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lol prevented salt-induced kidney injury and associated pro-

teinuria in SHR through a blood pressure-independent 

mechanism. Its protective effects may be related to reduc-

tion in oxidative stress, increases in neuronal NOS and resto-

ration of angiotensin II type 1/mas receptor balance. 
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 Introduction 

 Recent studies from our group and other laboratories 
suggest that salt excess is an important determinant of 
cardiovascular and renal derangement in hypertension 
 [1–3] . Besides its hemodynamic effects, dietary salt excess 
exerts additional non-pressure-related tissue maladap-
tive effects in different forms of experimental and human 
essential hypertension. Increased sympathetic (SNS)  [4]  
and renin-angiotensin system (RAS) activity  [5–9] , along 
with increased production of superoxide and other reac-
tive oxygen species  [10–13] , are among the mechanisms 
suggested to be involved in the salt-induced hyperten-
sion, proteinuria, and progression of early renal injury to 
nephrosclerosis. In this regard, renal NADPH oxidase ac-
tivity has been implicated in superoxide production  [14–
16]  and salt-loading increases expression of its subunits, 
gp91 phox and p47 phox  [11, 17] .
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 Abstract 
  Background:  We investigated renal effects of nebivolol, a 

selective  �  1 -receptor blocker with additional antioxidative 

ability, in spontaneously hypertensive rats (SHR) where in-

creased salt intake induces oxidative stress and worsens re-

nal function as a result of further activation of the renin- 

angiotensin and sympathetic nervous systems.  Methods:  
Male SHR were given an 8% salt diet (HS; n = 22) for 5 weeks; 

their age-matched controls (n = 9) received standard chow. 

Nebivolol was given at a dose of 10 mg/kg/day for 5 weeks 

in 11 HS rats.  Results:  HS increased blood pressure, plasma 

renin concentration, urinary protein excretion, and renal ni-

troxidative stress while decreasing renal blood flow and an-

giotensin 1–7 receptor (mas) protein expression. There was 

no change in angiotensin II type 1 receptor expression 

among the experimental groups. Nebivolol did not alter the 

salt-induced increase in blood pressure but reduced urinary 

protein excretion, plasma renin concentration, and nitroxi-

dative stress. Nebivolol also increased neuronal NOS expres-

sion while preventing the salt-induced decrease in renal 

blood flow and mas protein expression.  Conclusion:  Nebivo-
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  On the other hand, nitric oxide (NO) exerts a protec-
tive role against renal damage in several animal models 
of kidney disease  [18–22]  as well as in human chronic re-
nal failure  [23, 24] . NO promotes sodium excretion and 
increases renal blood flow (RBF)  [25]  and exerts anti-
growth and antiproliferative effects on vascular smooth 
muscle and mesangial cells  [26] , all of which may coun-
terbalance, at least in part, the detrimental effects of in-
creased SNS and RAS in rats exposed to a high salt diet. 
Three NO synthase (NOS) isoforms, endothelial (eNOS), 
neuronal (nNOS) and inducible (iNOS) NOS mediate NO 
production; however, their regulation in response to ex-
cessive salt intake is still controversial. Thus, depending 
on the renal region and animal model studied, an in-
creased  [27, 28] , no change  [27–29]  or diminished  [29–32]  
renal expression of various NOS isoforms in response to 
salt loading was reported. Importantly, there is no infor-
mation on expression of NOS isoforms during progres-
sion of renal disease in spontaneously hypertensive rats 
(SHR) fed high salt diet, a recognized experimental mod-
el of human essential hypertension. Since superoxide 
scavenges NO, its reduced availability may also contrib-
ute to the development of salt-induced renal injury and 
dysfunction.

  Nebivolol is a highly selective  �  1 -receptor blocker 
with additional direct antioxidant and vasodilator/anti-
proliferative potential related to an increased NO bio-
availability  [33, 34] . Nebivolol reduced blood pressure 
and decreased NADPH oxidase activity as a main source 
of superoxide production in the hypertensive kidney of 
mRen2 transgenic rats while preventing the reduction in 
eNOS protein expression  [15, 16] . In that way, nebivolol 
corrected NO/superoxide imbalance resulting in dimin-
ished proteinuria. The effects of nebivolol on the other 
NOS isoforms, nNOS and iNOS, have not been investi-
gated, and its renal effects under the conditions of high 
salt intake in the hypertensives have yet to be deter-
mined. Therefore, it is of interest to examine whether 
nebivolol improves renal dysfunction and remodeling in 
salt-loaded SHR in view of its potential to not only de-
crease hemodynamic burden but also to correct renal
tissue NO/superoxide imbalance due to high salt in -
take. Since  � -antagonists suppress not only SNS but also 
RAS, and angiotensin II (Ang II) and angiotensin-(1–7) 
[Ang-(1–7)] acting upon their receptors [Ang II type 1 
(AT 1 ) and mas receptor, respectively] exert opposing
actions on oxidative stress and renal hemodynamics
and injury  [35–38] , we also examined the effects of 
nebivolol on renal receptor protein expression of these 
counterbalancing peptides.

  Methods 

 Animals 
 Male SHR (Charles River), weighing 180–200 g were random-

ly divided into two groups to receive either a control (1% NaCl;
n = 9) or a high salt (8% NaCl; n = 22) diet for the ensuing 5 weeks. 
The salt-loaded SHR were randomized to one of two groups: ve-
hicle (n = 11) and nebivolol-treated (n = 11) SHR. Nebivolol was 
given once a day (10 mg/kg) in suspension of 5% gum arabica by 
gastric gavage. All rats were permitted free access to chow and tap 
water and were maintained in a temperature and humidity-con-
trolled room with a 12-hour light/dark cycle. Three untreated rats 
on high salt diet died before the end of the study period.  None of 
the control or nebivolol-treated rats died during the course of the 
experiment. Systolic blood pressure was measured by tail-cuff 
plethysmography (Narco Bio System, Houston, Tex., USA) during 
a baseline period followed by weekly measurements in rats trained 
beforehand. After 5 weeks on the respective treatment, animals 
were placed in the metabolic cages for 24-hour urine collections 
and assessment of protein and creatinine excretion. After urine 
collection, the animals were decapitated, and trunk blood was 
collected for measurements of plasma renin concentration (PRC), 
serum nitrate and nitrite concentrations (NOx), and serum
creatinine. Kidney cortex was collected for analysis of NOS,
gp91phox, AT 1 , and mas protein expression, NOx as well as fibro-
sis and immunostaining for nitrotyrosine. Additional groups of 
rats kept under the same experimental conditions (n = 5–6 rats/
group) were subjected at the end of the experiments to tracheal 
intubation and right carotid artery cannulation with a transduc-
er-tipped catheter (Micro-Tip 2F, Millar Instruments) for direct 
measurement of mean arterial pressure (MAP) under pentobar-
bital anesthesia (50 mg/kg) using a digital data acquisition system 
(EMKA Technologies, Falls Church, Va., USA). RBF was mea-
sured in the same animals as described previously  [39]  using 
Transonic flow probe connected to a flowmeter (Transonic Sys-
tem Inc., Ithaca, N.Y., USA) after careful dissection of renal artery 
and 1-hour adjustment period with saline infusion via PE tubing 
in the right femoral vein at a rate of 0.4 ml/100 g –1 /h –1 . The rats 
were handled in accordance with National Institute of Health 
guidelines; our Institutional Animal Care and Use Committee 
approved the study in advance.

  Biochemical Assays 
 Urinary protein was measured by a Bradford protein assay 

(Bio-Rad, Hercules, Calif., USA). Serum and urinary creatinine 
were measured with a Quantichrom Creatinine Assay Kit (Bioas-
say Systems, Hayward, Calif., USA). Creatinine clearance as a 
measure of glomerular filtration rate (GFR) was calculated from 
its urinary excretion rate divided by serum concentration, and the 
data were expressed as milliliters per minute. Blood was collected 
in EDTA-containing tubes for the assay of PRC. PRC was defined 
as the rate of Ang I generation from renin in the sample incubat-
ed at pH 6.5 for 90 min with excess exogenous substrate provided 
from nephrectomized rat plasma. Ang I generated in the sample 
was quantified by radioimmunoassay (Diosarin Corp, Stillwater, 
Minn., USA). NOx in serum and tissue samples was determined 
using a Griess assay (nitrate/nitrite colorimetric assay kit, Alexis 
Biomedicals, Calif., USA).
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  Western Blotting 
 As described previously in detail  [40] , kidneys were removed 

and cortical tissue samples were snap frozen in liquid nitrogen 
and stored at –80   °   C. Frozen tissue was homogenized in a buffer 
containing 10 m M  HEPES (pH 7.4), 125 m M  NaCl, 1 m M  EDTA,
1 m M  NaF, 10  � g/ml leupeptin, 10  � g/ml pepstatin A, and 1 m M  
PMSF final concentrations. Homogenates were centrifuged at 
2,000 and then at 100,000  g  for 60 min at 4   °   C. Protein concentra-
tion in both fractions (pellet and supernatant), was determined by 
Bradford method using BioRad kit (Bio-Rad). Samples of pellets 
for eNOS, gp91phox, AT 1 , and mas and supernatant for nNOS and 
iNOS analysis were separated by gel electrophoresis, and then 
proteins were eluted from the gels to Hybond PVDF membranes 
(Bio-Rad) for 1 h at 100 V, except for NOS which was transferred 
for 3 h at 80 V. Nonspecific binding was blocked in 5% nonfat 
dried milk in 0.1% Tween 20 in TBS for 60 min at room tempera-
ture except for the AT 1  receptor which was blocked by Starting 
Block TM  Blocking Buffer (Thermo Scientific, Rockford, Ill., USA). 
The blots were incubated with a monoclonal anti- � -actin
(1:   2,000; Sigma, St. Louis, Mo., USA), monoclonal anti- � -tubulin 
(1:   1,000, Abcam, Cambridge, Mass., USA), monoclonal anti-
eNOS (1:   500; Transduction Laboratories, Lexington, Ky., USA), 
monoclonal anti-nNOS (1:   2,000; BD Transduction Laboratories), 
monoclonal anti-iNOS (1:   2,000; Transduction Laboratories), 
monoclonal anti-gp91phox (1:   1,000; BD Transduction Laborato-
ries), polyclonal anti-AT 1  (1:   250; Alomone Labs, Israel), and poly-
clonal anti-mas (1:   200; Alomone Labs). The blots were then incu-
bated with either the secondary anti-rabbit antibody (1:   5,000; 
Amersham Biosciences, Piscataway, N.J., USA) or anti-mouse an-
tibodies (1:   3,000 except for  � -tubulin for which 1:   1,000 was used; 
Amersham Biosciences). Immunoblots were then resolved with 
Pierce Super Signal West Pico Chemiluminescent substrates as 
described by the manufacturer, and exposed to Amersham Hy-
perfilm-enhanced chemiluminescence (Amersham Biosciences). 
As positive controls, human endothelial cell lysate for eNOS, rat 
cerebrum cell lysate for nNOS, mouse macrophage IFN/LPS ly-
sate for iNOS were used. Signal quantification was performed us-
ing an image analysis program (MCID), and optical densities 
were expressed as the ratio between corresponding protein and 
 � -actin or  � -tubulin for membrane and cystosolic fraction, re-
spectively. The data were reported as the percentage of the con-
trols.

  Histological Analysis 
 Fixed paraffin sections of kidneys were evaluated for 3-nitro-

tyrosine (3-NT) immunostaining as a marker for nitroxidative 
stress as described previously  [16] . Fibrosis was evaluated on slides 
stained with Verhoeff-van Gieson, which is specific for fibrosis 
and stains elastin (black), nuclei (blue black), collagen (red), and 
connective tissue (yellow)  [41] . Slides were evaluated under a 
bright-field microscope (model 50i, Nikon), and  ! 40 images (for 
3-NT) or  ! 10 (for fibrosis) were captured with a Cool Snap cam-
era.  Images were analyzed, and signal intensities were measured 
with MetaVue software (Boyce Scientific, Gary Summit, Mo., 
USA).

  Statistics 
 All values are expressed as the mean  8  1 SEM. Data were 

analyzed by use of ANOVA followed by Newman-Keuls’ post-test. 
A value of p  !  0.05 was considered to be of statistical significance.

  Results 

 As already showed in our previous studies, tail-cuff 
blood pressure progressively increased in untreated salt-
loaded SHR when compared to the rats fed control diet. 
Importantly, nebivolol failed to prevent or to ameliorate 
the salt-induced increase in blood pressure ( fig. 1 ). Direct 
measures of MAP at the completion of the treatment reg-
imen averaged 164  8  7 mm Hg in control, 200  8  11 mm 
Hg in untreated salt-loaded rats, and 195  8  7 mm Hg in 
salt-loaded rats treated with nebivolol; these data con-
firmed the absence of an antihypertensive effect of 
nebivolol.

  Renal studies revealed that high salt intake for 5 weeks 
induced extensive urinary protein excretion in SHR as-
sociated with decreased RBF and creatinine clearance 
( fig. 2 ). While nebivolol treatment significantly amelio-
rated excessive urinary protein loss and increased RBF, it 
failed to improve creatinine clearance.

  Serum NOx levels were measured as an index of NO 
production in the whole body as opposed to tissue NOx 
levels which evaluated only the local kidney cortex pro-
duction. As shown in  figure 3 , there was no difference in 
serum NOx between the three experimental groups. In 
contrast, kidney cortex NOx was increased in untreated 
SHR fed the high salt diet and nebivolol prevented the 
salt-induced increase in NO production in the kidneys. 
Consistent with local NOx production, high salt diet in-
creased eNOS protein expression while nebivolol reduced 
it to levels not different from those found in the control 
SHR. In contrast, high salt diet did not affect the nNOS 

S
ys

to
li

c 
b

lo
o

d
 p

re
ss

u
re

 (
m

m
 H

g
)

0 1 2 3 4 5 6

100

150

200

250

300

Control
HS
HS and nebivolol

*

*
*

*

Time (weeks)
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expression, but nebivolol treatment increased it when 
compared to the control group. We did not detect iNOS 
isoform in any of the three experimental groups (data not 
shown).

  The protein expression of gp91phox component of 
NADPH oxidase was enhanced in renal cortical tissue of 
untreated SHR fed a high salt diet when compared to the 

controls (224  8  27%, p  !  0.05); nebivolol treatment re-
duced gp91phox protein expression to levels not different 
from the control animals (139  8  30%, p  1  0.05). Consis-
tent with parallel changes in renal gp91phox protein ex-
pression and NOx production, we demonstrated an in-
creased 3-NT immunostaining and fibrosis in salt-loaded 
SHR, and nebivolol reduced these changes ( fig. 4 ,  5 ).
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  We confirmed our previous findings that salt loading 
in SHR increased PRC  [9] . We now extended these studies 
including analysis of renal protein expression for AT 1  and 
mas receptor. Salt loading decreased mas protein expres-
sion, whereas nebivolol prevented this decrease while 
suppressing salt-induced increase in PRC ( fig. 6 ). There 
were no changes in AT 1  receptor expression between the 
three experimental groups.

  Discussion 

 Our results demonstrated that salt-induced renal dys-
function and remodeling in SHR are associated with en-
hanced nitroxidative stress reflecting an increase in kid-
ney protein expression of eNOS and gp91phox compo-
nent of NADPH oxidase. In agreement with these results, 
increased PRC in untreated salt-loaded rats indicates ac-
tivation of the circulatory Ang II  [9] , whereas reduced 
mas protein expression suggests suppressed Ang-(1–7)
signaling. Nebivolol treatment of high salt diet-fed SHR 
did not prevent the salt-induced increase in blood pres-
sure; however, it improved RBF and prevented excessive 
urinary protein loss, collagen deposition and associated 
nitroxidative stress while suppressing PRC and increas-
ing renal mas and nNOS protein expression.

  A large body of evidence suggests that dietary salt ex-
cess promotes renal injury in hypertensive subjects  [2, 42, 
43] , although the underling mechanisms are still not well 
defined. Increased blood pressure may be implicated in 
the detrimental renal effects of high salt diet, and we pos-

ited that nebivolol could decrease the hemodynamic bur-
den imposed by high salt diet  [44] . However, in this study 
nebivolol did not prevent the salt-induced increase in ar-
terial pressure and did not increase serum NO metabo-
lites. These data suggest that in this experimental model 
nebivolol did not facilitate systemic vascular NO produc-
tion. However, in agreement with the concept that detri-
mental renal effects of dietary salt excess are partly medi-
ated by non-pressure related mechanisms, nebivolol ame-
liorated salt-related renal functional and structural 
derangements.

  The RAS have been also implicated in the harmful re-
nal effects of high salt diet  [7, 12] . The observed increased 
PRC in the present study confirmed our previous find-
ings on paradoxical activation of RAS in salt-loaded rats 
 [9] . In agreement, AT 1  receptor-blocking agents improved 
renal hemodynamics and function, reduced excessive 
proteinuria and fibrosis and ameliorated progressive pro-
liferative glomerular changes in salt-sensitive hyperten-
sion  [7, 43, 45] . Consistent with its  �  1  receptor antago-
nism, nebivolol prevented renin release in rats fed the 
high salt diet. Further, reduced renal mas protein expres-
sion in untreated SHR fed high salt diet was associated 
with unfavorable changes in RBF and GFR and extensive 
fibrosis and proteinuria; nebivolol prevented the salt-in-
duced reduction in mas expression along with improve-
ment in RBF, urinary protein excretion, and collagen
deposition but not reduced GFR. The critical role of
Ang-(1–7) in the regulation of renal hemodynamics and 
tubuloglomerular structure and function is consistent 
with mas expression in afferent arterioles, glomerular 
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mesangial cells, and tubular epithelium  [38, 46, 47] . 
 Ang-(1–7) not only induced robust vasodilation in iso-
lated renal afferent arterioles  [48]  but also abolished Ang 
II-induced renal vasoconstriction in isolated kidney from 
both Wistar-Kyoto rats and SHR  [49] . Additionally, in-
creases in cir culating Ang-(1–7) by acute infusion or 
chronically in transgenic rats expressing an Ang-(1–7) 
producing fusion protein did not affect blood pressure 
but profoundly decreased renal vascular resistance  [50, 
51] ; the effect was partially abolished by the specific mas 
antagonist [D-Ala 7 ]-Ang-(1–7) (A-779)  [51] . Moreover, 
mas-deficient mice developed extensive tubulointerstitial 
and glomerular fibrosis as well as renal dysfunction  [37] . 
Consistent with these reports, results of the current in-
vestigation suggest deficient mas-mediated renal effects 
of Ang-(1–7) in response to high salt intake that was cor-
rected by nebivolol treatment. The inability of nebivolol 
to prevent the salt-related reduction in GFR may be at-
tributed to the lack of its antihypertensive action and cor-
responding persistent structural changes in glomerular 
capillary basement membranes. Additionally, it is not 
clear from this study how nebivolol regulates mas expres-
sion. In view of the recent report revealing a direct inter-
action between  � -adrenergic and AT 1  receptors  [52] , fur-
ther studies are warranted to explore the potential inter-
action between adrenergic and mas receptors as well.

  This investigation assessed the expression of three 
NOS isoforms in order to elucidate the effects of dietary 
salt excess on NO system in SHR keeping in mind the 
important role of NO in regulation of RBF and growth of 
vascular smooth muscle and mesangial cells  [26, 53, 54] . 
Interestingly, we demonstrated that the cortical eNOS ex-
pression was increased in salt-loaded SHR while there 
were no changes in the expression of nNOS. Although we 
did not determine directly the renal NOS-dependent pro-
duction of NO, cortical NOx levels paralleled the chang-
es in the eNOS expression, suggesting a greater eNOS ac-
tivity. The enhanced activity of NO system in response to 
high salt diet may be compensatory in order to prevent 
the excessive renal vasoconstriction and growth-promot-
ing effects of activated sympathetic nervous system and 
RAS.

  On the other hand, the functionality of the NO system 
depends not only on the NO production but also on its 
bioavailability that may be decreased due to enhanced 
superoxide formation. Increased oxidative stress, detri-
mental in many forms of salt-sensitive hypertension  [11, 
16, 55–57] , is frequently associated with increased expres-
sion or activity of NADPH oxidase as the primary source 
of superoxide in the kidneys  [11] . Thus, increased renal 

superoxide level in response to high salt intake may react 
with locally produced NO diminishing bioavailability of 
NO while producing peroxynitrite  [58]  that may also con-
tribute to renal injury  [59, 60] . Indeed, in salt-loaded rats 
we demonstrated an enhanced 3-NT staining associated 
with increased expression of gp91phox, one of the critical 
components of NADPH oxidase, indicative of this en-
hanced interaction between NO and superoxide anion 
and subsequent peroxynitrite reaction with tyrosine res-
idues on proteins. Increased eNOS expression may reflect 
the low levels of bioactive NO and its diminished negative 
regulatory role on eNOS  [61, 62] . Alternatively, increased 
oxidative stress may promote oxidizing of tetrahydrobi-
opterin, a critical cofactor for the NOS, which becomes 
uncoupled and produces itself superoxide instead of NO 
 [63] . However, this possibility seems less likely since in-
creased renal NOx paralleled the increase in renal eNOS 
expression mirroring NO formation rather than deficien-
cy. These results imply that, despite the beneficial effects 
of NO on renal hemodynamics and function, high NO 
formation is not necessarily always advantageous for op-
timal renal protection. Importantly, nebivolol prevented 
excessive formation of peroxynitrite reflective in reduced 
3-NT staining, gp91phox, and eNOS expression. Unlike 
other conventional  � -blockers, nebivolol has strong anti-
oxidative properties  [33, 34, 64] , and treatment with 
nebivolol decreased renal fibrosis and glomerular injury 
and improved endothelial dysfunction associated with 
increased NO bioavailability in different experimental 
models  [15, 16, 65–67] . Indeed, in addition to the effects 
on the enzymatic source of superoxide and its intrinsic 
direct superoxide scavenger properties  [34] , nebivolol 
may have reduced oxidative injury in salt-loaded SHR by 
reducing the renal effects of Ang II while improving Ang-
(1–7) signaling. Evidence from the literature testified for 
pro-oxidative action of Ang II  [68] , while recent studies 
revealed a potential of Ang-(1–7) to reduce NADPH oxi-
dase activity in diabetic SHR kidney  [35] . Moreover, Ang-
(1–7) buffered the Ang II-induced superoxide production 
in nuclei isolated from the sheep kidneys  [36] . Further 
studies are needed to elucidate the underling mechanism 
of renal protection of nebivolol with respect to its poten-
tial interaction with mas signaling.

  Finally, nebivolol-induced increase in nNOS expres-
sion may also contribute to its beneficial renal effects 
against salt-induced injury. Previous reports showed that 
the neuronal isoform could be detected in macula densa 
and arterioles as well as interlobular arteries  [69–71] , re-
flecting its input in regulating renal hemodynamics  [72, 
73] . Thus, it is plausible that NO derived from nNOS may 
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