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PII proteins control key processes of nitrogen metabolism in bacter-
ia, archaea, and plants in response to the central metabolites ATP,
ADP, and 2-oxoglutarate (2-OG), signaling cellular energy and
carbon and nitrogen abundance. This metabolic information is in-
tegrated by PII and transmitted to regulatory targets (key enzymes,
transporters, and transcription factors), modulating their activity.
In oxygenic phototrophs, the controlling enzyme of arginine synth-
esis, N-acetyl-glutamate kinase (NAGK), is a major PII target, whose
activity responds to 2-OG via PII. Here we show structures of the
Synechococcus elongatus PII protein in complex with ATP, Mg2þ,
and 2-OG, which clarify how 2-OG affects PII–NAGK interaction.
PII trimers with all three sites fully occupied were obtained as well
as structures with one or two 2-OG molecules per PII trimer. These
structures identify the site of 2-OG located in the vicinity between
the subunit clefts and the base of the T loop. The 2-OG is bound to a
Mg2þ ion, which is coordinated by three phosphates of ATP, and by
ionic interactions with the highly conserved residues K58 and Q39
together with B- and T-loop backbone interactions. These interac-
tions impose a unique T-loop conformation that affects the inter-
actions with the PII target. Structures of PII trimers with one or two
bound 2-OG molecules reveal the basis for anticooperative 2-OG
binding and shed light on the intersubunit signaling mechanism
by which PII senses effectors in a wide range of concentrations.
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The PII proteins constitute one of the largest and most widely
distributed family of signal transduction proteins present in

archaea, bacteria, and plants. They control key processes of ni-
trogen metabolism in response to central metabolites ATP,
ADP, and 2-oxoglutarate (2-OG), signaling cellular energy and
carbon and nitrogen abundance (1–4). These effectors bind to
PII in an interdependent manner (see below), thereby transmit-
ting metabolic information into structural states of this sensor
protein (3, 5). Furthermore, PII proteins may be posttranslation-
ally modified (1, 6). Depending on the signal input states, PII pro-
teins bind and thereby regulate the activity of key metabolic and
regulatory enzymes, transcription factors, or transport proteins
(1–3). In cyanobacteria and plants, the controlling enzyme of
arginine biosynthesis, N-acetyl-L-glutamate kinase (NAGK), is
a major PII target (7–9). Moreover, PII affects gene expression
in cyanobacteria through binding to the transcriptional coactiva-
tor of NtcA, PipX (10). In plants, acetyl-CoA carboxylase was
recently shown to be regulated by PII, providing an additional link
between carbon and nitrogen regulation (11). Although these PII
targets share no common structural element, interaction with PII
is inhibited by 2-OG.

PII proteins are homotrimers of 12- to 13-kDa subunits, built of
a double ferredoxin-like fold-containing core (βαβ-βαβ), with a
characteristic and highly conserved 3D structure, as revealed
from numerous crystal structures (3, 12). The trimeric PII archi-
tecture resembles a flattened barrel with long and flexible T loops
extending outward, from the flat side (see Fig. 1 and Fig. S1).
These T loops can adopt multiple conformations and mediate

the versatile protein–protein interactions (3). Each subunit
further comprises two small loops (B and C loop) in the intersu-
bunit clefts, facing each other from opposing subunits and taking
part in a unique mode of ATP-ADP binding (13–15). ADP and
ATP compete here for the same site. In the presence of Mg-ATP,
up to three 2-OG molecules can bind per trimer (1) with ADP
antagonizing 2-OG binding (16). Notably, Arabidopsis thaliana
PII is an exception, because it binds 2-OG also in the presence
of ADP (5, 17). Another feature characteristic for many PII
proteins is also intriguing: The three ATP-binding sites and the
three 2-OG–binding sites each exhibit negative cooperativity. An-
ticooperativity implies strong conformational coupling between
the subunits, and this feature probably allows PII to sense a wide
range of metabolite concentrations (5, 16, 18, 19). In contrast to
the ATP-ADP–binding site, the 2-OG–binding site is controver-
sial (3). From the crystal structure of a PII paralogue fromMetha-
nococcus jannaschii, GlnK1, one 2-OG molecule was shown to
bind from outside to the distal side of the T loop in the presence
of Mg-ATP (20). By contrast, a recently published structure of
a PII homologue form Azospirillum brasiliense in complex with
Mg-ATP and 2-OG revealed the 2-OG–binding site close to the
base of the T loop and near the ATP-binding site (21). However,
neither of these two structures was proved by biochemical studies
nor could they explain the anticooperative binding of 2-OG.

The structures of complexes of PII with its regulatory target
NAGK from Synechococcus elongatus and A. thaliana are highly
similar (22, 23), and the mode of interaction and regulation is
apparently conserved in cyanobacteria and plants (24). The
PII–NAGK complex involves one hexameric (trimer of dimers)
NAGK toroid sandwiched between two PII trimers with the three-
fold axis aligned (23). Each PII subunit engages two contact
surfaces in NAGK binding: A smaller surface involves the B loop
and a larger is formed by the T loop, which adopts a tightly bent
conformation that fits into the interdomain crevice of NAGK.
Binding of PII enhances the catalytic activity of NAGK and
alleviates feedback inhibition by arginine. To bind NAGK, free
PII has to contract its extended T loop. Recently, a two-step pro-
cess of PII–NAGK binding was proposed on the basis of the
properties of a newly identified S. elongatus PII variant (I86N),
which mimics the PII conformation in the NAGK-bound state
(18): First, a salt bridge between PII-E85 and NAGK-R233 forms,
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triggering the extended T loop to fold into the tightly bent
conformation that fits into NAGK.

Detailed structural information together with the well-studied
biochemical features and highly sensitive complex formation
assays render the PII–NAGK system ideal to study the transduc-
tion of metabolic signals into protein action. Until now, it was
unclear how the 2-OG signal, perceived by PII, results in inhibi-
tion of PII–NAGK complex formation. To answer this question,
we solved structures of PII with ATP, Mg2þ, and 2-OG, revealing
the mechanism by which the 2-OG signal is perceived by PII and
controls receptor interactions.

Results
Structure of PII in Complex with ATP and 2-OG. Crystals of recombi-
nant PII protein from S. elongatuswere obtained in the presence of
excess 2-OG/Mg-ATP (PII

OGex) and at substoichiometric amounts
of 2-OG (PII

OG1–3) (Table S1). All structures were solved by
molecular replacement using the free S. elongatus PII as a model
[Protein Data Bank (PDB) ID code 1QY7]. The PII

OGex crystal

diffracting to 2.2 Å contains two identical trimers in the asym-
metric unit (with an rmsd of 0.2 Å2 for all C atoms superposed).
Each trimer contains three Mg2þ, ATP, and 2-OG molecules. In
Fig. 1, this structure is compared to the structures of ligand-free
PII (14) and PII in complex with NAGK (23). In the ligand-free
structure, the T loop, and the C terminus adopt highly extended
conformations away from the ATP-binding site (see Fig. 1 A
andD). Here, PII offers an open binding cavity volume of approxi-
mately 1;000 Å3 for the ligands. Upon ATP and 2-OG binding, a
significant conformational change in the T loop and the C termi-
nus occurs: The C-terminal β-sheet of the free formmoves toward
the ATP-binding site by up to 20 Å (for the terminal residue I112)
to change into a small helix (see Fig. 1D). TheT loop contracts and
the tip (from residues 44–50) becomes disordered. Part of the
flexible T loop moves toward the ATP-binding site to form a kink-
like structure (residues 36–41), thereby forming the scaffold for
proper ATP and 2-OG assembly. As a result, the ATP/2-OG–

binding cavity is completely enclosed by this unique T-loop confor-
mation and the movement of the C terminus (see Fig. 1B, yellow

Fig. 1. Structural basis of PII regulation by 2-oxoglutarate. (A–C) Side views of different S. elongatus PII structures in surface representation. The location of the
ATP-binding site is indicated by a yellow dashed circle; the red boxes highlight the structure part discussed detailed in D. (A) Ligand-free PII modeled together
with ATP (placed according to the superimposed PII

OGex structure). The subunits are color coded in dark blue, light orange, and warm pink. The extended C
termini and T loops of the proteins chains are marked CT and T-loop, respectively. (B) PII∕ATP∕2-OG (PII

OGex) complex structure; subunits color coded in orange,
marine blue, and red. The structure adopts a compact conformation because of the back folding of the C terminus (CT) onto the core domain structure and the
T loop observed in a partially disordered conformation. (C) Structure of PII in the PII–NAGK complex (PDB ID code: 2V5H) modeled together with ATP. Subunits
are color coded in magenta, deep olive, and salmon. (D) Superposition of the ligand-free PII and PII

OGex structure as ribbon models in the color codes derived
from A and B. Secondary structure elements are marked with β1–β5 and α1–α2 and ATP and 2-OG are shown in stick representation, whereas the Mg ion is
marked in green. The sites of two mutations, R9L and K58M, introduced to prove the binding mode of 2-OG are marked with green dots. Remarkable con-
formational transitions are marked with dashed lines: movement of the C terminus, a shift of helix 1, and displacement of the T-loop base by 2-OG while the tip
becomes disordered. (E) Superposition of PII

OGex and PII–NAGK structures as ribbon models in the color codes derived from B and C. Structural details are
indicated as in D.
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circle). In the PII structure complexed with NAGK, the T loop is
clamped in a different conformation (see Fig. 1 C and E). Here,
access to the ligand-binding cavity is slightly reduced compared to
the ATP-free form because of a bend in the T-loop conformation,
thereby reducing the cavity volume to about 600 Å3.

The 2-OG–binding site of PII is formed by an ATP-chelated
Mg2þ ion and residues from one side of the intersubunit cleft
(Fig. 2). The ATP molecule bound in the intersubunit cleft is
ligated mainly by arginine residues (R38 from monomer A; R101
and R103 from monomer B) together with K90 from monomer
A and a small number of hydrogen bonds. ATP fixed by these
residues forms the scaffold for Mg2þ-mediated binding of 2-OG.
The Mg2þ ion has an almost perfect hexagonal coordination
sphere of oxygen atoms, three of which are contributed by oxo
groups of the α-, β-, and γ-phosphate of ATP. Two additional
ligating atoms are accounted for by the O2 and O5 of 2-OG.
The last coordination position is contributed by the OE1 atom
of residue Q39. Notably, the 2-OG–binding sphere mainly com-
prises residues from the T loop. Backbone atoms from residues
Q39, K40, and G41 (all contacting O1 or O2 of 2-OG) together
with the Q39 side-chain ligate the O5 atom and form one area of
interactions. A second interaction region is composed of the
backbone nitrogen of G87 (forming a second H bridge to O5) and
a strong salt bridge of K58 toward the O3 and O4 atoms (distance
of 2.7 Å). Furthermore, residue R9 approaches the O4 to 3.5 Å.
All these residues with the exception of K40 are highly conserved
in PII proteins (4) (Fig. S1).

To validate that 2-OG in the crystal occupies the true binding
site, PII variants were constructed, in which residues K58 and R9,
whose side chains according to the PII

OGex structure specifically
interact with 2-OG, were replaced by similar-sized uncharged
residues (K58M and R9L). Binding of 2-OG in the presence of
Mg-ATP was determined by isothermal calorimetry (ITC). In-
deed, the PII K58M variant was completely unable to bind 2-OG,
although ATP could still be bound, showing that the loss of 2-OG
binding is a specific effect of the K58 replacement. In further
agreement with the structural prediction, the PII R9L variant
was strongly impaired in 2-OG binding (Table 1). Moreover, both
PII variants were impaired in NAGK binding, confirming that
K58 is indeed pivotal for folding the T loop in the tightly bent
structure. The R9 side chain is near the contact surface to
NAGK and appears to stabilize the B-loop–T-loop interface
(23) (Fig. S2).

Structural Basis of Sequential/Anticooperative 2-OG Binding. Crystal-
lization of PII protein in the presence of low 2-OG amounts

yielded PII structures with differing 2-OG content. The structure
resolved at a resolution of 1.95 Å contains three PII trimers in
the asymmetric unit; one trimer contained three ATP, one Mg2þ,
and one 2-OG (PII

OG1), the second three ATP, twoMg2þ, and two
2-OG (PII

OG2), and the third three each ATP, Mg2þ, and 2-OG
(PII

OG3) (Fig. 3 and Fig. S3). Additional details of structural para-
meters are given in SI Text (Tables S1 and S2). Binding of 2-OG
does not significantly render the B-factor distribution of the three
monomers significantly, unless the mobile elements (C terminus
and T loop) contributing to binding are involved (Fig. S4). A
superimposition of the three structurally similar trimers (Fig. 3 A
and B) reveals the structure identity of the S1 site, which is
occupied by 2-OG in all three PII

OG1–3 trimers, and the diver-
gence in the S2 and S3 sites, respectively (Fig. 3B). The ligands
are bound in S1 identical in topology to the mode described
for the PII

OGex structure (Figs. 2 and 3B). The PII
OG1 structure

reveals that binding of the first 2-OG molecule to PII (S1 site)
generates unequal ligand-binding sites in the adjacent monomers,
and, remarkably, sites not occupied by 2-OG also lack the Mg2þ
ion. The conformational differences in the nonoccupied binding
sites provide a structure-based explanation for the anticoopera-
tivity observed in biochemical experiments: After occupation of
the first site, the Kd for the second site increases slightly, but after
occupation of the second site, the Kd for the third site increases
strongly (about 20-fold higher than the Kd for the first site; see
Table 1). In PII

OG1, the ATP molecule attached to the S2 site
exhibits a significantly altered conformation of the phosphate
moiety (Fig. 3 B–D); furthermore, the T-loop basis is displaced
and the C terminus is ordered similar to the S1 site (Fig. 3 C
and D). The S2 site in PII

OG1 resembles the S3 site of the PII
OG2

structure, which, according to the sequential 2-OG–binding
mode, corresponds to the lowest affinity site (for detailed com-
parison of the binding sites, see Fig. S3). The S3 site of PII

OG2

exhibits further changes, visible most significantly in the T loop,
the C terminus, and a small distortion in the β4-strand. Together
these changes can lead to the strongly altered affinity of 2-OG
toward the stereochemically differing S2 and S3 sites.

Effect of 2-OG on the Dissociation of the PII–NAGK Complex. The
structure of the PII Mg-ATP/2OG complex suggests that 2-OG
prevents interaction of PII with NAGK by hindrance of the T loop
folding into the tightly bent conformation needed for NAGK
binding: The NAGK-bound PII structure involves a salt bridge
between K58 and E44 (18, 23), but because K58 is an important
ligand for 2-OG, formation of this salt bridge is prevented.
Furthermore, binding of 2-OG introduces a significant bend in
the backbone of residues 38–43 (Fig. 1E) and together with
the side chain of residue 42 induces a new T-loop conformation,
which is incompatible with NAGK binding. When the PII–NAGK
complex has already been formed, is 2-OG still able to bind to PII
and antagonize the PII–NAGK complex? Because this issue has
not yet been investigated, the dissociation of the PII–NAGK com-
plex by 2-OG was studied. First, complex dissociation was directly

Fig. 2. Stereo image of the 2-OG–binding site. Residues involved in binding
of 2-OG (atoms are marked with small numbers) and the hydrophilic portion
of ATP are numbered according to the sequence. Cofactors as well as side-
and main-chain atoms are marked in stick representation; Mg2þ is marked
as a green sphere. Colors of residue numbers (orange and blue) correspond
to those of the respective subunits. Residues conserved in standard align-
ments are boxed. Dashed blue lines represent bonds between residues
and ATP and black lines indicate bonds for the ligation of 2-OG, whereas
green lines mark the hexagonal coordination of the Mg2þ ion.

Table 1. Effector molecule binding to PII variants R9L and K58M

Kd1, μM Kd2, μM Kd3, μM

2-OG (+1 mM ATP)
R9L 441 ± 40 123 ± 7 509 ± 116
K58M ND ND ND
(WT) (5.1 ± 4.0) (11.1 ± 1.8) (106.7 ± 14.8)

ATP
R9L NM NM NM
K58M 10 ± 5 262 ± 136 31 ± 15
(WT) (4.0 ± 0.1) (12.5 ± 0.9) (47.4 ± 21.9)

Values correspond to the mean of two independent experiments �SEM.
The raw data were fitted by using a three-site binding model for a PII
trimer. For comparison, the original data for WT PII protein are given in
parentheses. ND, not detectable; NM, not measured.
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recorded by surface plasmon resonance (SPR) spectroscopy
(Fig. 4A). The PII–NAGK complex was formed on the sensor
chip, and, subsequently, 2-OG was injected (Fig. 4A, arrow) to
dissociate the complex. No dissociation was observed in the
presence of Mg-ATP alone; with 0.5 mM 2-OG, the complex
decayed slowly with a rate of 1.8 × 10−3 s−1. With 1 mM 2-OG
the decay rate increased to 9.0 × 10−3 s−1 and at 3 mM 2-OG to
28.6 × 10−3 s−1. By comparison, association of the complex was
inhibited by much lower 2-OG concentrations, with an IC50 of
approximately 130 μM (18). In the second assay, the catalytic
activity of NAGK∕PII in the presence of 50 μM arginine as an
indicator of the degree of complex formation (24) was assayed
(Fig. 4B). When 2-OG was added after formation of the PII–

NAGK complex, the inhibitory 2-OG concentration had an IC50

of 0.9 mM. By contrast, addition of 2-OG to PII prior to the
addition of NAGK inhibited the activity with an IC50 for 2-OG
of approximately 120 μM (Fig. 4B, Inset) (18). Thus, 2-OG is able
to dissociate the PII–NAGK complex; however, one order of
magnitude higher 2-OG concentrations are required to achieve
dissociation compared to those required to inhibit association.

Discussion
The structures presented here explain the known features of
PII-mediated 2-OG signaling: A Mg2þ ion, chelated by the phos-
phates of ATP, ligates carboxylate oxygens of 2-OG, and, there-

fore, Mg-ATP binding is the prerequisite for 2-OG binding to
PII. Binding of 2-OG to A. thaliana PII in the presence of Mg-

Fig. 3. Anticooperativity of 2-OG–binding sites. (A) Top view of the PII
OG structure as a ribbon plot and superposition of the PII

OG1 (in blue), PII
OG2 (in green),

and PII
OG3 (in orange) structures. The three ATP/2-OG–binding sites are marked by dashed circles and numbered (S1, S2, and S3). The picture on the right

represents the cofactors bound in the individual sites (highlighted in yellow) with three ATP and 2-OG molecules in S1, three ATP and two 2-OG molecules
in S2, and three ATP and one 2-OG molecules located in S3, respectively. The clockwise consecutive 120° binding into S1 → S2 → S3 sites is shown by an arrow.
(B) Zoom in (side view) of the three binding sites after superposition of the molecules. The content of the individual binding sites is marked below the picture.
T and B loops are marked with T and B, respectively, for clarity. (C) Binding sites S1, S2, and S3 of the PII

OG1 structure. In the S1 site, ATP, 2-OG, and Mg2þ (green
sphere) are bound, whereas S2 and S3 contain only ATP and noMg2þ. Significant changes in the C terminus and the T loop in site S2 are marked with numbered
circles. (D) Superposition of effector molecules bound to sites S1, S2, and S3 in the PII

OG1 structure. The ATP molecule observed in the S2 site is significantly
distorted relative to that in S1 and S3.

Fig. 4. The 2-OG effect on PII–NAGK complex dissociation. (A) SPR analysis of
2-OG-induced dissociation of NAGK–PII complex in the presence of 1 mMATP.
The response difference (ΔRU) between flow cells FC2 and FC1 (control) is
shown. After binding of 100 nM PII to NAGK in FC2, a mixture of 1 mM
ATP, 1 mM MgCl2, and 2-oxoglutarate [at a concentration of 0 (solid line),
0.5 (dotted line), 1 (dashed line), and 3 mM (dot-dashed line), as indicated]
was injected at the point indicated by an arrow. (B) The effect of 2-OG on
NAGK activity in the presence of 50 μM arginine. Increasing 2-OG concentra-
tions were added to reaction mixtures after the formation of the PII–NAGK
complex, and NAGK activity was determined as detailed in Materials and
Methods. (Inset) Effect of 2-OG on NAGK activity in the presence of PII, when
2-OG was preincubated with PII.
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ADP could involve additional residues, possibly from its pro-
longed C-terminal segment, which contacts the effector molecule-
binding site (22). The fact that all residues revealed here to be
involved in 2-OG binding are highly conserved among PII proteins
(see also Fig. S1) strongly suggests that the reported mode of 2-
OG binding could apply to all PII proteins. The only contradiction
is the previously reported structure of the PII family member
GlnK1 from M. jannaschii, where 2-OG bound from outside to
the apex of a bent T loop (20). Because no biochemical evidence
to support this binding mode was provided, it remains to be
clarified whether this 2-OG binding mode is a peculiarity of
the archaeal PII protein or whether this mode of binding resulted
from special crystallization conditions. In contrast, a recently de-
scribed structure of the PII homologue GlnZ from the proteobac-
terium A. brasiliense in complex with Mg-ATP and 2-OG revealed
a mode of 2-OG binding, which is highly similar to the 2-OG
binding described here, in particular the involvement of the
Mg2þ ion and the highly conserved key residues Q39 and K58
(21). This one and our PII structures perfectly agree with the prop-
erties of S. elongatus PII variants bearing mutations in residues
R9 and K58 described in this work and with the previously
described I86N variant, displaying a closed 2-OG–binding site
(18). Furthermore, they agree with previously reported properties
of other PII mutant variants. For instance, a Q39 mutation
was shown to strongly impair 2-OG binding, whereas a deletion
of the apical T-loop residues did not prevent 2-OG binding to
Escherichia coli PII (25). Furthermore, a K58 substitution abol-
ished 2-OG signaling in Rhodospirillum rubrum PII (26). More-
over, the actual structure reveals how precisely the carboxylate
oxygens of 2-OG are probed by Mg2þ coordination and by inter-
actions with protein backbone and side-chain atoms, explaining
the high selectivity of PII proteins for 2-OG (1, 16, 19). All
together, these evidences strongly imply that the mode of 2-OG
binding described here can be generalized for PII proteins.

It has been shown that 2-OG controls PII target interactions
that involve the T loop, with X-ray structural information avail-
able for the S. elongatus and A. thaliana PII–NAGK complex
(22, 23), the S. elongatus PII–PipX complex (27), and the E. coli
GlnK–AmtB complex (28, 29). The mechanism of 2-OG-
mediated PII-target control was clarified here with the cognate
PII–NAGK complex. When PII binds 2-OG, the base of the T loop
(R38-G41) wraps around this metabolite, thereby adopting a
unique retracted conformation. Furthermore, residues K58 and
R9, which are involved in folding the T loop into the tightly bent
conformation that fits into the NAGK crevice, perform ionic and
H-bond interactions with the 2-OG γ-carboxylate oxygens, pre-
venting formation of this fold. The IC50 for 2-OG to inhibit
PII–NAGK association (120–130 μM, depending on the method)
matches the dissociation constant of the third, low-affinity 2-OG–

binding site (approximately 110 μM). This correlation implies
that all three sites in PII have to be occupied by 2-OG in order
to inhibit NAGK binding. Consequently, PII partially loaded
with 2-OG should be able to bind NAGK, whereby 2-OG should
be displaced from PII. The driving force squeezing out 2-OG
could be provided by the encounter complex between PII and
NAGK, which, according to a recent analysis, could be formed
by an ionic interaction of the B-loop residue E85 of PII with
R233 of NAGK (18).

The present study also revealed how 2-OG dissociates the
PII–NAGK complex. As shown in Fig. 1C, 2-OG can access its
binding site from the PII periphery, which is not shielded by
NAGK in the complex. However, approximately 10-fold higher
concentrations of 2-OG are required to dissociate the PII–NAGK
complex than to inhibit its association. The difference could
be explained by the 2-OG–binding site being closed in the
PII–NAGK complex by the tightly bent T loop. The 2-OG should
unlock this compact conformation to gain access to its binding
site, and this process probably requires much higher concentra-

tions than binding to the open sites, which are accessible when PII
is not attached to NAGK.

The structure of the second cyanobacterial PII target complex,
PII–PipX, has been determined recently (27). It reveals three
PipX molecules bound on the flat bottom surface of the PII body
(orientation of Fig. 1), trapped between vertically extended T
loops whose tip residues grasp the PipX monomers. Notably, this
extended T-loop conformation is incompatible with the T-loop
fold imposed by Mg-ATP-2-OG binding (see structure overlay
in Fig. S5). Binding of 2-OG to the PII–PipX complex will retract
the extended T loop, releasing the bound PipX molecules, which
explains the biochemical data, showing that binding of PipX to
PII is antagonized by Mg-ATP/2-OG (10). A similar antagonistic
mechanism of Mg-ATP/2-OG can be assumed for the complex of
the PII family member GlnK with the ammonium transport chan-
nel AmtB, as deduced from the complex structure of the E. coli
proteins (28, 29). In complex with AmtB, the T loop is in a ver-
tically extended structure, resembling the T loop of S. elongatus
PII in complex with PipX. In the AmtB complex, GlnK residue
Q39 interacts with K58 and ADP is bound to the adenylate-bind-
ing pocket (28, 29). Given that the binding mode of Mg-ATP/
2-OG to GlnK is identical as outlined above, the resulting T-loop
conformation will be incompatible with formation of the GlnK–
AmtB complex (21). Studies with other E. coli PII receptors such
as NtrB imply that 2-OG does not always inhibit complex forma-
tion, but it may affect receptor activity at a postbinding step (16).
In this case, it is conceivable that receptor binding occurs apart
from the T loop (like the B-loop interaction of PII with NAGK)
and the conformational changes of the T loop imposed by 2-OG
binding to PII are transduced into conformational changes in the
receptor, thereby altering its activity.

PII proteins are highly sophisticated devices for measuring
the concentration of central metabolites ATP, ADP, and 2-OG
in an interdependent manner. This study reveals the mechanisms
underlying this process. Binding of one, two, or three 2-OG
molecules generates, via intersubunit communication, distinct
structural states of PII. Intermolecular signaling is based on the
highly conserved trimeric architecture of the PII proteins. The
β2-strands, which directly connect the three binding sites, could
play an important role. Binding of 2-OG to one site affects the
two neighboring sites asymmetrically, generating the anticooper-
ativity that allows metabolite sensing in a wide concentration
range. Moreover, the free site in clockwise orientation displays
a characteristic T-loop structure. PII receptors perceive the signal
via intimate T-loop interactions, which affect binding or influence
the receptor at a postbinding stage (16, 18). This mode of signal
transduction by PII is unique, and the complexity of interactions
explains the remarkably high conservation of PII proteins.

Materials and Methods
Full protocols are available in SI Materials and Methods.

Overexpression and Purification of Recombinant PII and NAGK. The R9L and
K58M variants were created with artificial glnB genes carrying the respective
mutations and cloned into the Strep-tag fusion vector pASK-IBA3 (IBA) after
restriction with BsaI as described previously (7). Overexpression of wild-type
and mutant S. elongatus glnB in E. coli RB9060 (30) and purification of
recombinant PII proteins with a C-terminal-fused Strep-tag II peptide were
performed according to Heinrich et al. (7). His6-tagged recombinant NAGK
from S. elongatus was overexpressed in E. coli strain BL21(DE3) (31) and
purified as reported previously (8).

SPR Detection. SPR experiments were performed by using a BIAcore X biosen-
sor system (GE Healthcare) at 25 °C in Hepes-buffered saline-Mg buffer as de-
scribed previously (8). In order to analyze the effect of 2-OG on the
dissociation of the PII–NAGK complex, 100 nM PII was first bound to immo-
bilized His6–NAGK in flow cell 2 (FC2) (ascending curves). Subsequently, 50 μL
buffer containing 1 mM ATP and different concentrations of 2-OG was in-
jected (start of injection indicated by the arrow). Binding and dissociation
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of PII to NAGK was recorded as the response signal difference (ΔRU) of
FC2-FC1; FC1, reference cell without His6–NAGK.

ITC. ITC experiments were performed on a VP-ITC microcalorimeter (MicroCal,
LCC) in ITC buffer containing 10 mMHepes-NaOH, pH 7.4, 50 mM KCl, 50 mM
NaCl, and 1 mM MgCl2 at 20 °C as described previously (18). For determina-
tion of ATP- and 2-OG–binding isotherms for PII variants R9L and K58M, solu-
tions with different protein concentration were titrated with 1 mM ATP or
4 mM 2-OG (in the presence of 1 mM ATP). The binding isotherms were
calculated from received data and fitted to a three-site binding model using
the MicroCal ORIGIN software (Northampton) as indicated.

Coupled NAGK Activity Assay.Activity of NAGKwas assayed by a coupled assay
(32) with modifications as described previously (24), in the buffer consisting
of 50 mM imidazole, pH 7.5, 50 mM KCl, 20 mM MgCl2, 0.4 mM NADH, 1 mM
phosphoenolpyruvate, 10 mM ATP, 0.5 mM DTT, 11 U lactate dehydrogenase,
15 U pyruvate kinase, 50 μM arginine, 1.2 μg PII, and 3 μg NAGK. The mixture
was preincubated for 3 min to allow PII–NAGK complex formation. Then the
reaction was started by the addition of 50 mM NAG and 2-OG (to determine
the effect of increasing 2-OG concentrations on disruption of PII–NAGK com-
plex in the presence of NAGK-inhibiting concentrations of arginine). Then,
20 s after addition of substrate, the change in absorbance at 340 nm was
recorded for 10 min. Linear kinetics were observed over that period of time.

Crystallization of Recombinant S. elongatus PII Protein. Crystallization was
performed with the sitting-drop technique by mixing 400 nL of the protein
solution with equal amounts of the reservoir solution by using the honeybee
robot (Genomic Solutions Ltd). Drops were incubated at 20 °C, and pictures
were recorded by the RockImager system (Formulatrix). The crystallization
buffer was composed of 10 mM Tris (pH 7.4), 0.5 mM EDTA, 100 mM NaCl,
1% glycerol, and 2 mM ATP-Mg, and also 2 mM 2-OG was added; crystals
appeared in a precipitant condition containing PEG 4000. Glycerol was used
as the cryoprotectant, and the crystals were flash-frozen in liquid nitrogen.
Diffraction data were collected at the Swiss Light Source. Diffraction images
were recorded on a MarCCD camera 225 (Marresearch), and images were
processed by using the XDS/XSCALE software (33). The structure was solved
by molecular replacement using the program Molrep (34). Rebuilding of the
structure and structure refinement was performed by using the programs
Coot and Refmac (35, 36). The quality of the structure was analyzed by
the Procheck program (37). Figures were generated by using PyMOL
(www.pymol.org).
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