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Abstract
The histological distinction between bronchioloalveolar carcinoma (BAC) and other
adenocarcinomas is tissue invasion. The clinical importance of lung adenocarcinoma invasion is
supported by several recent studies indicating that the risk of death in non-mucinous BAC is
significantly lower than that of pure invasive tumors and in tumors with greater than 0.6 cm of
fibrosis or linear invasion. Using microarray gene expression profiling of human tumors,
dysregulation of transforming growth factor-ß (TGF-ß) signaling was identified as an important
mediator of tumor invasion. Subsequent studies showed that the CC chemokine RANTES
(Regulated on Activation, Normal T-cell Expressed, and presumably Secreted) was upregulated in
invasive tumors and was required for invasion in cells with repressed levels of the TGF-ß type II
receptor. Taken together, these studies illustrate how information gained from global expression
profiling of tumors can be used to identify key pathways and genes mediating tumor growth,
invasion, and metastasis.

The World Health Organization subclassifies adenocarcinoma based upon predominant cell
morphology and growth pattern.1. The histological distinction between bronchioloalveolar
carcinoma (BAC) and other adenocarcinomas is tissue invasion. BAC tumor cells are
cuboidal to columnar, with or without mucin, that grow in a noninvasive fashion along
alveolar walls. Invasion, defined as tumor disruption of the alveolar basement membrane, is
present in other subtypes of adenocarcinoma. Adenocarcinomas with mixed subtypes
frequently contain regions of lepidic/noninvasive tumor at the periphery of invasive tumor.

Recent clinical reports suggest that the prognosis and radiographic appearance of BAC is
unique and may support modifying the clinical approach to lung adenocarcinomas according
to histological subtype. Metastases to lymph nodes and extrathoracic organs are unusual in
nonmucinous BAC. The mean five year survival for Stage I BAC and other
adenocarcinomas is 81% and 55%, respectively 2. Recent reports suggest that for Stage IA
BAC, limited resections rather than lobectomy, which is the current standard resection for
Stage IA adenocarcinoma, may be curative3. Notably, low dose chest CT screening detected
lung cancer is more likely to be adenocarcinoma than conventionally detected cancer (75%
versus 40%)4, 5. In addition, 25% of screen detected cancers are BAC. As a result, the
identification of invasion in screen detected malignancy may in the future guide a
therapeutic decision of limited versus anatomic resection.
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Paralleling malignancies in other organs, such as breast and cervix, where tumors are
defined as non-invasive (in-situ carcinoma), micro-invasive (microscopic invasion) or as
invasive carcinomas, the extent of the invasive component seen in lung adenocarcinoma is
associated with clinical outcomes. The clinical importance of lung adenocarcinoma invasion
is supported by several recent studies 2, 6-9 indicating that the risk of death in non-mucinous
BAC is significantly lower than that of pure invasive tumors and in tumors with greater than
0.6 cm of fibrosis or linear invasion. In 200 cases of small adenocarcinomas (diameter < 3
cm), Yokose reported no deaths among 66 BAC cases10. In 484 cases of BAC and
adenocarcinoma, Terasaki reported that lymph node involvement was absent in all BAC and
was present in 20% of adenocarcinomas that had an invasive area greater than 5 mm11.
Similarly, among 178 patients with resected lung adenocarcinoma we found five year
survival rates of 100% and 90% for patients with BAC or tumors with invasive length less
than 6 mm, respectively12. Together, these studies suggest that non-invasive tumors are
biologically indolent and that invasion increases the risk of metastatic disease and death in
solitary mixed subtype tumors.

Invasion is the first step of carcinoma metastasis, in which epithelial cells lose cell-cell
adhesion, gain motility and invade into adjacent stroma. Subsequent steps of metastasis
include vascular intravasation and extravasation, establishment of a metastatic niche and
angiogenesis.13. Tumor invasiveness, the morphologic characteristic that distinguishes BAC
from adenocarcinoma, is determined by the interaction of tumor cells with the surrounding
stroma 14, 15.

We 16 and others 17-19 20 have used microarray gene expression profiling of lung
adenocarcinoma to identify signatures associated with histology and invasion. The results of
unsupervised analyses, in which the specimens are sorted into groups in a dendogram based
upon similarity of gene expression, show lung adenocarcinomas segregate into three major
branches comprised predominantly of BAC, AC-Mixed subtype, and pure invasive tumors.
These results provide biological plausibility to support the notion that these adenocarcinoma
subtypes are distinct entities. Taken together with the clinical prognostic data, these studies
have motivated efforts to reinforce the designation of purely noninvasive tumors and to
create a designation for minimally invasive tumors in a revision of the WHO lung
adenocarcinoma classification scheme.

To identify molecular pathways important for mediating the acquisition of invasion by lung
adenocarcinoma, we performed supervised analysis of mRNA microarray data to identify
genes differentially expressed in non-invasive BAC and in AC-mixed type tumors. Among
the genes differentially expressed in the progression from BAC to invasive tumors was the
transforming growth factor-ß (TGF-ß) type II receptor (TβRII), which was less highly
expressed by AC-Mixed and solid invasive tumors compared with BAC. This finding, which
suggested that TβRII repression was required for lung adenocarcinoma invasion, is
supported by genetic models combining targeted deletion of TβRII with other oncogenic
events such as Adenomatosis polyposis coli (APC) mutation in colon tumors and KRAS
mutations in pancreatic and oropharyngeal carcinomas 21-23. The phenotypes of these TGF-
β receptor cancer models clearly demonstrate the importance of TGF-β signaling in tumor
invasion.

TGF-β, the ligand for the TGF-β type II receptor is a pleiotropic cytokine comprised of
family members TGF-β 1, 2, 3 that regulate tissue homeostasis and prevent tumor initiation
by inhibiting cellular proliferation, differentiation, and survival 24. It is secreted as a latent
molecule and is activated by cleavage by proteases and other molecules25. Signaling
primarily occurs through SMAD protein dependent pathways whereby ligand binding to
TBRII induces phosphorylation and activation of TGF-β type I receptor (TβRI). After
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interaction with TβRI, phosphorylated SMAD2 and SMAD3 dissociate to form a
heterotrimeric complex with SMAD4 and translocate into the nucleus to regulate gene
transcription (Figure 1A). TGF-β signaling may also proceed via less well understood
SMAD independent pathways (Figure 1B). These “non-canonical” pathways involve various
signaling cascades including Ras/ERK, Rho/ROCK, and TAK1/MAPK, and are likely to
have important roles in mediating the pro-tumorigenic effects of TGF-β 26. Depending upon
context, TGF-β signaling may alternatively function to suppress tumor growth or to promote
tumor cell invasion and metastasis 27-30.

TGF-β as a Tumor Suppressor
Although recent research has focused primarily on TGF-β receptor alterations, tumors may
employ various mechanisms anywhere along the signaling cascade to circumvent the
inhibitory effects of TGF-β31-35. Type II receptor genetic alterations are well characterized
in gastrointestinal tumors, in which 25% of colorectal carcinomas have missense mutations
associated with microsatellite instability. Animals with targeted deletion of TßRII in the
colonic epithelium demonstrate increased tumor progression from adenomas to invasive
carcinomas 36 similar to human colorectal tumors with loss of type II receptor 37. In breast
carcinoma models, mammary tumors in animals with targeted deletion of TßRII
demonstrated increased progression and metastases 38. A recent case control study in human
breast tumors indicated that within breast hyperplasia specimens, the proportion of cells with
decreased type II receptor immunostaining was associated with increased risk for the
development of invasive breast cancer 39. Multiple lung cancer cell lines, both small cell
40-42 and non-small cell 43-46, demonstrate reduced expression TGFβRII. This repression is
accompanied by marked reductions in TGF-β mediated growth suppression which is rescued
after restoration of the receptor. In human lung tumor specimens, type II receptor repression
is evident in ~40% of lung adenocarcinomas overall and in up to 100% of poorly
differentiated adenocarcinomas 47. Mechanisms of repression include epigenetic silencing
48, microsatellite instability, and frameshift mutations involving the poly(A) tract 43. For the
TGF-β type I receptor, mRNA repression is detectable in non-small cell lung cancer
(NSCLC) 49, and recent studies indicate that TβRI SNP variants are associated with an
increased risk of lung cancer 50-52.

TGF-β as a Tumor Promoter
Several tumors, including those arising in the lung 53, 54, 55 express high levels of the TGF-
β, which correlates with tumor progression and clinical prognosis 34, 56-60. TGF-β signaling
promotes epithelial to mesenchymal transition, a characteristic of invasive and metastatic
cells 61, 62, with constitutive activation of TGF-β or TβRI leading to increased metastases in
animal models of breast cancer 63-65. Likewise, blockade of TGF-β signaling via either
dominant negative expression of SMAD3 or defective TβRI leads to decreased lung
metastases 66, 67. Systemic inhibition of TGF-β has been shown to suppress metastasis 68-71

and TGF-β overexpression by NSCLC specimens was found by multivariate analysis to be
an independent risk factor for pulmonary metastasis 72.

How do we reconcile these findings with those suggesting TGF-β is a tumor suppressor?
Context dependency in terms of cell type, tumor stage, and mode of inhibition of TGF-β
signaling are important. Other important issues are the degree of repression of TGF-β
receptor levels and the stromal response to TGF-β signaling inhibition. Rojas and colleagues
have shown that different levels of repression of the TGF-β receptor are associated with
differences in the activation of the SMAD and MAPK pathways such that at lower levels of
TGF-β receptor activation, the pro-tumorigenic non-SMAD signaling pathways dominate 73.
Yang and colleagues showed that targeted deletion of TβRII in the mammary epithelium
promoted breast cancer metastases through the CXCL5/CXCR2 chemokine axis mediated
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recruitment of Gr-1+/CD11b+ myeloid derived suppressor cells. Increased stromal TGF-β
levels at the invasive front of tumors was shown to be important for tumor progression and
for inhibition of tumor immunosurveillance 74.

Chemokine Signaling in Human Tumors with Repressed TβRII expression- CCL5
Our results in lung adenocarcinoma and in in vitro systems indicate that repression of the
TGF-β type II receptor increases invasiveness. We have shown that activation of SMAD2
and Akt are lower in TβRII knock-down cells while p38 activation is slightly increased 16.
We expect that TGF-β signaling in cells with moderately reduced type II receptor levels
persists in the invasive tumors and in the knock-down cells and that SMAD independent
pathways modulate this effect 73, 75. We used a tumor cell invasion system and microarray
analysis to identify and characterize downstream mediators of TGF-ß signaling important
for lung adenocarcinoma invasion 16. Among potential mediators identified was the CC (or
β-chemokine) family member CCL5 (RANTES), which was upregulated by invasive tumors
and TßRII knockdown cells. RANTES is involved in immunoregulatory and inflammatory
processes and is secreted by T cells and other inflammatory cells, stromal cells, as well as
tumor cells and normal bronchial epithelium. RANTES is a ligand for chemokine receptors
CCR1, CCR3, CCR4, and CCR5, which are expressed on epithelial cells, macrophages,
lymphocytes, dendritic cells and stromal cells 76-79. Inhibition of RANTES signaling
significantly abrogates tumor invasion, suggesting that RANTES is required for invasion in
TGF-β type II receptor repressed lung adenocarcinoma cells (Figure 1C). The clinical
significance of this pathway is further supported by the finding that tumor expression of
RANTES and CCR5 in lung adenocarcinoma is associated with patient survival80. Small
molecule inhibitors of CCR5 may have the potential to treat and prevent lung
adenocarcinoma. Taken together, these studies illustrate how information gained from
global expression profiling of tumors can be used to identify key pathways and genes
mediating tumor growth, invasion, and metastasis.
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Figure 1.
TGF-β signaling occurs primarily via SMAD dependent pathways. A. Ligand binding to the
TGF-β type II receptor (TβRII) induces phosphorylation and activation of type I receptor
(TβRI), which phosphorylates and activates the receptor complex SMAD2 and SMAD3.
Dissociated SMAD2/3 forms a heterotrimeric complex with SMAD4 that translocates into
the nucleus to regulate gene transcription.
B. TGF-β signaling may also proceed via SMAD-independent pathways that involve various
signaling cascades including Ras/ERK, Rho/ROCK, and TAK1/MAPK. These “non-
canonical” pathways are likely to have important roles in mediating the pro-tumorigenic
effects of TGF-β.
C. The histological distinction between bronchioloalveolar carcinoma (BAC) and other
adenocarcinomas is tissue invasion. Invasion requires loss of cell-cell adhesion, migration,
membrane degradation with vascular intravasation and extravasation and establishment of
the metastatic niche angiogenesis and recruitment of stromal elements (top panel). We have
shown that repression of TGF-β type II receptor in lung adenocarcinoma cells increases
invasiveness and have used microarray analyses and inhibitor studies to identify the CC
chemokine RANTES as an important mediator of lung adenocarcinoma invasion in TβRII
deficient tumors. Figure reprinted81 with permission from the American Thoracic Society
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