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Abstract
CLEC16A, a putative immunoreceptor, was recently established as a susceptibility locus for type I
diabetes and multiple sclerosis. Subsequently, associations between CLEC16A and rheumatoid
arthritis (RA), Addison’s disease and Crohn’s disease have been reported. A large comprehensive
and independent investigation of CLEC16A variation in RA was pursued. This study tested 251
CLEC16A single-nucleotide polymorphisms in 2542 RA cases (85% anti-cyclic citrullinated
peptide (anti-CCP) positive) and 2210 controls (N = 4752). All individuals were of European
ancestry, as determined by ancestry informative genetic markers. No evidence for significant
association between CLEC16A variation and RA was observed. This is the first study to fully
characterize common genetic variation in CLEC16A including assessment of haplotypes and
gender-specific effects. The previously reported association between RA and rs6498169 was not
replicated. Results show that CLEC16A does not have a prominent function in susceptibility to
anti-CCP-positive RA.
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Rheumatoid arthritis (RA) is the most common systemic autoimmune disease with a
prevalence of 1%.1 This chronic inflammatory disease can cause substantial disability from
the erosive and deforming processes in joints, and is associated with increased mortality.2
RA has a strong genetic component, as shown by twin and other family studies; however,
the etiology is unknown.3 Major histocompatibility complex genes, particularly HLA class
II, are strongly associated with risk of developing RA. However, major histocompatibility
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complex genes only account for a portion of the genetic risk. Several non-major
histocompatibility complex genes have recently been associated with risk for RA, including
PTPN22, STAT4 and TNFAIP3.4–6 Results from recent genome-wide association (GWA)
studies underscore the overlap of replicated findings across complex diseases, including
autoimmune conditions.7,8 Variants within some confirmed genetic risk loci for RA also
confer risk for other autoimmune diseases. These include CTLA4 in type I diabetes (T1D),
IL-2 in T1D and Celiac disease, PTPN22 in systemic lupus erythematosus (SLE), T1D and
autoimmune thyroid disease, STAT4 in SLE and TNFAIP3 in SLE, T1D, Celiac disease and
Crohn’s disease.5,9–19

The C-type lectin domain family 16, member A gene (CLEC16A, previously called
KIAA0350) spans 237.7 kb and encodes a sugar-binding receptor that contains a putative
immunoreceptor tyrosine-based activation motif.10 C-type lectin receptors can be expressed
on dendritic cells to distinguish between self and non-self glycoproteins, and may be
involved in immune activation and peripheral tolerance.20,21 These sugar-binding receptors
have been shown to be important in multiple animal models for RA.22–25 For example, in
rats, C-type lectin-like receptors are encoded by the antigen-presenting lectin-like receptor
gene complex (APLEC), which have been shown to influence susceptibility to arthritis (oil-,
collagen-, squalene- and pristine-induced), auto-immune phenotypes (autoantibody levels)
and clinical phenotypes (day of disease onset, maximal severity, severity over time, body
weight loss, arthritis symptoms).24 The effect of APLEC variation on susceptibility to
arthritis and clinical phenotypes varied by gender.24

Recently, GWA studies have identified the sugar-binding receptor gene CLEC16A as a
novel risk locus for T1D and MS, and this association has since been replicated in
independent samples.10,26–31 CLEC16A is located on 16p13, a region that has been
implicated in RA linkage studies.32 The purpose of this study was to perform a
comprehensive haplotype-based investigation of CLEC16A as a candidate RA gene. This
study sample consisted of 682 RA cases and 752 controls collected by the North American
RA Consortium (RA1), 1860 RA cases collected by the Wellcome Trust Case Control
Consortium (WTCCC) RA Group in the UK and 1458 controls collected by the WTCCC
from the UK Blood Services (RA2) (total N = 4752) (Table 1).

We conducted allelic tests of association for 58 single-nucleotide polymorphisms (SNPs)
and global haplotype tests (12 haplotype blocks encompassing 53 SNPs) in 682 anti-cyclic
citrullinated peptide-positive (anti-CCP-positive) RA cases and 752 controls (N = 1434
(RA1)) (Figure 1). All results were negative after correcting for multiple testing (Figure 2,
Supplementary Table 1). Next, we conducted allelic tests of 43 SNPs and global haplotype
tests (7 haplotype blocks encompassing 37 SNPs) in the second RA data set composed of
1860 RA cases and 1458 controls (N = 3318 (RA2)). No evidence for association was
present (Figure 2, Supplementary Table 1). Furthermore, allelic tests of 251 imputed SNPs
within CLEC16A derived for the combined RA sample (2542 cases and 2210 controls, total
N = 4752 (RA1 + RA2)) revealed no evidence for disease association (Figure 2,
Supplementary Table 1).

The six CLEC16A SNPs shown to be associated with T1D and/or MS are intronic and were
either genotyped or tagged (r2>0.95 based on the Caucasian HapMap population (CEU)) in
this study. Similar to this study, candidate gene investigations of CLEC16A in Grave’s
disease, Celiac disease and ulcerative colitis have been negative, but associations have been
reported with Addison’s disease, Crohn’s disease and for RA in other data sets.10,29,33–36 A
case–control study by Martinez et al.29 examined three CLEC16A SNPs and reported that
rs6498169*G, a variant associated with MS, was over-represented in RA cases (38%)
compared to controls (32%) (P = 8 × 10−3, odds ratio (OR) = 1.27, 95% confidence interval
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(CI) = 1.06–1.51). Although our study was well powered to detect such an effect size, with
80% power to detect an OR as low as 1.13, the association between RA and rs6498169 was
not replicated. The rs6498169*G allele frequency did not differ between RA cases (33.6%)
and healthy controls in this study (32.9%) (P = 0.45, OR = 1.03, 95% CI = 0.95–1.11).

It is also important to note that recent studies have revealed the presence of different major
histocompatibility complex associations in anti-CCP-positive and anti-CCP-negative RA
cases when considered separately.37–39 It is possible that this phenotypic difference may
also be important for other RA genetic susceptibility loci. The well-established PTPN22 RA
locus appears to be associated only with anti-CCP-positive RA, although some studies have
reported association with both anti-CCP-positive and anti-CCP-negative RA.40–43 Anti-CCP
autoantibodies and shared epitope alleles are also markers for increased RA severity,
particularly when both are present.44 In this study, 85% of RA cases were anti-CCP positive,
compared to only 50% in the Martinez et al. study. This difference may have contributed to
the observed disparity between results. Indeed, Skinningsrud et al.36 have recently examined
three CLEC16A SNPs and reported that the rs6498169*G variant was over-represented in
anti-CCP-negative RA cases (44%) compared to anti-CCP-positive RA cases (37.7%) (P =
0.016, OR = 1.3, 95% CI = 1.05–1.61) and controls (35.9%) (P = 2 × 10−4, OR = 1.4, 95%
CI = 1.18–1.68). Martinez et al. did not observe differences between cases and controls after
stratifying for anti-CCP status or presence/absence of shared epitope alleles, but this may be
due to a lack of statistical power. Although all of our RA1 cases were anti-CCP positive,
only 80% of RA2 cases were anti-CCP positive and this information was not publicly
available for the RA2 cases. Therefore, we were not able to stratify RA2 or RA1 + RA2 by
anti-CCP status for analyses of CLEC16A SNPs.

Because animal models suggest that C-type lectin receptor genes may have gender-specific
effects on autoimmunity, we conducted gender-stratified allelic tests and gender-adjusted
global haplotype tests of CLEC16A within RA1 and RA2.24 The rs3960630 A variant was
underrepresented in female RA1 cases (20%) compared to female controls (25%) (OR =
0.71, 95% CI = 0.59–0.86, P = 4 × 10−4). This intronic SNP was not present in or captured
by RA2 data and therefore could not be tested in the larger combined data set. Given the
number of multiple tests performed, these results should be interpreted with caution. Results
did not differ when global haplotype tests were adjusted by gender (data not shown). Animal
models of RA also indicate that it may be worthwhile to stratify cases by clinical phenotypes
in future genetic studies of C-type lectin receptors and autoimmunity.24

Although rare variants in CLEC16A were not directly investigated here, for the first time all
common genetic variation within CLEC16A was interrogated for a function in RA
susceptibility. Even without imputed genotypes, the RA1 data set (N = 58 SNPs) captured
93%, RA2 (N = 43 SNPs) captured 80% and both data sets combined (N = 96 SNPs)
captured 96% of the common variation based on CEU data from HapMap (see Figure 2
legend). The data used in this study were taken from GWA studies that did not identify
CLEC16A as a risk locus for RA based on stringent genome-wide significance. A focused
candidate gene study that captures a larger portion of genetic variation compared to initial
GWA studies is a useful and complementary strategy.

In conclusion, this is the first candidate gene study of CLEC16A to fully characterize
common genetic variation in CLEC16A, including assessment of haplotypes and gender-
specific effects. We did not replicate the association between RA and rs6498169 reported by
other studies. Results convincingly show that variation within CLEC16A does not have a
prominent function in susceptibility to anti-CCP-positive RA.
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Figure 1.
Schematic of our analysis strategy in stages (a) 1, (b) 2 and (c) 3. Previous GWA studies
provided genotyping data for 64 CLEC16A single-nucleotide polymorphisms (SNPs) in RA1
derived from the Illumina HumanHap550 Genotyping BeadChip (San Diego, CA, USA) at
the Feinstein Institute for Medical Research and 49 CLEC16A SNPs in RA2 from the
Affymetrix GeneChips Mapping 500 K Array Set (Santa Clara, CA, USA) as previously
described.19,48,49 Three SNPs in RA1 and six SNPs in RA2 were excluded from analysis
due to low minor allele frequency (MAF) (<0.01). Deviation from Hardy–Weinberg
equilibrium (HWE) was examined in controls separately for each cohort using the exact test
(PLINK v. 1.05, Boston, MA, USA).50,51 Three SNPs from RA1 with evidence for
deviation from HWE in the controls (P<0.001) were omitted from further analyses.
Sufficient power for this study was confirmed with PGA v. 2.0 (Bethesda, MD, USA) (two-
sided α = 0.05).52 Haplotype blocks were estimated in RA1 and RA2 controls and CEU
separately (Haploview v. 4.1, Cambridge, MA, USA).53 Percent of CLEC16A variation
captured was based on r2≥0.8 in CEU using two- and three-marker haplotypes (Haploview).
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Figure 2.
P-values from (a) allelic and (b) haplotype tests of CLEC16A single-nucleotide
polymorphisms (SNPs) in rheumatoid arthritis (RA). Allelic association was tested by
creating 2 × 2 contingency tables and estimating odds ratios (ORs) with Fisher’s exact test
(PLINK). Haplotypes were estimated with the expectation–maximization (EM) algorithm
(Haploview). Maximum likelihood estimates of haplotype probabilities were computed with
the EM algorithm and score statistics were used for global haplotype association tests,
assuming a dominant genetic model (HaploStats v. 1.4.3, Rochester, MN, USA; R v. 2.6,
Vienna, AT).54 Haplotypes with inferred frequencies <5% were excluded. A significance
threshold of P = 1.1 × 10−3 was set using a Bonferroni correction for the number of
CLEC16A haplotype blocks (10) and SNPs that were not located in haplotype blocks (34),
based on CEU. Empirical P-values based on 10 000 simulations were reported for all allelic
and haplotype tests. To conduct a combined analysis of RA1 + RA2, we used a hidden
Markov Model based algorithm to impute genotypes for 38 SNPs in RA1, 53 SNPs in RA2
and 171 SNPs in RA1 + RA2 (IMPUTE v. 0.5.0, Oxford, UK).55 The imputation was based
on two 500 kb regions flanking each side of CLEC16A, using CEU as the reference and an
r2 threshold of 0.8. Imputed genotypes with <90% probability were omitted. After omitting,
12 SNPs with evidence for deviation from Hardy–Weinberg equilibrium (HWE) in the
controls and 4 SNPs with low minor allele frequency (MAF) from further analyses, 251
SNPs in RA1 + RA2 were tested for allelic association.
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Table 1

RA study cohorts used for CLEC16A analyses

RA1 Controls RA2 Controls

N 682 752 1860 1458

Site NA NA UK UK

Mean age (years) 56.2 48.5 — —

Age range (years) 21–87 30–82 — <70

Female, N (%) 503 (73.7) 525 (69.8) 1390 (74.7) 753 (51.6)

Mean age-at-onset (years) 45.7 —

Rheumatoid factor positive, N (%) 580 (85) 1310 (83.9)

 0 15 (2.3) 401 (53.3) 286 (20.7)

 1 362 (56.5) 301 (40) 680 (49.2)

 2 264 (41.2) 50 (6.6) 416 (30.1)

Erosions, N (%) 211 (66.6) —

Anti-CCP positive, N (%) 681 (100) 884 (79.8)

RA cases met the American College of Rheumatology classification criteria for RA.45 RA2 controls were a subset of the WTCCC T1D GWA

study controls.19 RA1 controls were frequency matched by age and gender to the cases. RA2 controls were frequency matched by geographical
region and gender to the 1958 Birth cohort (which included all births in England, Wales and Scotland, during one week in 1958) so as to be
nationally representative. On the basis of the available genetic ancestry data for all individuals, and to apply the most stringent criteria possible for
genetic analysis of CLEC16A, only RA1 subjects with ≥90% Northern European ancestry and RA2 subjects with European ancestry were
analyzed. European ancestry was estimated in RA1 using a Bayesian clustering algorithm (Structure v. 2.0, Oxford, UK) and data for 112 European

and 246 Northern European ancestry informative markers.46,47 For RA2, European ancestry was estimated by principal components analysis.19

a
HLA-DRB1*0101, *0102, *0104, *0401, *0404, *0405, *0408, *0413, *0416, *1001 alleles.
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