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Even within the early sensory areas, the majority of the input to
any given cortical neuron comes from other cortical neurons. To
extend our knowledge of the contextual information that is
transmitted by such lateral and feedback connections, we investi-
gated how visually nonstimulated regions in primary visual cortex
(V1) and visual area V2 are influenced by the surrounding context.
We used functional magnetic resonance imaging (fMRI) and
pattern-classification methods to show that the cortical represen-
tation of a nonstimulated quarter-field carries information that can
discriminate the surrounding visual context. We show further that
the activity patterns in these regions are significantly related to
those observed with feed-forward stimulation and that these
effects are driven primarily by V1. These results thus demonstrate
that visual context strongly influences early visual areas even in the
absence of differential feed-forward thalamic stimulation.
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It is well known that themajority of input that arrives to a specific
neuron in the early visual system comes from other cortical

neurons (either local or long-range connections). Such connections
provide one way for prior knowledge and context to modulate the
responses of neurons in early vision. However, studies that in-
vestigate the role of such mechanisms within natural vision are
relatively rare. In thepresent experimentswedevised a paradigm in
which we analyzed the influence of surrounding context on visually
nonstimulated parts of primary visual cortex (V1) and visual area
V2. We set out to investigate whether blood oxygen level-de-
pendent (BOLD) functionalMRI (fMRI) activity in nonstimulated
early visual regions carries information about a surrounding visual
context. Our goal was to test the hypothesis that lateral and feed-
back connections modulate and possibly prime regions of visual
cortex by transmitting relevant contextual information.
If this hypothesis is true, we would expect such mechanisms

to work most productively when participants are presented with
natural visual stimuli, because these stimuli contain a multitude of
rich contextual associations across space and time (1). Therefore
we presented participants with natural visual scenes in all the
experiments reported here. Support for the above hypothesis is
provided by recent demonstrations illustrating that V1 receives
feedback even in regions that extend beyond the bottom-up
stimulated area. For instance, the size of the activated region in
retinotopic cortex corresponds to perceived size, not absolute
size, in the context of a size illusion (2); moreover, the subjectively
perceived apparent-motion illusion activates nonstimulated V1
on the motion trace (3), and object classification triggers discrim-
inable activity at nonstimulated foveal representations (4). Other
work has shown that feature-based attention spreads to non-
stimulated regions of V2–V4 (5). Therefore contextual influences
can extend beyond the range of feed-forward stimulated reti-
notopic space (6, 7). In the present work we used natural visual
scenes to ask whether visually nonstimulated regions of V1 and
V2 contain contextual information that permits decoding of the
surrounding visual context.
We presented three different natural visual scenes (a car,

a boat, or people; Fig. S1A) with the lower right quadrant oc-

cluded by a uniform white field (Fig. 1A, occluded) in a block-
design fMRI experiment. Participants maintained fixation and
monitored the sequence of images for a change in color (whole
image; random occurrence within/across blocks). We in-
dependently mapped the cortical representation of the occluded
quarter-field in early visual areas V1 and V2, making sure to
minimize the risk of any spillover effects from surrounding regions
(Fig. 1B, Methods, Fig. S2 and SI Methods). We then trained
a linear classifier to discriminate between the different scenes
presented, based purely on the signal from these nonstimulated
early visual regions (8–12). After training we used the classifier to
decode which scene had been presented to observers in an in-
dependent set of test data. If the decoding accuracy of the clas-
sifier on the test set reliably exceeds chance we can conclude that
activity in nonstimulated early visual regions does indeed dis-
criminate the surrounding context. For the purposes of compari-
son, we also included blocks in which the full visual scene was
presented [i.e., the cortical representation of the occluded quar-
ter-field received visual scene stimulation (Fig. 1A, control)],
which we refer to as the “natural stimulation” (control) condition.

Results
Fig. 2A shows the cross-validated performance of two linear
classifiers (Support Vector Machine - SVM and Linear Dis-
criminant Analysis - LDA) in decoding which scene was pre-
sented when the cortical representation of the target region
received visual-scene stimulation (control condition) as a func-
tion of the number of randomly selected vertices entering the
classifier (pooled here over V1 and V2). The corresponding
event-related average of the fMRI signal is shown in Fig. S1B.
The BOLD fMRI signal of 70 vertices was sufficient to diagnose
correctly which scene was presented with, on average, 96 ± 2.2%
accuracy [SVM classifier: average level prediction, t(5) = 28.3,
P = 5.2 × 10−7; single-block prediction, 81 ± 2.8%, t(5) = 17.2,
P = 6.11 × 10−6], greatly above the level of chance (33%). More
importantly, Fig. 2B shows the performance of the classifiers in
decoding when the target region received no visual-scene stim-
ulation (occluded condition). Performance reaches a maximum
accuracy of 65 ± 5.2% here [SVM classifier: average level pre-
diction, t(5) = 6.16, P = 0.0008; single-block prediction, 50 ±
5.1%, t(5) = 3.22, P = 0.012], again well above chance (33%).
Thus a linear classifier can decode reliably which scene has been
shown to participants even when no visual-scene information is
presented to these regions of early visual cortex. We note that
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the difference in performance between the two types of classifier
(SVM vs. LDA) is greatest as the number of vertices approaches
the number of training examples (here 54), leading to overfitting
in the case of LDA, a well-known problem in machine learning
(13). The SVM classifier, however, is a regularized classifier and
therefore does not suffer from this problem, maintaining high
performance as the number of vertices increase (13, 14).
What is the source of this contextual information? To inves-

tigate the nature of the information driving successful classifier
performance in the absence of visual-scene stimulation, we ex-
plored the relation between the activity patterns observed in the
two different types of trial (control and occluded) presented to
observers (11, 15). We trained a new classifier on one set of trials
(e.g., control) and tested its generalization performance for the
other type of trial (e.g., occluded). If the classifier could decode
above chance in this situation, that performance would be evi-
dence for some degree of commonality in the activity patterns
generated in these regions of early visual cortex in trials where
visual-scene stimulation is present (control) vs. absent (occluded).
We found our classifiers trained on control trials still could dis-
criminate above chance when tested with occluded trials (Fig.
2C), reaching 70 ± 8% accuracy with 70 vertices [SVM classifier:
average level prediction, t(5) = 4.59, P = 0.0029; single-block
prediction, 47 ± 3.7%, t(5) = 3.74, P = 0.0067; chance: 33%].
Similarly if we trained on occluded trials and tested with control
trials (Fig. 2D), the classifiers also could perform well above
chance [SVM classifier: average level prediction, 79 ± 8.9% ac-
curacy, t(5) = 5.19, P = 0.0017; single block prediction, 57 ±
4.1%, t(5) = 5.71, P= 0.0012; chance: 33%]. The linear classifiers
thus show that the activity patterns elicited in the presence vs.
absence of visual-scene stimulation are similar to a nontrivial
degree. The higher performance in trial-type generalization
(Fig. 2C andD) than in within-trial generalization in the occluded

condition (Fig. 2B) might result from the greater number of trials
used to train and test the classifier in the trial-type generalization
(72 for training and testing in the trial-type generalization vs. 54
and 18, respectively, in the within-trial generalization).
We have shown that nonstimulated regions of early visual

cortex carry information about surrounding context and further-
more that the activity patterns in these nonstimulated regions are
similar in occluded and control trials. The previous experiment
used a block-design paradigm that leads to robust pattern esti-
mates due to averaging over many volumes for each stimulus
presentation but it is unclear how what happens during a block of
stimulation (in this case, 12 s) compares with any one trial of
perception (i.e., the standard design in visual cognition). Within
the duration of a block, for instance, it is unclear what other
cognitive processes the subject is engaged in; therefore, it is
beneficial if the result can be replicated in single-trial conditions.
To increase the generalizability of our results, we conducted
a second experiment with a rapid-event–related design (4-s in-
tertrial interval), with a different task (one-back repetition de-
tection) and seven new participants. Fig. 2 E–H shows the results
of this experiment. In control trials (Fig. 2E), the linear classifier
reached 79 ± 5.5% accuracy [SVM classifier: average level pre-
diction, t(6) = 8.41, P = 7.71 × 10−5; single-trial prediction, 48 ±
1.5%, t(6) = 9.76, P = 3.32 × 10−5; chance: 33%]. Most impor-
tantly, the classifier again successfully decoded which scene had
been shown in occluded trials (Fig. 2F), reaching an accuracy of
53 ± 8.4% [SVM: average level, t(6) = 2.30, P= 0.031]. Note that
the classifier also reliably decoded occluded trials based purely on
single-trial data [SVM: 39 ± 2.8%, t(6) = 2.06, P= 0.043; chance:
33%]. To corroborate this result, the weakest we report here, we
conducted a group-level permutation test (SI Text) that gave P =
1 × 10−4. Thus, with this different fMRI design, task, and par-
ticipants, the linear classifier successfully decoded which occluded
scene was presented on the basis of just 1 s of stimulation. We
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Fig. 1. Experimental design and cortical mapping procedure. (A) The two
conditions of visual stimulation used in the current experiments. In occluded
trials (Left) the lower-right quadrant of the image was occluded with a uni-
form white field. In control trials (Right) there was no occlusion. The same
three scenes were shown in both occluded and control conditions (experi-
ments 1 and 2). The participant always had to fixate the central fixation
marker (very small checkerboard) and either detect a change in frame color
(experiment 1) or perform a one-back repetition task (experiment 2). Note
that the black bars highlighting the occluded region are for display purposes
only. The whole image spanned 22.5 × 18°, with the occluded region spanning
≈11 × 9°. (B) Cortical mapping procedure used to map the retinotopic rep-
resentation of the occluded region. In a standard block-design protocol,
participants were presented with contrast-reversing checkerboards in either
the target region (green) or the surround region (red). We defined a patch of
V1 and a patch of V2 from the contrast of target stimulus minus surround
stimulus (shown here on the inflated cortical surface [left hemisphere] for one
representative participant). Any vertex taken as representing the occluded
portion of the main stimulus had to meet two additional constraints: a sig-
nificant effect for the target stimulus alone (target > baseline; t > 1.65) and,
crucially, a nonsignificant effect for the surround stimulus alone (surround
stimulus = baseline; absolute t < 1.65).
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Fig. 2. Pattern-classification analysis for experiments 1 and 2. (A–D) Classi-
fier performance for experiment 1 (block design). A shows performance
(percentage correct) for two linear classifiers, LDA and SVM, in decoding
which scene was presented in control trials as a function of the number of
vertices entering the classifier, for both average level (Av.) and single-block
prediction (SB). Note that vertices are pooled across V1 and V2 in this
analysis. Performance is averaged across participants (error bars represent
one SEM). Chance performance is indicated by the dark green bar at 33%. B
shows the same data for occluded trials. C and D show the results for the
trial-type generalization analyses. E–H show classifier performance for ex-
periment 2 (rapid-event–related design). E–H are arranged as in A–D but
report performance for average (Av.) and single-trial (ST) prediction.
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note, however, that the advantage of the SVM over LDA is much
reduced in experiment 2 compared with experiment 1; in fact, in
experiment 2, LDA outperforms or is equal to the SVM. The
reasons underlying this pattern are not entirely clear. One likely
influential factor is that, because of the greater number of training
observations in experiment 2 (a minimum of 180) compared with
experiment 1, overfitting is much less of a problem for the LDA
classifier. A second factor is the greater intersubject variability for
the SVM than for LDA in experiment 2. In any case, taken to-
gether, our results provide strong evidence that a linear classifier
indeed can discriminate between the different scenes presented,
even when the target region receives no visual-scene stimulation.
Using the event-related data, we tested the performance of the

linear classifier in generalizing across trial types, and again we
found that the classifiers could generalize successfully (Fig. 2 G
and H). The classifier trained on occluded trials and tested with
control trials had an average level prediction accuracy of 69% ±
12.4% [SVM classifier: t(6) = 2.84, P = 0.015; chance: 33%] and
a single-trial prediction accuracy of 42 ± 3.3% [SVM: t(6) = 2.75,
P = 0.017]. On the other hand, the classifier trained on control
trials and tested with occluded trials had an average level pre-
diction accuracy of 61 ±13% [SVM: t(6) = 2.17, P = 0.037] and
a single-trial prediction accuracy of 41 ± 3.2% [SVM: t(6) = 2.45,
P = 0.025]. Thus with this experiment we have replicated suc-
cessfully the main pattern of results obtained in experiment 1.
We have shown in two independent experiments that non-

stimulated regions of early visual cortex do indeed carry in-
formation about the surrounding context. Furthermore, we have
shown that the activity patterns in these nonstimulated regions
are similar in occluded and control trials. What is the contribution
of each visual area to the performance we observe? To explore
this question we reran our classifier analyses independently for
patches of V1 and V2 (SI Methods). Fig. 3A shows the asymptotic
performance (defined as performance with the maximum number
of vertices) obtained by the SVM classifier (average level pre-
diction) for each visual area (V1, V2, or pooled) for the three
types of analysis (control, occluded, or trial type generalization)
of experiment 1. Fig. 3B shows the same data for experiment 2.
(Figs. S3 and S4 give the full classifier results for both experiments
split by visual area, and Tables S1–S3 give vertex details.) It is
clear from these plots that V1 greatly outperforms V2 across both
experiments and each different analysis, reaching or even ex-
ceeding the performance obtained by pooling across V1 and V2,
with a smaller number of vertices. Thus, V1 responses are the
primary determinant of the ability of our classifiers to discrimi-
nate successfully between the three scenes, regardless of the

specific trial type (control, occluded, or trial type generalization
analyses) considered.
What kind of mechanism could be responsible for these

effects? One plausible explanation would be the presence of an
autoassociative memory-based process active at the level of early
visual areas (16–18). As the experiment progresses, relevant
early visual neurons would develop a strong expectation of the
structure that is present in the occluded region of the stimuli,
obtained from presentation of that information in control trials.
Therefore in occluded trials, the three-quarters of the stimulus
that is presented would be a very good cue to retrieve the
remaining (occluded) part of the stimulus.
To test this possibility, we conducted a third experiment in

which participants were presented only with occluded trials (i.e.,
they never saw the actual visual-scene information of the oc-
cluded region). We present the results of this experiment in Fig. 4
A–D. For three of the four participants, clear discrimination can
be seen (SVM average level prediction). For the remaining par-
ticipant the SVM classifier (average level) does not perform well;
however, the LDA classifier suggests that discrimination ability is
present within this subject also. Thus the effect we report clearly
goes beyond autoassociative recall based on memories of the
actual visual-scene information of the occluded region. (See also
Fig. S5 for plots of subjects eye gaze position in this experiment.)
One additional explanation is that information regarding the

distribution of low-level visual features (e.g., luminance and con-
trast, energy at each spatial frequency, and orientation) in the
stimulated area is transmitted to the nonstimulated region. To
address this possibility, we ran two more participants on a modi-
fied version of experiment 3 in which we explicitly controlled these
low-level image properties within the naturally stimulated region
(Fig. 4E and SI Methods, “Low-Level Image Control”). Perfor-

A B

Fig. 3. Asymptotic performance of the SVM classifier in experiments 1 and 2.
Asymptotic classifier performance (average level of prediction) for each visual
area (V1, V2, and pooled) and each different analysis [occluded trials, control
trials, generalization 1 (G1: train control, test occluded), and generalization
2 (G2: train occluded, test control)] for experiments 1 (A) and 2 (B). Note that
“asymptotic” is defined as performance for the maximum number of vertices
(here 70 for V1 and V2 pooled, 30 for each area considered independently).
Error bars show one SEM across participants. Occ, occluded.

A B C D

E F G

Fig. 4. Pattern classification analysis for experiments 3 and 4. (A–D) Classi-
fier performance per participant for experiment 3. A shows performance
(percentage correct) for the two linear classifiers LDA and SVM in decoding
which scene was presented in occluded trials as a function of the number of
vertices entering the classifier, for both average level (Av.) and single-block
prediction (SB), for subject 1. Note that vertices are pooled across V1 and V2
in this analysis. Performance is averaged across sampling iterations and cross-
validation cycles (error bars represent one SEM). Chance performance is in-
dicated by the dark green bar at 33%. B–D show the same information for
the remaining participants in experiment 3. E shows an example of a scene
stimulus shown in experiment 4 (SI Methods, “Low-Level Image Control”).
F and G show performance data for the two participants who took part in
experiment 4.
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mance clearly remainedwell above chance (Fig. 4F andG) despite
our control of these low-level image properties, demonstrating
that the observed contextual sensitivity is not carried by these
specific low-level visual properties.
Finally, to what extent could spreading activity (lateral con-

nections) or spillover activity account for the present results? We
performed an additional analysis investigating the weights from
the pattern-classification analyses to address this question (SI
Methods, “Weight Analysis”). Specifically we correlated the ab-
solute value of the weights from the SVM and LDA classifiers
leading to maximum performance on occluded trials with the t
values of both the target and the surround mapping conditions
(Fig. 1B). The absolute value of the weight at each vertex indi-
cates the relative influence of each vertex to the classifier’s solu-
tion (e.g., refs. 11, 19). The logic is that a positive correlation of
high (absolute) weights with high t values for the surround map-
ping stimulus might suggest a possible influence of spillover signal
(or spreading activity). On the other hand, a positive correlation
with the target mapping stimulus would indicate that the more
important vertices in the classifier decision function are those
with a strong signal to the target stimulus, as wemight expect to be
the case purely on signal-to-noise considerations. Although
results differed between LDA and SVM classifiers (SI Methods,
“Weight Analysis”), the results with the LDA classifier confirmed
that it is possible to decode the surrounding context with a set of
weights that have no significant positive relationship with the
surround mapping stimulus (and, in fact, may have a suggestive
negative or negative correlation) and a significant positive re-
lation to the target mapping stimulus (experiments 1 and 2; see
also Table S4). The results with the LDA classifier thus argue
against interpreting our data in terms of simple spillover activity.

Discussion
Across four independent experiments we have shown that non-
stimulated early visual regions (V1 and V2) carry information
about a surrounding visual context. We have shown, moreover,
that the activity patterns in the nonstimulated early visual regions
are related significantly to the activity observed in those regions
under feed-forward stimulation (experiments 1 and 2). We have
shown further that this effect is driven largely by V1 (experiments
1 and 2), that it does not depend on memory of complete images
(experiment 3), and that it is not carried by several basic low-level
visual properties (experiment 4). Finally, with the classifier weight
analysis we have provided some reassurance that simple spread-
ing activity or spillover activation from feed-forward–stimulated
neighboring regions is unlikely to account for the results we report
here, at least for the LDA classifier.
What type of mechanism could account for all experiments we

report?This question concernshow information can be transmitted
from regions representing the surrounding context to regions rep-
resenting the nonstimulated quadrant. Bayesian models of human
vision (20–22) offer one possible explanation in which the sur-
rounding visual context would bias cortical feedback to the non-
stimulated early visual areas. Such feedback could be spatially
precise, resulting in something like “filling in,” or spatially diffuse,
leading, for example, to a general expectation of some property
(i.e., categorical: human bodies or cars) in the target region (1, 23).
Althoughwedidnot set out to test suchpredictive accounts directly,
our paradigm could be adapted to test for prediction error signals
in the target region of V1 after presenting appropriate context in-
ducing stimuli in surrounding areas of the visual field (24, 25).
In principle, however, the type of visual information that is

transmitted to the target region could concern low-level visual
features (such as distributions of contrast, luminance, energy,
spatial frequencies, orientations, and so forth) or, as mentioned
earlier, higher-level visual features (such as contours, categories).
Although we demonstrated in experiment 4 that several basic low-
level visual features (global luminance and contrast, energy at each

spatial frequency, and orientation) were not responsible for gen-
erating the observed context sensitivity, many other low-level fea-
tures (e.g., local and global distribution of orientations) remain to
be tested before we can exclude amechanismbased on signals from
the surrounding context carrying information about distributions of
low-level visual information (local or global) to the nonstimulated
areas. Further, although we have demonstrated a significant degree
of “similarity” between the responses present in the target region as
a result of feed-forward or surrounding area-only stimulation
(experiments 1 and 2), this similarity does not imply that the signals
necessarily reflect identical information. Thus the nature of the
information that is carried by the signal from the surrounding
context to the nonstimulated area still requires further study.
One additional explanation of our findings concerns the pos-

sible allocation of attention to expected features in the occluded
region. An intriguing report (5) showed that feature-based at-
tention spreads even to nonstimulated parts of the visual field. The
authors showed that attended direction of motion (45° vs. 135°) in
the stimulated visual field (left or right) could be decoded from
ipsilateral and thus nonstimulated early visual regions, specifically
V2, V3, and V4. Based on this report, one could propose that
attention is allocated to certain locations in the occluded region
where participants expect to find object features. These locations
would differ across the three different scenes presented to par-
ticipants and therefore could be responsible for the classification
results that we observe. Note that this account is not independent
of the predictive accounts given earlier but shifts the emphasis to
neural mechanisms that implement visual attention.
At a neurophysiological level, it is known that most of the input

received by any given V1 neuron comes from intra- and interareal
projections, with the minority coming from thalamic afferents
(26, 27). As such, monosynaptic lateral connections (i.e., single-
synapse intracortical projections) might play a role in explaining
how contextual information is promulgated from an area of
cortex that receives feed-forward stimulation to an area that does
not (a distance here of 2° on the fixation diagonal), possibly by
transmitting scene-specific information across the low-contrast
summation fields of V1 neurons (28, 29). These connections,
however, are unlikely to account for all the activity in nonstim-
ulated V1, because they are not wide enough to span the entire
nonstimulated region. Furthermore, laterally transmitted effects
would be predicted to be strongest close to the border of the
occluded region, a prediction that is not consistent with the results
of the classifier weight analyses (SI Methods, “Weight Analysis”).
Therefore interareal projections (i.e., cortical feedback) are likely
to be critical in explaining the present effects.
A potential mechanism through which cortical feedback might

contribute to the observed context effect would be by direct
connections between mirror-symmetric parts of the visual field,
as reported in primate middle temporal visual area (30). Analysis
of spontaneous BOLD fMRI fluctuations in anesthetized pri-
mates also has revealed correlations between mirror-symmetric
parts of the visual field that are pronounced along the horizontal
meridian (31). Such mirror-symmetric sensitivity in higher visual
areas certainly could play a role in explaining where such cortical
feedback originates. Although at present we cannot disentangle
the contribution from cortical feedback and lateral interaction,
we believe that the fact that such information is transmitted at all
from stimulated to nonstimulated regions highlights the ubiqui-
tous role that context might play in shaping the activity of all
neurons in early vision. Indeed, several authors recently have
pointed out that, to increase our understanding of V1 beyond the
best current models, a deeper consideration of the role of con-
text (both spatial and temporal) and of how such contextual
information is transmitted is required (32–34).
In the present experiments we found that V1 was the primary

driving force for the context effect. Indeed, there was barely any
evidence for context sensitivity in V2 (Fig. 3). Although in most
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cases significant classification performance in V1 co-occurs with
similar performance in V2 (9, 10 experiment 1, 15; refs. 35 and
36), these studies typically reflect above-threshold stimulation
protocols. Interestingly, one exception (10, experiment 2) in-
volved decoding subjectively invisible stimulus orientation and
led to significant decoding only in V1, mirroring the present
results. It has been shown, furthermore, that V1 contains more
reliable information for binary image reconstruction than V2
(36). Taken together, these results make the asymmetry that we
found in performance across V1 and V2 less surprising.
Much recent work has demonstrated that a multitude of im-

portant visual information can be extracted from the fMRI
BOLD response in early visual areas when taken as a multivari-
ate quantity, allowing discrimination between visual features
such as orientation and motion direction (9, 35), discrimination
between scene categories (37), discrimination of the identity of
natural images (38), and even allowing the reconstruction of
arbitrary binary contrast images (36). Here, extending these lines
of research, we have shown that discrimination between indi-
vidual scenes is possible even in nonstimulated regions of the
primary visual cortex.
Taken together, we believe that our data demonstrate the

crucial role of context, carried by the physiological mechanisms
of feedback and/or lateral interaction, in driving activity even in
nonstimulated early visual areas. We further believe these data
are consistent with theoretical views concerning the importance
of predictive codes in the visual system (16, 20, 39, 40).

Methods
Subjects. Six subjects took part in experiment 1, seven in experiment 2, four
in experiment 3, and two in experiment 4 (SI Methods).

Paradigm. Participants were presented with partially occluded natural vi-
sual scenes (Fig. 1A). There were three such scenes, one instance of each
(Fig. S1A). In experiments 1 and 2, the same scenes also were presented
nonoccluded as a control. Participants had to maintain fixation and detect
a change in frame color (experiment 1, block design), perform one-back
repetition (experiment 2, rapid-event–related design), or detect a change in
the color of the fixation marker (experiments 3 and 4, block design). In-
dependently, we mapped the cortical representation of the target region in
V1/V2 (Fig. 1B and SI Methods) by presenting contrast-reversing checker-
boards (4 Hz) in either the target or the surround mapping position (Fig. 1B)
in a standard block-design experiment. Vertices were selected from the de-
fined regions of V1 and V2 that met the criteria of significant effect for
target alone and a nonsignificant effect for the surround alone (SI Methods).

Structural and Functional MRI. MRI was performed at 3 Tesla using standard
MRI parameters. Anatomical data were transformed to Talairach space, and
the cortical surface was reconstructed. fMRI time series were preprocessed
using standard parameters (no smoothing) and coaligned to an anatomical
dataset (SI Methods). A general linear model was used to estimate the ac-
tivity patterns on each single block (or trial).

Pattern Classification.We trained two linear pattern classifiers, independently
for occluded and control trials (SI Methods), to learn the mapping between
a set of brain-activity patterns and the presented scene. We then tested the
classifiers on an independent set of test data (leave one run out cross-vali-
dation). We chose input features (vertices) randomly from the set that met
our mapping criteria, initially pooled across V1/V2 but later also split by V1/
V2 (SI Methods). We also performed trial-type generalization analyses in
which the classifiers (in experiments 1 and 2) were trained on one type of
trial (e.g., occluded) and were tested on the other type of trial (e.g., control).
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