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Summary
Activation of precursor proteins by specific and limited proteolysis is a hallmark of the hemostatic
process. The homologous coagulation factors (F)V and FVIII circulate in an inactive, quiescent
state in blood. In this so-called procofactor state, these proteins have little, if any procoagulant
activity and do not participate to any significant degree in their respective macromolecular
enzymatic complexes. Thrombin is considered a key physiological activator, cleaving select
peptide bonds in FV and FVIII which ultimately leads to appropriate structural changes that
impart cofactor function. As the active cofactors (FVa and FVIIIa) have an enormous impact on
thrombin and FXa generation, maintaining FV and FVIII as inactive procofactors undoubtedly
plays an important regulatory role that has likely evolved to maintain normal hemostasis. Over the
past three decades there has been widespread interest in studying the proteolytic events that lead to
the activation of these proteins. While a great deal has been learned, mechanistic explanations as
to how bond cleavage facilitates conversion to the active cofactor species remain incompletely
understood. However, recent advances have been made detailing how thrombin recognizes FV and
FVIII and also how the FV B-domain plays a dominant role in maintaining the procofactor state.
Here we review our current understanding of the molecular process of procofactor activation with
a particular emphasis on FV.
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Introduction
Blood coagulation factors (F)Va and FVIIIa are homologous cofactors for the
prothrombinase (FXa, FVa, Ca2+ and anionic membranes) and intrinsic Xase complexes
(FIXa, FVIIIa, Ca2+ and anionic membranes), respectively [1,2]. Prothrombinase catalyzes
the conversion of prothrombin to thrombin, whereas the intrinsic Xase catalyzes the
proteolytic conversion of FX to FXa, both pivotal steps in the coagulation cascade [3]. FXa
and FIXa can both catalyze protein substrate cleavage in the absence of cofactor proteins.
Yet, it is clear from biochemical studies that assembly of the cofactors into their respective
macromolecular enzyme complexes results in dramatic rate enhancements [3]. It is for this
reason that prothrombinase and intrinsic Xase are considered the physiologically relevant
enzymes. The importance of these cofactors is further underscored by clinical findings
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which indicate that FV and FVIII deficiency states lead to parahemophilia and hemophilia
A, respectively [4,5].

While the exact molecular mechanism by which FVa and FVIIIa accelerate protein substrate
cleavage remains to be fully defined, considerable progress has been made over the past two
decades identifying and elucidating how macromolecular binding sites on the active cofactor
species contribute to their function (for recent reviews see [6–9]). There is mounting
evidence that the cofactor not only provides protease binding sites, but also facilitates
substrate docking thereby enforcing affinity and specificity.

For obvious reasons, maintaining enzymes and cofactors in an inactive state in the
circulation is critical for the regulation of normal hemostasis. The zymogens and
procofactors of coagulation lack key structural attributes required for enzyme complex
formation and function. For FV and FVIII, it is well established that these functional sites,
or cofactor exosites, are not readily available for productive interactions or are not poised to
function [6,10–12]. After their discovery, it was recognized that FV and FVIII need to be
proteolytically activated to fully participate in coagulation, with thrombin being identified as
a key activator [13–16]. Because of difficulties in their isolation, it was not until many years
later that meaningful correlations could be made between proteolysis of the procofactors and
an increase in biological activity. Despite extensive investigation into procofactor activation
mediated by thrombin or FXa over the past three decades [6,17,18], key mechanistic details
regarding how the various proteolytic cleavage events facilitate the transition to the active
cofactor species are lacking. Knowledge in this area has broad implications for better
understanding cofactor function. For example, it may provide new insights into ways to
engineer FVIII(a) and/or FV(a) derivatives with novel therapeutic properties or even provide
new clues to develop therapeutically useful inhibitors targeting these important cofactors of
coagulation. There are several excellent reviews on FV and FVIII which emphasize
structure/function relationships, pathology, activated protein C (APC) resistance and the role
of the cofactors in enzyme complex assembly/function [6,7,17–21]. This review will focus
on FV and FVIII activation and the structural elements which assist in maintaining the
procofactor state.

FVIII procofactor activation: transition to the active cofactor species
FVIII is synthesized as a large (Mr ≈ 300 000) single chain, multi-domain (A1-A2-B-A3-
C1-C2) protein sharing significant homology with FV except in the B-domain region [2].
Prior to its secretion, FVIII is intracellularly processed to a series of metal ion-linked
heterodimers produced by cleavage at the B-A3 junction as well as at additional sites in the
B-domain [6]. These cleavages generate a variably sized heavy chain (A1-A2-B; 200–90
kDa) and a light chain (A3-C1-C2; 80 kDa) which are non-covalently associated (Fig. 1).
Factor VIII also contains short segments (~30–40 amino acids) of negatively charged
residues within the C-terminal regions of the A1 and A2 domains and the N-terminal portion
of the A3 domain. These acidic regions are called a1 (337–372), a2 (711–740) and a3
(1649–1689), and are thought to function, in part, as binding sites for thrombin and other
ligands (Fig. 1) [6]. The FVIII heterodimer is a procofactor and must be subjected to limited
proteolysis to effect activation [16,22–28]. Even although FVIII has been shown to bind
FIXa with high affinity, this complex does not efficiently activate FX and the binding
interaction appears to be fundamentally different compared with the FVIIIa–FIXa complex
[29]. The two principal activators of FVIII are thrombin and FXa which cleave at Arg372,
Arg740 and Arg1689 generating FVIIIa, a heterotrimer composed of the A1 (50 kDa; 1–372),
A2 (43 kDa; 373–740) and the light chain (A3-C1-C2; 73 kDa; 1689–2332) (Fig. 1) [28,30].
FXa also cleaves FVIII at Arg1721, Arg336 and Lys36, with proteolysis at the last two sites
leading to a loss of cofactor activity [28,31]. Thrombin is thought to interact with FVIII via
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both exosites I and II [32,33]. The corresponding binding sites on FVIII are not well
defined, but have been shown to involve acidic regions of the molecule [34,35]. Activation
of FVIII results in a transient ~twenty- to fiftyfold increase in biological activity which
decays over a short period of time. The rapid loss of activity is attributed to A2 domain
dissociation from A1/A3-C1-C2, a mechanism which contributes to the regulation of FVIIIa
cofactor activity [36–38].

Numerous studies have examined the role of the individual thrombin cleavage sites in the
expression of FVIIIa cofactor activity and the results can be summarized as follows: first,
mutagenesis studies indicate that cleavage at Arg740 appears to be of no consequence to the
development of cofactor activity [39]. This is consistent with the observation that there are
no known missense mutations at position 740 resulting in hemophilia A
(http://europium.csc.mrc.ac.uk/WebPages/Main/main.htm) (Please note that it is the
responsibility of the author(s) to ensure that all URLs given in this article are correct and
useable.).. Second, cleavage of the light chain at Arg1689 results in the dissociation of von
Willebrand factor (VWF) from the light chain and the exposure of a phospholipid binding
site, steps which are required for the expression of cofactor activity [40,41]. Whether
proteolysis at this site contributes to the potentiation of FVIIIa cofactor activity (e.g. apart
from VWF removal) remains controversial. There is some evidence that cleavage at this site
partially increases cofactor activity [42,43]; however, Pipe and Kaufman [44], using a single
chain FVIII derivative (IR8), have shown that cofactor activity can be obtained even in the
absence of the Arg1689 cleavage site. Third, cleavage at Arg740 and Arg1689 appear to
facilitate cleavage within the heavy chain, as mutations at these sites slows subsequent
cleavage at Arg372 [45,46]. Lastly, in addition to the results with IR8, mutagenesis and
biochemical studies as well as descriptions of naturally occurring mutations clearly indicate
that cleavage at Arg372 is essential for procofactor activation [39,47–50]. Biochemical data
indicate that cleavage at this site exposes a functional FIXa binding site which promotes
rapid FX activation by cofactor-bound FIXa [51].

The fundamental importance of the Arg372 cleavage site to the expression of cofactor
activity suggests that sequences in and/or around acidic region 1 may be somehow involved
in suppressing cofactor function. It is interesting to note that this region of FVIII is
noticeably absent from FV (missing from exon 7), possibly suggesting a unique function
[52,53]. Recent structural data on B-domain deleted FVIII indicate that this part of FVIII is
highly flexible as no electron density was observed in this region [54,55]. It was suggested
that acidic region 1 and possibly a portion of acidic region 3 (1649–1689), based on their
location in the structure, could obscure functionally important surfaces on the molecule such
as a FIXa binding site; results that are in line with functional studies [51]. Alternatively,
cleavage at Arg372 could induce a change in conformation that is critical for the expression
of FVIIIa cofactor function. Evidence for this comes from studies employing cross-linking
agents and apolar probes as well as circular dichroism experiments. These studies support
the idea that there are subtle, yet measureable changes in conformation in the vicinity of the
A2 domain when FVIII is activated to FVIIIa [56–58]. Future biochemical and structural
studies are needed to resolve the precise mechanism by which cleavage at Arg372 facilitates
the FVIII procofactor to cofactor transition.

A somewhat surprising finding is that the FVIII B-domain does not appear to be involved in
maintaining FVIII as a procofactor. While not sharing any sequence homology, the FVIII B-
domain, like that of FV, is very large (908 residues), encoded by a single exon, heavily
glycosylated, and is also removed after thrombin-mediated proteolysis. Yet, unlike FV (see
below), several groups have established that removal of most of the B-domain (B-
domainless FVIII; Fig. 1) yields a derivative, that like ful-length FVIII, has a low specific
clotting activity and is predominantly synthesized as a heterodimer. Furthermore, in purified
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component assays, B-domainless FVIII has little, if any cofactor activity in FIXa catalyzed
FX activation. Proteolytic processing of B-domain deleted FVIII by thrombin results in the
expected increase in cofactor activity [44,59–62]. In some respects, this was unexpected
considering the size of the FVIII B-domain and its potential for providing steric bulk which
could obscure enzyme or substrate binding sites. As discussed below, these findings clearly
distinguish the molecular mechanisms that regulate or prevent the potential cofactor
activities of FV and FVIII.

FV procofactor activation: transition to the active cofactor species
Early work on the biochemistry of FV (Mr = 330 000; domain organization: A1-A2-B-A3-
C1-C2) firmly established that it circulates as an inactive procofactor [63]. In whole blood,
FV is distributed between two pools: approximately 80% is found in plasma, whereas the
remaining 20% is found within the α-granules of platelets [64]. While megakaryocytes can
synthesize FV [65–67], the vast majority of platelet FV is endocytozed from the plasma pool
by megakaryocytes [68–70]. After endocytosis via a specific receptor-mediated process
[71,72], FV is modified intracellularly such that it is functionally unique compared with its
plasma-derived counterpart [70,73]. For example, platelet FV is stored in a partially
proteolyzed state exhibiting significant procoagulant activity after its release by a variety of
agonists and appears to be partially resistant to activated protein C [64,74–76]. Because of
the inherent difficulties in preparing and working with homogeneous preparations of
platelet-derived FV, most structure/function studies have focused on the plasma-derived
material.

At physiological concentrations, purified plasma-derived single-chain FV is not known to
bind FXa in a productive way and thus cannot assemble or function in prothrombinase
[10,11,17,77,78]. As membrane-bound FXa is known to activate FV the two proteins must
interact [11,79]; however, the data indicate that FV and FVa interact with membrane-bound
FXa in a fundamentally different way, with active site interactions playing a dominant role
in FV, but not FVa recognition [80]. Thrombin is considered the physiological activator of
FV cleaving three peptide bonds within the B-domain at Arg709, Arg1018 and Arg1545

[77,81–83]. The resulting cofactor, FVa, is a heterodimer composed of an N-terminal heavy
chain (Mr = 105 000) associated via Ca2+ ions to the C-terminal light chain (Mr = 74 000;
Fig. 2) [77,81–84]. The large, heavily glycosylated central B-domain, spanning amino acids
710–1545, is not necessary for cofactor activity and is released during activation as two
large fragments (Mr = 71 000 and Mr = 150 000) [77,82,83,85]. FVa has been very well
characterized and is considered the ‘active’ cofactor species which participates in the rapid
generation of thrombin under physiological conditions [3,18].

Recent progress has been made delineating the interactions responsible for binding of FV to
thrombin and the mechanism that regulates the specificity of the interaction. Using
proteolytic derivatives of thrombin [85–87], thrombin mutants [32,88,89] and exosite I and
II specific ligands [32,86,87,90–92], the findings indicate that both thrombin exosites
contribute to FV activation to varying degrees. Bock and coworkers [91,93] made use of
equilibrium binding studies to show that thrombin binds FV in an exosite I-dependent
fashion through a site within the FV heavy chain region. The precise role of thrombin
exosite II seems less clear, but recent studies suggest it plays an important role in cleavage at
Arg1545 [92]. While the thrombin binding site on FV remains to be defined, there is some
data to suggest that it lies within the acidic C-terminal region of the FVa heavy chain
[87,91,93–96].

Major advances in our understanding of FV activation followed from the work of Nesheim
and Mann [83,97] as well as Esmon [82] who provided definitive evidence for the
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proteolytic activation of FV. After these studies, most approaches aimed at understanding
how FV is activated were principally based on correlating bond cleavage within the B-
domain with the development of procoagulant activity. These studies have largely relied on
the kinetic appearance of proteolytic fragments during activation [77,79,82,83,98,99],
reconstituted FV activation products [82,85], FV(a) derivatives generated by a variety of
proteases [77,99–111] and recombinant FV derivatives with specific modifications to
thrombin cleavage sites to establish this correlation [94,112–115]. While somewhat
conflicting results have emerged, most data support the idea that variable amounts of
cofactor activity will be observed depending on which region of the B-domain is cleaved
and which assay is employed to evaluate activity. For example, cleavage at Arg709 and
Arg1018 yields a FV derivative with significant, but partial cofactor activity [82,85,113,115].
However, individual cleavage at these sites does not lead to any substantial increase in
cofactor activity [113–115]. Maximal activity was observed to correlate with cleavage at
Arg1545, as mutagenesis studies have shown that isolated cleavage at this site is sufficient
for complete activation [113–115]. This is also consistent with the observation that a
protease from Russell’s viper venom (RVV-V), which cleaves FV at Arg1545, results in full
activation [77,99,111,116]. These studies suggest that single cleavage at Arg1545 is
sufficient for activation of FV and that release of the B-domain from the heavy chain is not a
necessary requirement for the expression of cofactor activity.

Careful evaluation of these studies indicates that the role of proteolysis and B-domain
removal in driving FV activation is complex and far from understood. This, in part, stems
from numerous factors including: the difficulty of evaluating three cleavage sites, failure to
remove B-domain fragment(s) from cleaved FV preparations, associated problems with
activity measurements (e.g. preventing feedback activation) and the inherent difficulty in
preparing well-defined products using proteolysis. These problems clearly impose
limitations in correlating proteolysis within the B-domain with the development of cofactor
activity.

An alternative way of looking at this problem is to evaluate how FV is preserved as an
inactive procofactor. One possibility is that binding sites on the heavy and/or light chain
which are important for cofactor function are in a conformational state that precludes FXa/
prothrombin binding. Proteolysis could then drive cofactor activation by facilitating
essential conformational changes in a manner analogous to the activation strategy used by
the chymotrypsin-like serine proteases [117]. A second possibility is that B-domain
sequences serve an inhibitory function by rendering binding sites on the heavy and/or light
chain inaccessible to FXa or prothrombin. Proteolysis would then promote dissociation of
inhibitory B-domain sequences effecting activation in a so-called release for inhibition
mechanism. Aspartic and cysteine proteases use this approach to control the inactivity of the
zymogen [117]. Studies over the past several years into the function of the FV B-domain
have provided key insights into discriminating between these possible mechanisms.

Role of the FV B-domain in maintaining the procofactor state
After the isolation of bovine [82,83,97] and human FV [77,98,99,118], it was apparent that a
large part of the molecule was not necessary for activity. Elucidation of the primary
structure of FV revealed that this region, termed the B-domain or connecting region, links
the heavy and light chain regions of the molecule [81,119,120]. The human FV B-domain is
836 amino acids long, makes up ~50% of the mass of the protein, and has no homology to
any other known protein, including the FVIII B-domain (Fig. 3) [81,120]. It is heavily
glycosylated and has unusual regions of tandem repeats, the function of which is still
unknown. Because of these unusual properties and lack of importance in FVa procoagulant
activity, less attention has been given to studying its functional significance. It has been
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suggested, however, that the B-domain may play a role in the anticoagulant function of FV
by stimulating the activated protein C-mediated inactivation of FVIIIa (for review see [20]).

The FV B-domain does not appear to contribute in a substantial way to thrombin binding
[91,93]; however, it does appear to influence the rate and possibly order of bond cleavage.
For example, the thrombin-mediated activation pathway of human FV follows a kinetically
preferred order in which cleavage at Arg709 is followed by cleavage at Arg1018, and
generation of the light chain is accompanied by cleavage at Arg1545 [17,18]. It is possible
that this preference results from steric and/or conformational restrictions imposed by the B-
domain; coordinate removal of these constraints exposes subsequent cleavage sites.
Evidence for this comes from studies showing that mutating Arg1018 significantly delays
cleavage at Arg1545, suggesting that proteolysis at Arg1018 causes a conformational change
at or near position 1545 which then makes it more susceptible to thrombin [94,113–115].

As FV has little, if any activity and thrombin-mediated proteolysis of FV unmasks binding
sites for FXa and prothrombin [77,78], an obvious role for the B-domain is to somehow
prevent activity in the procofactor. Based on its size, it is easy to imagine how it could
physically separate the heavy and light chains. Initial electron microscope (EM) images of
FV and FVa suggested that the physical separation model was plausible, thus providing an
adequate explanation for the inactivity of FV [121,122]. However, these observations were
not consistent with several other EM images [123–126]. These last studies suggested that the
B-domain appears as an appendage stemming from a globular core, presumed to be the
heavy/light chain, which remains closely associated and essentially unchanged after the
conversion from FV to FVa [126]; results that were consistent with physical studies of FV
and FVa [97,127].

If the heavy and light chain regions of FV are conformationally similar to FVa, a role for the
B-domain would then be to sterically block or conceal functional binding sites important to
cofactor function. Initial evidence for this came from the Kane laboratory, who used a FV
derivative in which a large segment of the B-domain was deleted (FVdes811–1491 or FV-810;
Fig. 2) [113,128]. This recombinant single chain FV derivative was found to have
constitutive, but partial activity of 30–38% compared with FVa when transiently expressed
in COS-7 cells. The molecular basis for these findings was not investigated, yet full activity
was achieved after proteolysis at Arg1545 by RVV-V or thrombin. These studies suggested
that a clear function of the B-domain is to somehow prevent expression of procoagulant
activity prior to proteolytic processing [113]. More recently, our laboratory has further
investigated the molecular properties of this B-domain-deleted FV variant [80]. Using
purified preparations derived from baby hamster kidney cells, we found that FV-810, as well
as a thrombin-resistant derivative, yielded complementary but somewhat different results.
Direct binding measurements and functional assays revealed that FV-810 interacts with
membrane-bound FXa with high affinity and was functionally equivalent to FVa in the
absence of intentional proteolysis [80]. These data suggested that proteolysis within the B-
domain, while necessary, is incidental to the mechanism by which cofactor function is
actually realized. Instead, proteolytic activation of FV simply eliminates steric and/or
conformational constraints contributed by the B-domain that otherwise interfere with
discrete binding interactions which govern the eventual function of FVa. Removal of these
inhibitory constraints through recombinant truncation bypasses the requirement for
proteolysis to activate the molecule.

These studies suggested that there must be regions of the B-domain that directly or
indirectly contribute to keeping FV inactive. Using a panel of progressively finer B-domain
truncated variants, we were able to identify a discrete region of the B-domain that appears to
play a critical role in stabilizing the procofactor state [129]. This region of the B-domain
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(residues 963–1008; Fig. 3) is unusually basic with 18 out of 46 residues being Arg or Lys
and is well conserved across the vertebrate lineage (see below). As expected, disruption of
these sequences by mutagenesis or through deletion yielded derivatives with cofactor-like
properties in the absence of intentional proteolysis. While still unclear, it is likely that other,
as yet to be indentified components of the B-domain, also play a role. Thus, discrete
sequences in the FV B-domain serve to stabilize the inactive procofactor state and suggest
that the length of the B-domain per se is not a primary factor in preserving the procofactor
state. The role of proteolysis in FV activation is therefore to facilitate removal of these
inhibitory B-domain sequences in a release from the inhibition mechanism.

Sequence analysis and evolution of the FV B-domain
The finding that a discrete region of the B-domain appears to play such a fundamental role
in regulating the procofactor to cofactor transition is surprising at first glance, as there is
generally weak homology between the B-domains of mammalian species (<50%)
[81,120,130–132]. However, careful inspection of these and other sequences from lower
vertebrates has revealed some very interesting findings (Table 1). In mammalian species,
certain features of the FV B-domain such as the number of tandem repeats, the overall
length (~850 a.a.) and glycosylation content are generally conserved. However, this does not
appear to be the case in lower vertebrates as both B-domain length and sequences can vary
dramatically between species (Table 1). Major differences generally lie at the C-terminal
half of the domain (e.g. sequences C-terminal to the equivalent Arg1018 thrombin cleavage
site), which contains a variable number (9–36X) of 9-amino-acid tandem repeats; there are
also several examples in which these repeats appear to be absent [81,133–136]. While there
is weak homology throughout most of the B-domain when you compare various FV
sequences, several short motifs are strongly conserved. Two of these regions lie near the
Arg709 and Arg1545 cleavage sites. A third region was identified as the highly basic region
detailed above which is remarkably well conserved from fish to mammals (Fig. 4)
[135,136]. While it is unknown whether this sequence motif functions the same way in other
species, the observation that this part of the B-domain is one of only a few portions that is
highly conserved across the vertebrate lineage points to its functional significance.

An exception to these findings has been found in an unusual form of FV derived from the
venom of three different Australian elapids [137–139]. These snakes (Pseudonaja textilis,
Oxyuranus scutellatus scutellatus and Oxyuranus microlepidotus), which are the most
venomous in Australia, are known to have a powerful prothrombin-activating component in
their venom. These venom proteins are multi-subunit complexes consisting of a FXa-like
and FV-like component and are highly procoagulant [140–142]. Venom-derived FV from
these snakes share ~44% homology with mammalian FV and have a similar domain
structure (A1-A2-B-A3-C1-C2) [137–139]. Surprisingly, their B-domains are remarkably
short (46 residues), and more importantly they lack the conserved basic region. These
findings raise the possibility that these snake species have shed these regulatory components
to synthesize a constitutively active form of FV. To examine this, we recently expressed and
characterized recombinant venom FV derived from P. textilis (pt-FV). We were able to
show that pt-FV is synthesized in an active state and unlike human FV does not require
proteolytic removal of the B-domain to express procoagulant activity [143]. Thus, pt-FV
represents a biological correlate to structure/function studies with human FV and is a
naturally occurring example of a protein that has acquired a new functional state through
loss of inhibitory sequences. Remarkably, this protein can also function in the absence of
anionic membranes and is completely resistant to activated protein C, despite being cleaved
within the heavy chain at the equivalent Arg506 and Arg709 sites [143]. We speculate that
this functional resistance to activated protein C is likely because of non-covalent interactions
which contribute to the stabilization of activity. Additionally, it is also possible that a unique
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disulfide bond linking the A2 and the A3 domains may play some role in stabilizing pt-FV
thereby preventing dissociation of the C-terminal heavy chain region from the rest of the
molecule after activated protein C cleavage. Thus, pt-FV represents an exceptional example
of a protein that has adapted into a potent biological weapon for host defense and
envenomation of prey.

Concluding remarks
FV and FVIII both circulate in blood as inactive procofactors and only express activity after
limited proteolysis. Once activated, they serve as two important cofactors in coagulation by
dramatically enhancing the catalytic rate of their respective macromolecular enzyme
complexes. This similarity in function is not surprising, considering that FV and FVIII are
thought to descend from a common ancestral A1-A2-A3-containing protein through a gene-
duplication event [133,134]. After the acquisition of C-type domains as well as the B-
domain, a second gene-duplication ultimately separated ancestral genes for FV and FVIII.
Despite this common origin and functional equivalence, the mechanisms by which these
proteins are kept in an inactive procofactor state are fundamentally different. For FVIII, the
B-domain does not appear to be involved in regulating cofactor activity. Rather, cleavage
between the A1 and A2 domains at position Arg372 is critical for the generation of cofactor
activity. Furthermore, FVIII association with VWF also plays an important role, not only in
stabilizing FVIII, but also in obscuring functional binding sites important to cofactor
function. In contrast, the FV B-domain plays a fundamentally important role as discrete
conserved B-domain sequences are involved in the mechanism by which FV persists as an
inactive procofactor. Elimination of these sequences bypasses the requirement for FV
proteolysis to activate the molecule; a clear example of this as observed in nature is venom
FV derived from the common brown snake, P. textilis. This implies that the B-domain
serves an inhibitory function which, under normal physiological conditions, is efficiently
removed upon proteolytic processing.

The molecular process of maintaining FV and FVIII as inactive procofactors plays a critical
regulatory role which has evolved to limit the expression of cofactor activity. Despite its
significance, clear mechanistic insight by which the various proteolytic events lead to
expression of FVa and FVIIIa procoagulant activity has proven difficult to pinpoint.
However, novel approaches coupled with structural information have provided some new
clues. While several questions remain, these recent studies lay the groundwork for
uncovering the precise molecular mechanism by which FV and FVIII transition from the
procofactor to cofactor state.
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Fig. 1.
Schematic representation of factor (F)VIII, FVIIIa and FVIII-SQ. Boundaries of the acidic
regions denoted by a1, a2, and a3 are indicated. ‘Activation’ represents thrombin-mediated
proteolysis of FVIII and cleavage sites are indicated as well as the molecular weight of the
various fragments. The ‘SQ-linker’ in rFVIII-SQ is given above the schematic.
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Fig. 2.
Schematic representation of factor (F)V, FVa and FV-810. ‘Activation’ represents thrombin-
mediated proteolysis of FV and cleavage sites are indicated as well as the molecular weight
of the various fragments. The sequence above FV-810 indicates which B-domain elements
have been deleted.
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Fig. 3.
Schematic representation of the factor (F)V B-domain. The B-domain is defined by residues
710–1545 which are liberated after thrombin-mediated proteolysis. An expanded view of the
B-domain is indicated along with the sequence of the basic region (963–1008) implicated in
preserving the FV procofactor state. Yellow circles, potential N-linked glycosylation sites;
green box, 31X-9 amino acid tandem repeat region; red box, 2X-17 amino acid repeat
region; blue box residues 963–1008.
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Fig. 4.
Alignment of factor (F)V B-domain sequences from the highly basic region. The conserved
basic region (residues 963–1008) derived from the human FV sequence was aligned using a
modified CLustal W algorithm (AlignX Module; Invitrogen Corporation town, state (if
applicable), and country.) to corresponding regions from several select vertebrates (see
Table 1 for common names).
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