deficit (Johnston et al. 2001). The

most vulnerable locus in the developing white matter of

preterm infants is the periventricular crossroads of path-

ways, which can be damaged by focal leukomalacia (Judaš

et al. 2005; Volpe, 2009). As presented above, these loci

contain the associative and commissural pathways, which

may explain the complex neurodevelopmental and cogni-

tive deficits seen after periventricular lesions in preterm

infants (Evrard, 2001; Johnston et al. 2001; Volpe, 2003,

2009; Judaš et al. 2005; Mathur & Inder, 2009; Ment et al.

2009; Miller & Ferriero, 2009).
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Kostović I, Petanjek Z, Judaš M (1993) Early areal differentiation

of the human cerebral cortex: entorhinal area. Hippocampus

3, 447–458.
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Nikolić I, Kostović I (1986) Development of the lateral

amygdaloid nucleus in the human fetus: transient presence of

discrete cytoarchitectonic units. Anat Embryol (Berl) 174, 355–

360.

Nobin A, Bjorklund A (1973) Topography of the monoamine

neuron systems in the human brain as revealed in fetuses.

Acta Physiol Scand Suppl 388, 1–40.

Nowakowski RS, Rakic P (1981) The site of origin and route and

rate of migration of neurons to the hippocampal region of

the rhesus monkey. J Comp Neurol 196, 129–154.

Olson L, Boreus LO, Seiger A (1973) Histochemical

demonstration and mapping of 5-hydroxytryptamine- and

catecholamine-containing neuron systems in the human fetal

brain. Z Anat Entwicklungsgesch 139, 259–282.

O’Rahilly R, Müller F (2006) Embryonic Human Brain: An Atlas

of Developmental Stages. Hoboken: John Wiley & Sons.

Osheroff H, Hatten ME (2009) Gene expression profiling of

preplate neurons destined for the subplate: genes involved in

transcription, axon extension, neurotransmitter regulation,

steroid hormone signaling, and neuronal survival. Cereb

Cortex 19(Suppl 1), i126–i134.

Pearlman AL, Sheppard AM (1996) Extracellular matrix in early

cortical development. Prog Brain Res 108, 117–134.
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