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Abstract
Inter-organelle signaling plays important roles in many physiological functions. Endoplasmic
reticulum (ER)-mitochondrion signaling affects intra-mitochondrial calcium (Ca2+) homeostasis
and cellular bioenergetics. ER-nucleus signaling attenuates ER stress. ER-plasma membrane
signaling regulates cytosolic Ca2+ homeostasis, and ER-mitochondrion-plasma membrane
signaling regulates hippocampal dendritic spine formation. Here we propose that the sigma-1
receptor (Sig-1R), an ER chaperone protein, acts as an inter-organelle signaling modulator.
Sig-1Rs normally reside at the ER-mitochondrion contact called the MAM (mitochondrion-
associated ER membrane), where Sig-1Rs regulate ER-mitochondrion signaling and the ER-
nucleus cross-talk. When cells are stimulated by ligands or undergo prolonged stress, Sig-1Rs
translocate from the MAM to the ER reticular network and plasmalemma/plasma membrane to
regulate a variety of functional proteins, including ion channels, receptors, and kinases. Thus, the
Sig-1R serves as an inter-organelle signaling modulator locally at the MAM and remotely at the
plasmalemma/plasma membrane. Many pharmacological/physiological effects of Sig-1Rs may
relate to this unique action of Sig-1Rs.

Introduction
Originally mistaken for a subtype of opioid receptors, the sigma-1 receptor (Sig-1R) [1–3] is
now recognized as a non-opioid receptor residing specifically at the endoplasmic reticulum
(ER)-mitochondrion interface called the MAM [4]. At the MAM, the Sig-1R not only
regulates the stability of inositol 1,4,5-trisphosphate (IP3) receptors to ensure proper Ca2+

signaling between the ER and mitochondrion [4] but also controls the dendritic spine
arborization in neurons by increasing Rac-GTP on the plasma membrane (PM) through
regulation of the level of reactive oxygen species (ROS) at the ER [5]. In addition, through
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the ROS, Sig-1Rs at the MAM control gene expression in the nucleus of an anti-apoptotic
protein Bcl-2 by activating Nuclear Factor-KappaB (NFkB) [6]. Sig-1Rs reside specifically
on ceremide- and cholesterol-rich lipid microdomains at the MAM [7], where, either upon
stimulation by ligands such as cocaine and (+)pentazocine [8,9] or when under prolonged
cellular stress [4], Sig-1Rs translocate to other areas of the cell. Those areas include the
extended ER reticular network, including proximities right under the PM (i.e., the
plasmalemmal area) or the PM, where Sig-1Rs interact and regulate the function of a variety
of ion channels, receptors, or kinases [10–12]. We propose that the Sig-1R acts as an inter-
organelle signaling modulator, not only locally at the MAM, where the receptor affects ER-
mitochondrion and ER-nucleus signaling, but also remotely at the ER-PM interface, where it
regulates functional proteins at the PM. Evidence to support this notion is reviewed and
presented in this article.

A brief overview of the pharmacology of Sig-1Rs
Since the inception of the concept of the sigma-1 receptor, confusion over its identity and
even existence lasted over a period of quite a few years until the receptor was cloned. The
223 amino acid Sig-1R that has been cloned from several mammalian species [13–17]
contains 90% identical and 95% similar amino acid sequences across species. This receptor
shares 30% identity and 67% similarity with a yeast sterol C8-C7 isomerase (ERG2), which
is involved in postsqualene sterol synthesis [18]. Unlike the yeast sterol isomerase, however,
the Sig-1R does not contain sterol isomerase activity [13] and shares no sequence homology
with any known mammalian proteins, including the mammalian C8-C7 sterol isomerase, the
emapomil binding protein (EBP). Though EBP was able to recover the ability to convert Δ8-
sterol into Δ7-sterol in ERG2-deficient yeast Saccharomyces cerevisiae [19], the Sig-1R was
unable to rescue C8-C7 isomerization [13]. Hydropathy analyses have indicated that the
Sig-1R contains three hydrophobic domains (amino acids 11-29, 91-109 and 176-194), and
is topologically similar to the yeast sterol isomerase. TMBase analysis
(http://www.ch.embnet.org/software/tmbase/TMBASE_doc.html) predicts the first two
hydrophobic domains (11-29 and 91-109) to be transmembrane-spanning helices with a 50
amino acid loop between, and a 125 amino acid C terminus [20]. In the ER of Chinese
Hamster Ovary (CHO) cells, the topological model of Sig-1R [4] generally corroborates the
two-transmembrane model initially proposed by Aydar et al. [20] (Figure 1).

In addition to the amino acid sequence, the ligand binding domains of Sig-1Rs have been
identified. Identification of the Sig-1R binding site has been substantially aided by Sig-1R
protein purification [21] and the use of photoaffinity labels [22–25]. The SBDLI, SBDLII
and the N-terminal TM1 domains of the Sig-1R have been demonstrated to form at least a
portion of the binding site (Figure 1) [23,26]. When the spatial relationship between SBDLI
and SBDLII was assessed, it was discovered that there is a close juxtaposition (within 8 Å)
of the SBDLI and SBDLII regions [25] (Figure 1). These data are further supported by
studies that have demonstrated that an mRNA splice variant that lacks exon 3 (amino acids
119-149) of the four exon Sig-1R gene, is not able to bind (+)-[3H]-pentazocine [27] and
that the region from the second transmembrane domain (SBD1) to the C-terminus may be
part of the binding site [28]. Selected residues in the second transmembrane domain have
also been shown to be important for ligand binding based on mutational studies [29]. In
addition, a great deal of research in this field has been dedicated to the structure activity
relationships of an array of ligands that bind to the Sig-1R (Tables 1) [1,30–37]. These
compounds include: benzomorphans (SKF-10047, pentazocine, dextromethorphan );
antipsychotics (haloperidol); antidepressants (fluvoxamine); steroids (progesterone);
antihistamines (chlorpheniramine); nuclear hormone receptor ligands (tamoxifen); calcium
channel antagonists (verapamil, emopamil); antifungals (fenpropimorph, tridemorph); and
drugs of abuse (methamphetamine, cocaine, N,N′-dimethyltryptamine). Despite this wide
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array of ligands that bind to the Sig-1R, a basic structural pharmacophore has been identified
[11,50], which continues to provide a basis for further drug development.

Which ligand is an agonist and which ligand is an antagonist at Sig-1Rs has been an actively
researched question. The precise molecular definition of Sig-1R agonists and antagonists is
actively evolving. BD1047 and BD1063 (Table 1) have been established as Sig-1R
antagonists, in part because the dystonia produced by the high affinity Sig-1R ligands, di-o-
tolylguanidine (DTG) and haloperidol [47] was reduced when the compounds were
administered to rats. Similar animal behavioral experiments have established haloperidol
and NE-100 as antagonists, and (+)-SKF-10047, (+)-pentazocine, imipramine, fluoxetine,
and DTG as agonists [47,51–54]. The Sig-1R forms a Ca2+- regulating trimeric complex on
the ER with ankyrin B and IP3receptors in NG-108 neuroblastoma cells [55]. Agonists, such
as (+)-pentazocine,(+)-SKF10047, PRE084, cocaine, progesterone, and pregnenolone
sulfate, dissociated ankyrin B (ANK 220) from the IP3 receptor, whereas NE-100 blocked
the dissociation of ANK200 from IP3R-3 induced by (+)-pentazocine and was, therefore,
defined as an antagonist [55]. Furthermore, the ability of ligands to dissociate the Sig-1R
and BiP, an ER chaperone protein also known as GRP78 [4], identified (+)-pentazocine, (+)-
SKF10047, PRE084, fluoxetine, cocaine, pregnenolone sulfate, and dehydroepiandosterone
sulfate as agonists [4]. NE-100, progesterone, and haloperidol, however, inhibited the
activation or dissociation between Sig-1R and BiP [4] and were thus classified as
antagonists. Identification of N-alkylated tryptamines, such as N,N Dimethyl tryptamine
( DMT ), as endogenous agonists for the Sig-1R based on the loss of DMT-induced
hypermobility responses in the Sig-1R homozygous null knock-out ( KO ) mouse [11] has
additionally added to the knowledge of agonist pharmacology at the Sig-1R.

Lipid rafts and Sig-1Rs
In addition to the pharmacological investigations mentioned above, recent cell biological
studies of Sig-1Rs have shed light on Sig-1Rs as an example of an unexpected link between
pharmacology and cell biology. One striking finding is that Sig-1Rs have been reported to
be associated with lipid-containing microdomains, where the receptor regulates the
dynamics of lipids. For example, Sig-1Rs have been found in cholesterol-enriched,
detergent-insoluble lipid rafts of the ER in NG108 neuroblastoma cells, in which they were
shown to be important in the compartmentalization of ER-synthesized lipids [8,9]. In the ER
lipid droplets, the Sig-1R co-localized with caveolin-2, a cholesterol binding protein. In rat
primary hippocampal cultures, Sig-1Rs were shown to form galactoceramide-enriched lipid
rafts and promote differentiation of oligodendrocytes [56]. Additionally, the Sig-1R itself
has been proposed to contain cholesterol binding domains in its C-terminal region [57].
Recent reports have also shown that the D-erythro-shingosine, sphinganine, (but not
sphingosine-1 phosphate) and ceramides, endogenous lipids that in various forms are
associated with lipid rafts, bind to the Sig-1R with relatively high affinity [7,58].
Furthermore, immunohistocytochemical studies using different cell types have revealed that
Sig-1Rs often cluster at submembranes of the ER [8,9]. Recent studies demonstrate that one
of the Sig-1R-enriched ER subdomains is identical to the MAM [4], which was originally
discovered as an ER subcomponent physically interacting with the mitochondrial outer
membrane [59]. In addition, Sig-1Rs were recently identified to reside specifically at the
ceremide- and cholesterol-rich lipid microdomains at the MAM (see below). More
interestingly, the cell biological localization of Sig-1Rs at the ER (or the MAM) is affected
by the pharmacological manipulation of the receptor (see below).
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Translocation of Sig-1Rs from the MAM
Several studies have demonstrated that Sig-1Rs are highly mobile at the ER membrane
under particular conditions such as following pharmacological treatments or during cellular
stress [4,60]. Sig-1Rs can therefore redistribute to plasmalemmal ER cisternae and nuclear
envelopes [7–9,60]. Treatment of NG-108 cells with cocaine, for example, caused the
translocation of Sig-1Rs from the ER to the neurite process as well as to the nucleus [8,9].
Interestingly, Sig-1Rs were detected in the extracellular space in cocaine-treated NG-108
cells, suggesting perhaps a chaperone action of Sig-1Rs even in the extracellular space [8,9].
In addition to ligand stimulation, stressors such as glucose deprivation [4] or depletion of ER
Ca2+ by thapsigargin [4] also caused Sig-1Rs to translocate from the MAM. Overexpression
of Sig-1Rs also increased the translocation of Sig-1Rs from the MAM to the plasmalemmal
area [61]. Chronic ethanol consumption caused an upregulation (and perhaps translocation)
of Sig-1Rs in the mouse brain [62]. More strikingly, (+)pentazocine, a Sig-1R agonist,
caused a reduction of Sig-1Rs in the lipid raft fractions while apparently increasing them in
the non-raft fractions [7,8]. It is important to note that (+)pentazocine, applied at a
concentration about 10 times its Ki value, caused ~ 50% of Sig-1Rs to dissociate from
another ER chaperone BiP at the MAM [4; also see Fig. 2] and also caused Sig-1Rs to
translocate from the MAM [8; also see Fig. 2]. Although how exactly the translocation is
initiated and regulated is not clear at this moment. Evidence from recent studies suggests
that lipid raft microdomains may play a part in the regulation of subcellular distribution of
Sig-1Rs. In contrast to the other bulk ER membranes, the MAM can form detergent-resistant
microdomains enriched with cholesterol and ceramides [7]. Solubilized Sig-1R complexes
are broken into lipid raft-like fractions and have an affinity to bind these lipids [7].
Significantly, altering the composition of detergent-resistant microdomains at the ER by
lowering cholesterol and/or inhibiting synthesis of ceramides caused translocation of the
Sig-1R from the MAM to the ER cisternae [7].

A question follows then: why do Sig-1Rs translocate?

Interactions of Sig-1Rs with functional proteins on the plasma membrane
Inasmuch as Sig-1Rs are chaperones correcting the misfolded proteins, it is possible that
ligand- or stress-induced translocation of Sig-1Rs might switch their client proteins from
those at the MAM to others at the plasmalemma, PM, or nuclear envelopes. Indeed, through
patch clamp recordings in frog pituitary melanotrope cells, it was discovered that the Sig-1R
agonist (+)-pentazocine inhibited potassium outward currents, and this effect was reversible
by the Sig-1R antagonist NE-100 [63–65]. Concurrently, Jackson et al. established that the
Sig-1R-mediated voltage-gated potassium ion channels could be modulated by Sig-1Rs
without the utilization of G-proteins or phosphorylation [20,66]. In addition to direct
physical interaction and regulation of voltage gated potassium channels in mouse posterior
pituitary nerve terminals [20], Sig-1Rs have been shown to regulate potassium channels in
rat hippocampal slices, intracardiac neurons and tumor cells [67–69]. Sig-1R ligands have
been shown to modulate several types of presynaptic Ca2+ channels in rat sympathetic and
parasympathetic neurons [70,71]. Sig-1Rs modulate N-methyl-D-aspartic acid (NMDA)
receptor ion channels [72–75] and influence, in part, synaptic plasticity through small
conductance calcium-activated potassium channels (SK channels) [76]. Recently, Sig-1Rs
have been demonstrated to modulate cardiac voltage-gated sodium (Na+) channels
(hNav1.5) in HEK293 cells and COS-7 cells, as well as neonatal mouse cardiac myocytes
[77,78]. Furthermore, Sig-1Rs have been demonstrated to physically associate with the acid-
sensing ion channel (ASIC) 1a [79] as part of the regulation of these channels. It is probable
that the chaperone functions of the Sig-1Rs are closely connected to functional ion channel
regulation by providing a trafficking scaffold for ion channels [80]. Trafficking could be
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also regulated through endogenous molecules such as DMT and/or steroids such as
progesterone [80].

Although the Sig-1R does not seem to interact with G-proteins directly [20,66], it has been
recently reported [81] that a functional and physical association of the Sig-1R occurs with
cloned mu opioid receptors, which are G-Protein Coupled Receptors (GPCRs). This
interaction, which occurs only through the antagonist-bound form of the Sig-1R and the mu
opioid receptor, resulted in a very significant functional shift of the mu agonist (DAMGO)
for G-protein activation to the left, an effect consistent with the in vivo observation that the
Sig-1R antagonist potentiates morphine-induced analgesia. A similar result was observed for
muscarinic acetylcholine receptor G protein activation by Sig-1Rs in mouse brain
membranes, indicating a possible universal role for the Sig-1R in modulating GPCR agonist
function and/or trafficking of GPCRs [82]. Indirect evidence also suggests that upregulated
Sig-1Rs might interact with dopamine 1 receptors (D1Rs) in the brain of methamphetamine
self-administering rats [83]. In addition to ion channels and receptors, kinases on the PM
were also regulated by Sig-1Rs. For example, overexpression of Sig-1Rs increased the
coupling between tyrosine kinase receptor B (TrkB) and phospholipase C (PLC) in cortical
neurons [84]. Recent findings by Yao et al. [85] have demonstrated that cocaine causes
Sig-1Rs to translocate from the ER to the PM lipid raft domains to activate Src kinase. It
was shown that the activation of Src led to the generation of ROS and activation of nuclear
transcription factor, thus leading to the induction of the chemokine MCP-1 in microglia [85].

The overall action of Sig-1Rs is depicted in Figure 2. Collectively, the data suggest a new
dimension in the regulation of functional proteins on the PM; i.e., in addition to external
stimuli, the functions of those proteins can be regulated via a seemingly coordinated fashion
through a mobile interorganelle signaling modulator at the ER - the Sig-1R. However, it
should be noted that whether Sig-1Rs interact with the PM proteins from proximity right
under the PM (i.e., the plasmalemmal area) or instead from within the PM has not been
totally clarified.

Sig-1Rs as therapeutic targets
In the central nervous system (CNS), Sig-1Rs play a part in complex biological processes,
which include cocaine or methamphetamine addiction [83,86], learning and memory, and
depression [e.g., 10,12]. Some reports using the molecular biological silencing approach
have implicated these receptors in neurodegenerative disorders such as Alzheimer’s disease
[87,88], stroke, and neural degeneration due to HIV infection [see 10]. These findings have
increased interest in Sig-1Rs as potential therapeutic targets in multiple CNS diseases,
examples of which are described below.

Alzheimer’s disease (AD) is characterized by progressive neurodegenerative processes
related to the presence of (a) extracellular senile plaques composed of insoluble extracellular
aggregates of Aβ peptides derived by proteolytic cleavage of the amyloid precursor protein,
and/or (b) neurofibrillary tangles composed of intracellular deposits of paired helical
filaments of hyperphosphorylated Tau protein. Patients with AD exhibit selective synaptic
and neuronal loss in brain regions involved in learning and memory [89]. The potential
neuroprotective impact of Sig-1R was initially suggested by the observation that genetic
polymorphisms may constitute a protective factor against AD [90]. Recent observations in
preclinical AD models indeed confirmed the role of the Sig-1R as an endogenous
neuroprotective system in AD. In vitro, the Sig-1R agonists PRE-084 or MR-22 attenuated
the Aβ25-35-induced expression of the proapoptotic protein Bax and neuronal death in rat
cortical cultures [91]. In vivo, PRE-084 prevented the appearance of oxidative stress and
learning impairments induced in mice several days after the intracerebral injection of an
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oligomeric preparation of amyloid-β25-35 peptide, a nontransgenic rodent model of AD [92].
Interestingly, this Sig-1R mediated effect was shared by donepezil, the cholinesterase
inhibitor in clinical use in AD patients, which also possesses nanomolar affinity at the
Sig-1R [93]. More recently, the mixed muscarinic ligand/Sig-1R agonists, ANAVEX1-41
and ANAVEX2-73, appeared to be neuroprotective at very low (sub mg/kg) doses against
the morphological damages induced by Aβ25-35, including cell death in the hippocampus,
astrocytic activation, biochemical alterations (caspase-3, -9, -12 activation, oxidative stress)
and learning and memory deficits [87,88]. The exact mechanism whereby how Sig-1R
agonists may attenuate mnemonic deficit is unknown at present. However, recent data
suggest that this action of Sig-1Rs may involve neuronal proliferation and differentiation.
Tsai et al. [5] showed that sig-1Rs promote dendritic spine formation in hippocampus,
perhaps by tonically inhibiting the free radical formation at the ER [5]. Li et al. [93] first
demonstrated that the intracerebral injection of Aβ25-35 in mice stimulates proliferation of
progenitor cells in the hippocampal dentate gyrus (DG). However, a large population of the
newborn cells died within two weeks, after birth, which happens to be a critical period for
neurite growth. The group then demonstrated that the neurosteroid dehydroepiandrosterone
(DHEA) dose-dependently attenuated the Aβ25-35-induced neuronal loss by activating
Sig-1Rs. They also showed that the DHEA effect could be mimicked by the Sig-1R agonist
PRE-084 and that the DEHA effect was blocked by the Sig-1R antagonist NE100 [93].
Interestingly, the Aβ25-35-induced decrease of dendritic spine density, and the length of
doublecortin-positive cells in the DG were also attenuated by the DHEA-treatment [93].

The above observations confirm the pharmacological potential of Sig-1R agonists as
cognition-enhancing agents and demonstrate that Sig-1R agonists do so perhaps by their
ability to increase dendrites and dendritic spine formation that are critical for neuronal
communications in the brain.

Sig-1R compounds may also have therapeutic potential in other neurodegenerative
disorders. Numerous Sig-1R ligands have been tested in stroke models and appeared to be
neuroprotective. For example, the Sig-1R ligand 4-phenyl-1-(4-phenylbutyl)piperidine
(PPBP) was examined for its neuroprotective property in rats by using the middle cerebral
artery occlusion (MCAO) technique [94]. PPBP significantly reduced the infarct volume in
the cortex [94], and its neuroprotective property was related to its attenuation of nitric oxide
production in the brain [95]. The most striking example of an Sig-1R ligand acting as a
neuroprotective agent came from a study by Ajmo et al. [96] who reported that, a
subcutaneous injection of Sig-1R agonist DTG (15 mg/kg) given 24 hrs after MCAO in rats
reduced infarct areas in both cortical/striatal and cortical/hippocampal regions by more than
80% when compared to controls [96]. DTG was found to attenuate the rise in the
intracellular Ca2+ concentration caused by ischemia via Sig-1Rs because the Sig-1R
antagonist BD1047 blocked this protective effect of DTG [97]. The efficacy of DTG may
also be due to its ability to reduce the inflammatory response in the brain [96]. Other Sig-1R
ligands have also been shown to be neuroprotective. PRE-084 and the antitussive Sig-1R
agent dimemorphan were neuroprotective in MCAO rats [98]. Both drugs ameliorated the
size of infarcts by 50% and 70% respectively, and their protective effects were blocked by
BD1047 [98]. Further support for a role of Sig-1Rs in neuroprotection came from brain slice
studies. When examining the effect of drugs on spreading depression, which is a profound
but transient neuronal/glial depolarization that transmits across cortical and subcortical gray
during ischemia, Anderson & Andrew [99] found that pretreatment of brain slices with
Sig-1R agonist dextromethorphan or carbetapentane significantly blocked the spreading
depression and that the Sig-1R antagonist BD1063 nullified the blocking effect of those
ligands [99].
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The Sig-1R ligands could also have therapeutic implication in multiple sclerosis (MS)
although more experimental evidence is certainly required. Haiman et al. [100] examined
the brain activity and associated cortical structures involved in the pseudobulbar effect that
is often seen in patients with MS and is characterized by uncontrollable episodes of laughing
and/or crying. They found that a combined medication of quinidine and the Sig-1R ligand
dextromethorphan resulted in the attenuation of the pseudobulbar effect, as well as a
normalization of electrophysiological measures in those patients [100]. This study provides
the first evidence for potential involvement of Sig-1Rs in MS.

Sig-1Rs and associated ligands may have an important role in neuroinflammation, especially
in cocaine-HIV-related CNS inflammation. Recent efforts have aimed at unraveling the role
of Sig-1R in HIV-1-associated neurological disorder (HAND) among cocaine abusers and
have thus investigated the effect of cocaine on the virus-producing cells of the CNS, the
microglia [85,101,102]. Neuropathological correlates for HAND include glial activation,
neuroinflammation, chemokine induction, increased monocyte extravasation, and neural
death/loss. Research in this area has implications for HIV-1-infected cocaine abusers who
are known to have an increased risk of stroke and CNS-associated neuroinflammation.
Additionally, the role of Sig-1Rs in cocaine-induced immune alteration and HIV-1
expression has also been examined in several model systems, including the humanized mice.
In this model of severe combined immunodeficiency (SCID) mice, cocaine exposure was
shown to increase the expression of HIV co-receptors C-C chemokine receptor type 5
(CCR5) and chemokine (CXC motif) receptor 4 (CXCR4) in human peripheral blood
mononuclear cells, thereby facilitating increased viremia. Interestingly, pretreatment of
these mice with the Sig-1R antagonist-BD1047 significantly dampened the viral infection
induced by cocaine [85,101,102]. Consistent with these findings, cocaine-mediated increase
of HIV replication by microglial cells was also significantly abrogated by BD-1047 [85].
The results suggest that Sig-1R antagonists may reduce cocaine-HIV-related
neuroinflammation and dementia.

The Sig-1R also has become a target for modulating cell growth and immune responses
because SR31747, a potent immunosuppressant, was found to bind the Sig-1R [103–105].
Indeed, an important discovery has been that Sig-1Rs (and sigma-2 receptors) are
overexpressed in many human and non-human tumors [57,106,107]. As a result, the
pharmacological study of small molecule Sig-1R ligands for potential clinical treatment and
imaging applications has developed into an active area of cancer research [e.g., 108].

Overall, these findings point to new and emerging roles of Sig-1Rs in disease pathogenesis.
Intriguingly, most of these functions of Sig-1Rs are apparently mediated by an intricate
mechanism involving their translocation to the plasma membrane [85,101,102] or by
translocation to unique ER cisternae that are proximal to the plasma membrane, e.g., as has
been discovered by the Ruoho laboratory in the ventral horn motor neuron cell bodies of
mice implicated in ALS [82]. However, the involvement of Sig-1Rs in ALS however has not
been demonstrated so far.

Pharmacological and therapeutic selectivity concerning Sig-1R ligands
Given the wide-ranging effects of Sig-1R activation discussed above, an important issue
arises concerning the potential for Sig-1R targeting in the treatment of disease states. At the
MAM, Sig-1Rs might have only a limited number of client proteins to interact with (e.g.,
IP3R3). Therefore, because Sig-1Rs can chaperone IP3R3 to increase the Ca2+ flow from
the ER to mitochondria to increase ATP production, one can increase bioenergetics in cells
by simply adding Sig-1R agonists to the living system. However, when Sig-1Rs translocate,
either by agonist stimulation or extreme ER stress, Sig-1Rs may interact with many different
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target proteins. If those target proteins are related to diseases, how might it be possible to
control the specificity of Sig-1R-related pharmacotherapy? We argue that the specificity can
be achieved because of the intrinsic nature of the Sig-1R as a molecular chaperone.

One characteristic feature of molecular chaperones is that even though they may bind
conformationally correct proteins, they may increase their affinity and exert their chaperone
activity on the proteins only when the target proteins are conformationally misfolded or are
prone to be misfolded under certain experimental conditions. According to this speculation,
the target ion channels, receptors, or kinases at the PM might have been affected by Sig-1Rs
or Sig-1R ligands only because they were conformationally unstable under the experimental
conditions, thus allowing Sig-1Rs to exert their regulation on those proteins. In other words,
under normal physiological conditions, most ion channels or receptors are not affected by
Sig-1Rs or ligands. Only when caused by diseases (for example due to gene mutations or
intra-protein oxidative stress) could specific ion channels or receptors demand the assistance
of Sig-1R chaperones. Therefore, it is possible that it is the nature of the disease that
provides the selectivity for Sig-1R pharmacotherapy. Sig-1R-based pharmacotherapy may
particularly benefit patients suffering from protein conformation diseases.

Conclusion
Over the past 2–3 decades, there has been considerable research focus on Sig-1R ligands and
their binding activity. With the cloning of the receptor in 1996 [13], the development of the
Sig-1R KO mouse in 2003 [66], as well as the pharmacological findings and
conceptualizations put forth here, the field is well poised to elucidate the important inter-
organelle signaling property of the Sig-1R in cellular homeostasis and physiological
functions. Because Sig-1Rs are present in the CNS as well as in the lung, liver, pancreas,
spleen, and adrenal gland [e.g., 4,55,67], pharmacological interventions of this
interorganelle signaling modulator, the Sig-1R, at the MAM, the plasmalemmal area, or the
PM may represent new avenues for therapeutic developments in combating many human
CNS and peripheral diseases including particularly protein conformation diseases in this
regard.
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Fig. 1. Model of the Sig-1R binding site
The Sig-1R ligand binding region, highlighted by the circular area, includes the three
predicted hydrophobic domains. The SBDLI (steroid binding domain-like 1) and SBDLII
(steroid binding domain like II) regions are so named because of sequence homology to
yeast sterol isomerase. Aspartate 188 (D188) in SBDLII has been identified as part of
cocaine binding site [22]. Though the exact structure is unknown at this time, the three
hydrophobic regions are depicted as alpha helical cylinders.
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Fig. 2. The Sig-1R chaperone as an interorganelle signaling modulator
At the ER-mitochondrion interface (the MAM), Sig-1Rs, with the help of Sig-1R agonists,
can dissociate themselves from another ER chaperone, BiP, and begin to chaperone
conformationally unstable IP3Rs to enhance Ca2+ signaling from the ER into mitochondria
[4] to increase the production of ATP in the cell through the tricarboxylic acid cycle (TCA)
in the mitochondria [98]. Via an as yet unknown mechanism, Sig-1Rs at the MAM can also
attenuate reactive oxidative species (ROS) at the ER to cause an increase of Bcl2 gene
transcription in the nucleus to protect against cell death. Sig-1Rs attenuating the ROS level
at the MAM can also, via interorganelle cross-talk, help maintain the integrity of
mitochondria to prevent the release of apoptotic molecule cytochrome c that might
otherwise destroy Rac•GTP on the PM, which is essential for formation of dendritic spines
in neurons. If stimulated by high concentrations of agonists or impacted by extreme ER
stress, Sig-1Rs translocate from the MAM to the plasmalemmal area or PM to bind various
ion channels (e.g. Na+, K+, NMDA, ASIC and voltage-regulated chloride channels
(VGCC)), receptors (e.g. TkB, D1R and other GPCRs) or kinases (e.g. Src). Please note that
as long as those ion channels, receptors, or kinases are conformationally stable (i.e., no
mutation or no redox stress imposed on the proteins due to the pathophysiology of diseases),
the binding of Sig-1Rs does not affect the normal function of those conformationally correct
ion channels, receptors, or kinases because chaperones exert their regulatory work only
when the target proteins are “sick” and thus become clients. Many diseases are known to
involve protein conformation changes. Thus, Sig-1Rs and associated ligands might represent
potential therapeutic avenue for many human protein conformation diseases.
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Table 1

Sigma-1 Receptor Ligands

Class Compounds Affinity (μM) Structure Agonist/Antagonist

Steroids Progesterone 0.024 (K1) [38] Antagonist [4]

Opioids (+)Pentazocine 0.0046 (K1) [38] Agonist [4]

Antifungals Fenpropimorph 0.00005 (K1) [39] Not Determined

Antipsychotics Haloperidol 0.0031 (K1) [38] Antagonist [4]

Antihistamine Chlorpheniramine 0.17 (IC50) [40] Not Determined

Psychostimulants Methamphetamine 2.2 (K1) [41] Antagonist [4]
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Class Compounds Affinity (μM) Structure Agonist/Antagonist

Cocaine 6.7 (K1) [42] Antagonist [4]

DMT 14.7 (K1) [11] Agonist [11]

Antidepressants Fluvoxamine 0.036 (K1) [43] Agonist [4]

Ca2+ channel blockers Verapamil 1.48 (IC50) [44] Not Determined

Sphingolipids D-erythro-sphingosine 0.14 (K1) [45] Not Determined

Other Synthetic Compounds PRE 084 0.044 (IC50) [46] Agonist [4]
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Class Compounds Affinity (μM) Structure Agonist/Antagonist

BD 1047 0.00093 (IC50) [47] Antagonist [47]

BD 1063 0.0091 (IC50) [47] Antagonist [47]

Rimcazole 0.5 (IC50) [48] Antagonist [48]

NE-100 0.004 (IC50) [49] Antagonist [4]
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