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The problem of achieving widespread immunity to infectious diseases by voluntary vaccination is often

presented as a public-goods dilemma, as an individual’s vaccination contributes to herd immunity, pro-

tecting those who forgo vaccination. The temptation to free-ride brings the equilibrium vaccination level

below the social optimum. Here, we present an evolutionary game-theoretic approach to this problem,

exploring the roles of individual imitation behaviour and population structure in vaccination. To this

end, we integrate an epidemiological process into a simple agent-based model of adaptive learning,

where individuals use anecdotal evidence to estimate costs and benefits of vaccination. In our simulations,

we focus on parameter values that are realistic for a flu-like infection. Paradoxically, as agents become

more adept at imitating successful strategies, the equilibrium level of vaccination falls below the rational

individual optimum. In structured populations, the picture is only somewhat more optimistic: vaccination

is widespread over a range of low vaccination costs, but coverage plummets after cost exceeds a critical

threshold. This result suggests parallels to historical scenarios in which vaccination coverage provided

herd immunity for some time, but then rapidly dropped. Our work sheds light on how imitation of

peers shapes individual vaccination choices in social networks.

Keywords: vaccination dilemma; peer influence; epidemiology; evolutionary dynamics;
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1. INTRODUCTION
Pre-emptive vaccination is a fundamental strategy for

controlling infectious diseases (CDC 2009, http://www.

cdc.gov/vaccines/). While there is vigorous debate about

the civil liberties implications of mandatory versus volun-

tary vaccination policies [1], mounting evidence shows

that voluntary vaccination plans fail to protect popu-

lations adequately [2–12]. A recent example of this

failure is the sharp decline in take-up of the combined

measles–mumps–rubella vaccination in Britain soon

after administering it to children was made voluntary

[13]. Because of declining familiarity with the disease

and rising fears of vaccine complications, parents hoped

to avoid the alleged vaccination health risk to their own

children while implicitly relying on enough other children

getting vaccinated to provide herd immunity. The ‘public

good’ created by herd immunity gives rise to an enduring

social dilemma of voluntary vaccination.

Classical game theory predicts that, when individuals

act in their own interests with perfect knowledge of their

infection risk, their vaccination decisions converge

towards a Nash equilibrium, at which no individuals

could be better off by unilaterally changing to a different

strategy [5,6]. Although this equilibrium is the result of
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each individual following her self-interest, it may lead to

suboptimal vaccination coverage for the community [3].

The collective result of vaccination decisions determines

the level of population immunity and thus the severity

of an epidemic strain. With increasing levels of vacci-

nation coverage in the community, even the individuals

who are unvaccinated are less likely to become infected;

therefore, they have less incentive to get the vaccine.

This scenario naturally leads to the ‘free riding’ problem

that is commonly observed in public goods studies [14].

Previous studies of vaccinating dynamics have typically

combined a game-theoretic model assuming full ration-

ality and complete information with a model of disease

transmission in either homogeneously mixed populations

[5,6] or random networks [15]. In studies where the

assumption of rationality is relaxed, deterministic evol-

utionary dynamics still recover equilibrium states

equivalent to those predicted by models of rational

agents [10]. It is worth noting that aggregate population

models have been parameterized with empirical data to

quantitatively predict vaccinating behaviour in some

cases [3,4,10]. Here, we extend this previous work by

accounting for decision-makers’ social networks and

their use of anecdotal information in making vaccination

choices. Individuals have incomplete information and

tend to rely on salient anecdotes from friends and the

media in order to form opinions of disease risk and pre-

vention [16–18]. The rise to prominence in the British

media of isolated cases linking the pertussis vaccine and

brain damage triggered a sharp decline in coverage in
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Figure 1. Schematic of our model. We model the vaccination
dilemma as a two-stage game. At stage 1 (vaccination
choice), a proportion x of the population decides to vacci-
nate. Vaccination costs V and provides perfect immunity

from the infectious disease. At stage 2 (health outcome),
we use the SIR model to simulate the epidemiological pro-
cess. Each unvaccinated individual faces the risk of
infection during the seasonal epidemic outbreak. The cost
of infection is I. Those unvaccinated individuals who

remain healthy are free-riding off the vaccination efforts of
others, and they are indirectly protected by herd immunity.
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the late 1970s, demonstrating the power of the anecdote

[10,19]. Apart from these prominent cases, each person

can encounter different anecdotal evidence, depending

on her social network [15,20]. Illness of a close friend

can impact one’s perception of infection risk and the

importance of prevention in far more powerful ways

than media reports can [18].

Motivated by the above considerations, we propose a

simple agent-based model in the spirit of evolutionary

game dynamics [21–23] to study the voluntary vacci-

nation dilemma. In order to make precise predictions,

we couple the vaccination dynamics with an epidemiolo-

gical model, in particular the SIR model, which tracks

populations of susceptible, infected and resistant/

vaccinated individuals over time, within a single season

or epidemic. Such models have been used, for example,

to design clinical trials of vaccines or to predict whether

a vaccination programme will halt an epidemic before it

spreads to much of the population [24,25].

Our model captures the strategic interaction between

vaccinating and free-riding individuals in the following

way. Individuals decide whether to vaccinate during a vac-

cination campaign, before the seasonal epidemic begins.

The epidemiological model then determines whether

each susceptible (unvaccinated) individual becomes

infected at some point during the season. Once the epi-

demic ends, individuals can revise their vaccination

decision for the next season. Such a model is most appro-

priate for describing infections such as influenza. Flu

vaccines are typically available prior to a predicted out-

break and are effective for only one season owing to

mutation of pathogens and waning immunity [7,8].
2. MODEL AND METHODS
Consider a well-mixed population of individuals with a

voluntary vaccination option. We model the vaccination

dynamics as a two-stage game (as illustrated in figure 1).

The first stage is a public vaccination campaign, which

occurs before any infection. At this stage, each individual

decides whether or not to vaccinate. Vaccination incurs a

cost, V, to the vaccinated individual. For simplicity, here we

assume that vaccination grants perfect immunity from the

seasonal infectious disease. (To account for imperfect vacci-

nation, one may rescale the cost of vaccination by its

effectiveness and calculate infection risk based on the effec-

tive proportion of the population that is vaccinated.) The

total cost of vaccination includes the immediate monetary

cost, the opportunity cost of time spent to get the vaccine

and any perceived or actual adverse health effects. In the

second stage, the epidemic strain infects an initial number

of individuals I0 and then spreads according to SIR

dynamics, with per-day transmission rate r and recovery

rate g (see the electronic supplementary material for model

details). The epidemic continues until there are no more

newly infected individuals (which occurred in under 200

days for all cases simulated). The final size equation [25]

gives the infection risk for an infinite population (see the

electronic supplementary material for derivations):

wðxÞ ¼ Rð1Þ
1� x

¼ 1� e�R0Rð1Þ; ð2:1Þ

where R(1) is the final size of the epidemic (fraction that

have been infected at some point in the season), which
Proc. R. Soc. B (2011)
satisfies R(1) ¼ (1 2 x)(1 2 e2R0R(1)); R0 is the basic

reproduction ratio; and x is the fraction of vaccinated

individuals.

The infection cost I includes healthcare expenses, lost

productivity and the possibility of pain or mortality. After

the epidemic, the individuals with the highest payoffs are

those who declined vaccination but avoided infection. We

call these lucky individuals successful free-riders, as they

benefit from others’ vaccination efforts. The game dynamics

remain unchanged if we rescale the payoffs by defining the

relative cost of vaccination c ¼ V/I (0 , c , 1). The values

of c appropriate for modelling a particular disease can be esti-

mated from surveys of health opinions, behaviours and

outcomes, as done by, e.g. Galvani et al. [3], but in general

vaccination cost should be low relative to the cost of infec-

tion. The Nash equilibrium of this game can be solved by

setting the expected cost of vaccination equal to that of

non-vaccination, which implies the mixed strategy

x* ¼ 1þ lnð1� cÞ
cR0

: ð2:2Þ

This level of vaccination uptake falls short of the social

optimum xh ¼ 1 2 (1/R0), the level which achieves herd

immunity (near-elimination of the risk of contacting an infec-

tious individual) and thereby minimizes the sum of all

individuals’ costs related to both vaccination and infection

(see the electronic supplementary material). The misalign-

ment between individual and group interests leads to a

social dilemma.

Here, we relax the assumption of rationality and study this

vaccination dilemma from an evolutionary perspective. Each

season, an individual adopts a pure strategy, which deter-

mines whether or not she vaccinates. At the end of the

season, each individual decides whether to change her strat-

egy for the next season, depending on her current payoff.

Specifically, individual i randomly chooses individual j from

the population as role model. The strategy of a role model

with higher payoff is more likely to be imitated. We suppose

that the probability that individual i adopts individual j’s



1.0(a)

(b)

0.8

0.6

0.4

va
cc

in
at

io
n 

le
ve

l

0.2

0

1.0

0.8

0.6

0.4

fi
na

l e
pi

de
m

ic
 s

iz
e

0.2

0 0.2
relative cost of vaccination, c

0.4 0.6 0.8 1.0

Figure 2. Vaccination dynamics in well-mixed populations.

The fractions (a) vaccinated and (b) infected are shown as
functions of the relative cost of vaccination, c, for the inten-
sity of selection b ¼ 1 and 10. The lines are analytical
predictions from deterministic equations (see the electronic

supplementary material). The deviation between simulation
and theory is largely due to stochasticity in disease trans-
mission: holding vaccination constant at some level below
the herd immunity threshold (1 2 (1/R0) ¼ 0.6), simulated
infection risk is smaller than the prediction in equation

(2.1) (see electronic supplementary material, figure S1b).
Individuals in the simulation respond to this decreased risk
by vaccinating less than in the theory, which in turn leads
to a larger epidemic versus the theory. Strong selection mag-
nifies individuals’ responses, producing larger deviations. For

vaccination coverage above the theoretical herd immunity
level, the deterministic approximation underestimates infec-
tion risk, leading to an opposite deviation at low c.
Parameters: population size N ¼ 5000, R0 ¼ 2.5 (realized
by setting r ¼ 5/(6N) d21 person21 and g ¼ 1

3
d21), number

of infection seeds I0 ¼ 5. (a) Simulations: open squares,
b ¼ 1; filled squares, b ¼ 10; theory: dotted line, b ¼ 1;
solid line, b ¼ 10. (b) Simulations: open inverted triangles,
b ¼ 1; filled inverted triangles, b ¼ 10; theory: dotted line,
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strategy is given by the Fermi function [26–29]

f ðPj � PiÞ ¼
1

1þ exp½�bðPj � PiÞ�
; ð2:3Þ

where b denotes the strength of selection (0 , b , 1).

This updating dynamic diverges from a fully rational

model in two ways. First, individuals adjust their strategies

retrospectively, in response only to the observed payoff out-

comes and not the expected payoffs of strategies. In a

population with low vaccination uptake, many non-vaccina-

tors fall ill, but if individual i happens to choose one of the

few successful free-riders as a role model, then she will be

more likely to imitate the free-rider’s strategy. Second, the

strength of selection parameter introduces a stochastic

element to the model: for small b (weak selection), individ-

uals are less responsive to payoff differences, and an

individual with a high payoff may adopt the strategy of a

less successful role model. Large values of b (strong selec-

tion) diminish this stochastic effect, and individuals reliably

switch to (or keep) the strategy with the higher observed

payoff, even if the payoff difference is small. Previous work

using the same update dynamic has characterized agents

with high b as being more rational [27]. This characterization

is not appropriate in our context, as higher b only increases

an agent’s sensitivity to the (perhaps unrepresentative)

observed payoff, not the expected payoff.

The model presented here can be conveniently extended

to structured populations by restricting the neighbourhood

of individuals whom one can infect or imitate. In addition

to the well-mixed case, we simulated populations structured

as square lattices, Erdó́s–Rényi random graphs [30] and

Barabási–Albert scale-free networks ([31]; see the electronic

supplementary material). The initial state consists of equal

fractions vaccinators and non-vaccinators, randomly distrib-

uted throughout the population. Each two-stage iteration

(vaccination strategy updating followed by an epidemic pro-

cess) updates the frequencies of each strategy. Since we are

interested primarily in the effect of population structure on

vaccination coverage (rather than on infection risk), we cali-

brated epidemic parameters to ensure that the infection risk

in an unvaccinated population is equal across all population

structures ([15]; see the electronic supplementary material).

Each simulation was run for 3000 iterations. The long

run equilibrium results shown in figures 2–4 represent

the average of frequencies over the last 1000 iterations

in 100 independent simulations. We present results of

simulations that use population sizes between N ¼ 500 and

N ¼ 10 000; overall results are robust to varying population

size for N as small as 200.
b ¼ 1; solid line, b ¼ 10.
3. RESULTS
In the vaccination game, if all of one’s neighbours adopt

one strategy, then it is advantageous to adopt the opposite

strategy. We therefore always find persistent polymorph-

isms of vaccinated and unvaccinated individuals for

intermediate values of c. Figure 2 plots both the equili-

brium frequency of (a) vaccinated and (b) infected

individuals for different values of c and b in the well-

mixed imitation dynamics. We find qualitative agreement

between stochastic simulations and an analytical predic-

tion that uses both the equation for infection risk (2.1)

and an infinite-population approximation of the imitation
Proc. R. Soc. B (2011)
dynamics (described in the electronic supplementary

material).

For weak selection (b ¼ 1 in figure 2), the imitation

dynamics approximate the rational equilibrium x* given

in equation (2.2). One can understand this observation

analytically by noting that the strategy update equation

(2.3) is roughly linear for small b. First-order approxi-

mation of the imitation dynamics closely approximates

the replicator dynamics [32–34], which in this game con-

verge to the unique evolutionarily stable strategy—the

Nash equilibrium (see the electronic supplementary

material). As vaccination falls with increasing c, the final
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Figure 3. Vaccination dynamics in lattice populations. (a,b) The fractions vaccinated and infected, respectively, as functions of c
for the intensity of selection b ¼ 1 and 10. (c,d) Snapshots of the system at equilibrium frequencies with weak and strong selec-

tion, respectively. Blue denotes vaccinated individuals, red successful free-riders and yellow infected individuals. Strong
selection breaks apart clusters of vaccinators: 54% of vaccinated individuals’ neighbours are also vaccinated in (c), versus
only 49% in (d). Parameters: population size N ¼ 100 � 100 with von Neumann neighbourhood, disease transmission rate
r ¼ 0.46 d21 person21, recovery rate g ¼ 1

3
d21, number of infection seeds I0 ¼ 10, (c,d) c ¼ 0.08, (c) b ¼ 1, (d) b ¼ 10.

The lines in (a) and (b) are visual guides. (a) Open squares with solid line, b ¼ 1; filled squares with solid line, b ¼ 10. (b)

Open inverted triangles with solid line, b ¼ 1; filled inverted triangles with solid line, b ¼ 10.
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size of the epidemic grows. Above a high cost threshold

cH � 0.893, no one chooses vaccination and the epidemic

reaches its maximum size.

Strong selection in the imitation dynamics (rep-

resented by b ¼ 10 in figure 2) can decrease vaccination

uptake below the level predicted by the rational equili-

brium. In other words, individuals who carefully attend

to peers’ health outcomes and reliably copy the behaviour

of successful peers will end up attempting to free-ride

more than they rationally ‘ought’ to. If, for example,

infection is 12 times as costly as vaccination (c ¼ 0.08, a

reasonable assumption for influenza, see the electronic

supplementary material), then strong selection in our

model lowers vaccination coverage by 8 percentage

points versus weak selection (figure 2a), which increases

the epidemic size from 4 per cent of the population

to 15 per cent of the population (figure 2b). With increas-

ing cost of vaccination, the equilibrium vaccination

coverage follows a rotated ‘S’ curve, dropping rapidly

(slope �2(b/2)) from the herd immunity threshold at

low values of c, reaching a plateau near 1 2 (2 ln 2)/R0

for intermediate values of c, and then dropping rapidly

to zero as c grows large. The threshold cH increases with

selection strength (figure 2a).
Proc. R. Soc. B (2011)
Results are qualitatively similar for any basic reproduc-

tion ratio R0. 1 of the infection. Figures S5 and S6 in the

electronic supplementary material compare the cases

R0 ¼ 2.5 and R0 ¼ 6. The higher value increases infection

risk, making the population respond with increased vacci-

nation uptake. Increasing R0 also raises the threshold cH.

Restricting interaction to local neighbourhoods partly

ameliorates the free-riding problem, but introduces

greater sensitivity to the cost parameter c (figure 3). We

consider a population of individuals arranged on a

square lattice where each individual has four immediately

adjacent neighbours. While the vaccination coverage in

well-mixed populations drops from herd immunity levels

as soon as c increases above zero, restricted spatial inter-

action promotes near-universal coverage at a range of

positive c, preventing the epidemic. To give a simple oper-

ational definition, we say that vaccination ‘prevents the

epidemic’ in a structured population if the average final

epidemic size is less than twice the size of the initial inocu-

lum. Define as cL the critical vaccination cost below which

the epidemic is prevented. For weak selection on the lattice

(b ¼ 1 in figure 3), we get cL � 0.022. Above this

threshold, the vaccination level drops precipitously, causing

an epidemic that is even larger than in the well-mixed case.
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Figure 4. Vaccination dynamics in random network populations. (a,b) The fractions vaccinated and infected, respectively, as
functions of c for the intensity of selection b ¼ 1 and 10. (c) Snapshot of a single simulation on a random network at equili-

brium frequencies. The size of a node corresponds to its degree (number of neighbours). Blue nodes are vaccinated, yellow are
infected, and red are successful free-riders. (d) The frequency of vaccination on a random network, as a function of the number
of neighbours an individual has. The inset in panel (d) shows the degree distribution of the random network. Parameters: (a–d)
average degree k̄ ¼ 4, disease transmission rate r ¼ 0.51d21 person21, recovery rate g ¼ 1

3
d21; (a,b,d) N ¼ 1000, I0 ¼ 10; (c)

N ¼ 500, I0 ¼ 5; (c,d) c ¼ 0.1, b ¼ 10. The lines in (a) and (b) are visual guides. (a) Open squares with solid line, b ¼ 1; filled

squares with solid line, b ¼ 10. (b) Open inverted triangles with solid line, b ¼ 1; filled inverted triangles with solid line, b ¼ 10.
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At higher selection strength, the threshold cL is lower,

and vaccination coverage is even more sensitive to costs

rising above cL (figure 3a). The high-cost threshold cH

rises with selection strength, meaning that the transitional

region between cL and cH, where vaccinated and unvacci-

nated individuals coexist, widens with larger b. Holding c

constant at a value above cL, increasing the strength of

selection leads to more free-riding attempts, breaking

apart clusters of vaccinators, thus allowing a larger

epidemic to occur (figure 3c versus d).

Most actual populations are heterogeneous in the

sense that different individuals may have different num-

bers of neighbours (i.e. degree; [31]). To account for

this feature, we consider vaccination dynamics on

Erdó́s–Rényi random graphs, which have moderate

degree heterogeneity; on scale-free networks, which have

an even more variable degree distribution, our results

are similar (see the electronic supplementary material).

Higher vaccination coverage is typically required to

achieve herd immunity in populations with greater

degree heterogeneity ([35]; see also figures S2–S4 in
Proc. R. Soc. B (2011)
the electronic supplementary material). This increased

vulnerability to epidemic attacks reduces the temptation

to free-ride, actually making it easier for a population of

selfish imitators to achieve the high-vaccination threshold

required for herd immunity. The threshold cost cL there-

fore increases versus the lattice case. Vaccination coverage

drops after cost exceeds this threshold, although the effect

is not quite as extreme as in lattice populations

(figure 4a,b). Similarly to lattice populations, increased

selection strength increases the size of the intermediate

region between cL and cH.

Degree heterogeneity triggers a broad spectrum of

individual vaccinating behaviour. Specifically, an individ-

ual’s vaccination strategy is now influenced by her role in

the population, and ‘hubs’ who have many neighbours are

most likely to choose to be vaccinated, as they are at great-

est risk of infection (figure 4c,d). Hubs that do manage to

free-ride successfully become victims of their own suc-

cess, as their vaccinated neighbours of smaller degree

are likely to imitate them and switch strategies, potentially

infecting the hubs in the following season.
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4. DISCUSSION AND CONCLUSION
Our model shows how incomplete information and strong

selection (high payoff-sensitivity, parameterized by b) in a

population of imitators cause the vaccination coverage to

fall well short of the social optimum, and even below the

Nash equilibrium. Weak selection in a well-mixed popu-

lation recapitulates the replicator dynamics, converging

to the Nash equilibrium. Strong selection, on the other

hand, drives individuals to imitate successful free-riders

based on a single observation, even when a rational

agent with complete information would realize that

attempted free-riding does poorly in expectation. This

‘paradox of imitation’ is a very general phenomenon

[36] and may in part explain cases where public vacci-

nation levels are low. In particular, for the range of

vaccination cost appropriate to influenza (i.e. c � 0.002

to 0.08, see the electronic supplementary material),

the imitation dynamics with strong selection in the well-

mixed case falls well short of the rational optimum,

leading to over-exploitation of herd immunity and an

increase in preventable infections. Our model describes

the admittedly extreme case in which each individual

observes only one randomly chosen role model each

round. Allowing imitators to learn from a somewhat

larger group of peers could lessen the sampling error,

but would not eliminate it.

This kind of error is reminiscent of, but distinct from,

the phenomenon of ‘information cascades’ that generate

rationalized conformism or ‘groupthink’ [37,38]. Such

cascades may also be obstacles to high vaccination cover-

age [39]. To explore conformism (or, alternatively,

stubbornness) in the context of our model, one might

include an additional cost t of switching strategy in the

thermal updating rule [29,40]; that is, f(DP) ¼ 1/(1 þ
exp(2b(DP þ t))). A large negative (positive) t would

then represent the tendency to copy one’s peers

(stick with the current strategy), regardless of payoff

comparisons. Previous studies have shown in detail how

this sort of payoff-neglecting imitation can lead to

widespread conformism and adoption of sub-optimal

strategies [37,38].

It is widely known that population structure can pro-

mote the evolution of cooperative behaviour [41–47]. We

have shown, however, that population structure is a

‘double-edged sword’ for public health: it can promote

high levels of voluntary vaccination and herd immunity,

but small increases in the cost beyond a certain threshold

cL cause vaccination to plummet—and infections to rise—

more dramatically than in well-mixed populations. For

example, the random network population under strong

selection (b¼ 10) can prevent the epidemic completely

for costs up to c ¼ 0.04, but 11 per cent of the population

become infected at cost c ¼ 0.08. In the well-mixed popu-

lation, the epidemic grows gradually, from 8 to 15 per cent,

over the same cost range. This threshold effect is robust to

changes in population structure and exists in lattice

(figure 3a,b) and scale-free network (electronic supplemen-

tary material, figure S7a,b) populations as well.

In social networks, individuals’ degrees vary greatly,

and highly-connected individuals (hubs) can spread dis-

ease to a large number of peers if infected. The

vaccination of hubs can play a vital role in containing

infections [35], and public health programmes often try
Proc. R. Soc. B (2011)
to promote herd immunity by allocating vaccinations pre-

ferentially to these hubs [48]. Physicians who are hubs in

a disease-transmission network, for instance, have high

rates of vaccine uptake [49]. Our model shows that even

individuals with incomplete information can self-organize

to achieve this pro-social outcome (figure 4). Since hubs

generally face greater infection risk than small-degree

individuals do, they have increased incentive to vaccinate;

hubs’ self-interest is therefore relatively well-aligned with

overall welfare.

Recent work with a detailed model designed to mimic

a smallpox outbreak on a random network [15] reaches a

complementary conclusion about the fragility of high-

coverage equilibria: voluntary vaccination can contain a

disease in low-degree networks, but as the average

degree increases, the system reaches a critical threshold

past which it behaves like a well-mixed population and

the epidemic spreads. This work focused on vaccination

decisions made during the course of an epidemic in

response to local disease prevalence, as opposed to

season-by-season updating of pre-emptive vaccination

decisions. Taken together, our current work and this pre-

vious result demonstrate how local disease transmission

and decision-making based on local context change the

character of vaccination dynamics. Voluntary vaccination

can be a viable policy for achieving high coverage and era-

dicating disease, but the final outcome is sensitive to small

changes in (actual or perceived) vaccination cost and in

the social network. This sensitivity may in part explain

how anecdotal evidence of vaccine-related health risks

has been able to trigger steep declines in coverage and

loss of population immunity [10,13,19]. Policy levers

that subsidize vaccination can take advantage of these

threshold effects to promote disease containment and

eradication.

Achieving socially optimal coverage through voluntary

vaccination is a problem of cooperation with limited

information and uncertainty about outcomes. The pro-

blem is similar to public goods games studied by

economists [50], as herd immunity provides a communal

benefit. Individuals’ use of salient anecdotes to cope with

uncertainty, however, is not a typically studied feature of

public goods games. Two sources of uncertainty face an

individual deciding whether to vaccinate: uncertainty

about contracting the infection if unvaccinated, and

uncertainty regarding adverse reactions to the vaccine

itself. Our current work focuses on the former uncer-

tainty, treating the vaccine cost as a fixed quantity,

which is a summary of all expected costs. It may also be

instructive to treat vaccine cost as a random variable, as

a way of explicitly modelling public fears concerning vac-

cine safety. These fears often have a tremendous impact

on vaccine take-up and public health [19,51].
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