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ABSTRACT:

Drug promiscuity (i.e., inhibition of multiple enzymes by a single
compound) is increasingly recognized as an important pharma-
cological consideration in the drug development process. How-
ever, systematic studies of functional or physicochemical char-
acteristics that correlate with drug promiscuity are handicapped
by the lack of a good way of quantifying promiscuity. In this
article, we present a new entropy-based index of drug promis-
cuity. We apply this index to two high-throughput data sets
describing inhibition of cytochrome P450 isoforms by small-

molecule drugs and drug candidates, and we demonstrate how
drug promiscuity or specificity can be quantified. For these
drug-metabolizing enzymes, we find that there is essentially no
correlation between a drug’s potency and specificity. We also
present an index to quantify the susceptibilities of different
enzymes to inhibition by diverse substrates. Finally, we use
partial least-squares regression to successfully predict isoform
specificity and promiscuity of small molecules, using a set of
fingerprint-based descriptors.

Introduction

In general terms, inhibitor promiscuity (i.e., a single compound
affecting multiple protein targets) can lead to either adverse off-target
effects (Peters et al., 2009) or enhanced therapeutic power (Roth et al.,
2004; Keiser et al., 2009), depending on the nature and extent of
promiscuity. In the context of drug metabolism by cytochrome P450
(P450) enzymes, drug promiscuity has potentially important effects on
the occurrence of clinically significant drug-drug interactions (DDIs)
(Atkins, 2004; Greenblatt and von Moltke, 2010). The P450 super-
family is responsible for phase I drug metabolism of the majority of
pharmaceuticals and drug candidates (Nebert and Russell, 2002;
Coon, 2005). The more P450 isoforms a given small molecule inhib-
its, the more likely it will be involved in DDIs with many different
drugs. At the same time, metabolism of a compound by multiple
isoforms provides redundancy in clearance and makes DDIs less
likely. Thus, the relative promiscuity of a drug toward P450 inhibition
versus P450 metabolism might be predictive of safety. Supporting this
idea, Veith et al. (2009) found that the U.S. Food and Drug Admin-
istration (FDA)-approved drugs appeared qualitatively more specific
with regard to P450 inhibition than a more general set of compounds
(the NIH Molecular Libraries Small Molecular Repository). In con-

trast, several companies are making efforts to develop isoform-
specific P450 inhibitors that would be administered as adjuvants to
enhance the pharmacokinetic profile of drugs that are highly susceptible
to P450 metabolism (Gilead Sciences, http://clinicaltrials.gov/show/
NCT00892437 NLM Identifier: NCT00892437; Pfizer, http://clinicaltrials.
gov/show/NCT00783484 NLM Identifier: NCT00783484; Tibotec
Pharmaceuticals, http://clinicaltrials.gov/show/NCT00838760 NLM
Identifier: NCT00838760).

Specificity in inhibition is thus an important functional parameter,
but quantitative studies aimed at correlating this specificity with
physicochemical properties of different compounds are handicapped
by a very significant gap: there is currently no continuous measure of
drug specificity with which to draw correlations, with respect to either
inhibition or metabolism. In the first part of this article, we rectify this
situation by introducing an index of inhibition promiscuity (or, equiv-
alently, specificity) adapted from one developed to quantify catalytic
promiscuity of enzymes. We apply this index to large-scale screens of
P450 inhibition enabled by recent advances in automation and ana-
lytical protocols, with the goal of quantifying the specificity with
which a given drug inhibits a particular P450 or P450s.

In the second part of this article, we use partial least-squares
regression (PLSR), a powerful multivariate analysis technique, to
identify chemical features that correlate with inhibitory activity to-
ward particular P450s, as well as chemical features that correlate with
nonspecific inhibition of several isoforms. We provide a template for
how multivariate statistical techniques such as PLSR can be applied to
large-scale screens of P450 inhibition, with the goals of predicting the
specificity of new drugs, and predicting which isoforms are likely to
be targeted by a new drug. Because P450 inhibition is a crucial
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contributor to clinically harmful DDIs, a more rigorous and global
approach to inhibition studies will facilitate the identification of
potentially problematic pharmacokinetic behavior early in the drug
discovery process (Stoner et al., 2010).

We demonstrate these analytical approaches on two sets of P450
inhibition data. The first set (which we denote as “S64”) consists of
IC50 values obtained for 64 commercially available pharmaceutical
compounds and six P450 isoforms (1A2, 2C8, 2C9, 2C19, 2D6, 3A4).
The second dataset (denoted as “S469”) consists of percent inhibition
values measured at a fixed inhibitor concentration measured for 469
proprietary compounds and 5 isoforms (1A2, 2C9, 2C19, 2D6, 3A4)
in a cocktail format, a subset of a larger (�10,000-compound) set
(Zientek et al., 2008). To ensure that we efficiently sampled the full
range of inhibitory patterns in the larger set, S469 was designed to
include 194 inhibitors chosen at random from the larger set, 116
compounds that showed no inhibition toward any isoform, 114 com-
pounds that were qualitatively potent and specific (�90% inhibition
of any one isoform and �20% inhibition of all others), and 45
inhibitors that were qualitatively potent and promiscuous (�80%
inhibition of at least four isoforms).

Iinh: An Index of Inhibitor Specificity. Shannon-Jaynes entropy is
a fundamental concept in information theory that describes the
amount of information in a dataset (Shannon, 1948) or equivalently in
statistical mechanics describes the relative uniformity or “flatness” of
a probability distribution (Jaynes, 1957). If there are N possible
outcomes of a given process, each with probability pi, the Shannon-
Jaynes entropy of the process is given by the following:

H � ��
i�1

N

pi � log pi (1)

If only one of the outcomes is certain (i.e., has pi � 1) while all
others have probability zero, then H takes the value 0. On the other
hand, if all outcomes have equal probability, then H takes its maxi-
mum value of log N.

We previously proposed (Nath and Atkins, 2008a) an index to
measure catalytic promiscuity based on Shannon entropy. Here, we
derive an analogous index to describe the promiscuity with which a
given drug inhibits a set of enzymes. Consider a set of N enzymes,
such that a drug displays an inhibitory potency, denoted as xi, toward
enzyme i. The ratio

xi/�
i�1

N

xi

can be thought of as approximating the probability that the drug will
inhibit enzyme i out of all the enzymes in the set. Analogous to eq. 1,
we can then define enzyme inhibitory promiscuity as follows:

Iinh � �
1

log N �
i�1

N
xi

�
j�1

N

xj

log
xi

�
j�1

N

xj

(2)

If the drug inhibits all enzymes with equal potency (i.e., is completely
promiscuous), Iinh � 1. If the drug inhibits only one enzyme but not any
of the others (i.e., is completely specific), Iinh � 0. Two important points
must be made about this proposed index. First, Iinh is dependent on the
panel of enzymes included in the calculation: just as an IC50 or a KI is a

functional parameter defined for a particular pair of enzymes and inhib-
itors, Iinh is defined for an inhibitor and a set of enzymes. Second, Iinh is
completely independent of an inhibitor’s absolute level of potency. This
critical independence enables meaningful correlations to be drawn be-
tween potency and specificity for a series of inhibitors.

The Iinh index can be inverted to describe the promiscuity with
which a particular isoform is inhibited by a panel of compounds or, in
other words, the degree to which an isoform is susceptible to inhibi-
tion by a wide range of compounds. We will call this quantity the
susceptibility index of an enzyme and denote it by using Isusc:

Isusc �
�1

log M �
i�1

M
xi

�
j�1

M

xj

log
xi

�
j�1

M

xj

(3)

Here, M is the number of compounds in the inhibitor panel, xi is the
inhibitory potency of compound i, and xj is the inhibitory potency of
compound j. We can extend Isusc to account for chemical similarities
among the compounds in the inhibitor panel by weighting the index in
a manner exactly analogous to our previous work (Nath and Atkins,
2008a). We performed weighting using the 166-bit MDL Key (Durant
et al., 2002) feature-based fingerprints (also called MACCS keys) as
chemical descriptors, because they are commonly used and easily
implemented. The keys consist of 166 digits that take the values “1”
or “0” depending on the presence or absence, respectively, of specific
chemical moieties in a given inhibitor. We admit that fingerprint-
based approaches have limitations in that they do not explicitly
account for three-dimensional structural features as well as physico-
chemical characteristics such as molecular mass, hydrophobicity, and
charge, but they are still capable of capturing important elements of
chemical similarity.

We define a weighted enzyme susceptibility index, Jsusc, as follows:

Jsusc � �
M

log M � �
i�1

M

�d�i

�
i�1

M

�d�i

xi

�
j�1

M

xj

log
xi

�
j�1

M

xj

(4)

Here, �d�i is the normalized mean chemical dissimilarity between
compound i and all other members of the inhibitor panel, defined as
follows. The Tanimoto distance between two compounds’ descriptors
is the number of exclusive features unique to either compound (i.e.,
present in exactly one of the descriptor bit strings), divided by the
number of exclusive or shared features displayed by either compound
(i.e., present in one or both of the descriptors bit strings). The
Tanimoto distance is the complement of the Tanimoto similarity
coefficient: if two compounds share all their features then the Tani-
moto distance is 0, whereas if all features are exclusive to either
compound then the distance is 1. As an upper bound on Tanimoto
distance for a set of compounds, we can calculate an overall set
dissimilarity as the number of features shared by at least one but not
all of the descriptors, divided by the number of features shared by at
least one of the descriptors in the set (i.e., the number of features in
the numerator, plus the number of features shared by all the com-
pounds in the set). Then, �d�i is defined as the mean of the Tanimoto
distances calculated for compound i and each other compound in the
panel, divided by the overall set dissimilarity for all compounds in the
panel. This weighting strategy increases the susceptibility index for
isoforms that are potently inhibited by chemically dissimilar com-
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pounds. For more details on the implementation of weighting, please
see our earlier work (Nath and Atkins, 2008a).

PLSR. PLSR (Abdi, 2003) is a multivariate statistical technique
related to principal components analysis that seeks to explain the
relationships between two matrices, one consisting of data and the
other of predictors. In our context, the data matrix consists of inhibi-
tion data and the predictor matrix consists of chemical substructure
fingerprints from the 166-bit MDL Keys. PLSR finds the vectors
(called “latent vectors”) that maximize the covariance between the
data and predictor matrices, under the assumption that such vectors
represent the most significant trends relating the observed data and
predictors. PLSR provides a regression matrix that shows how
strongly each predictor (i.e., chemical substructure) influences the
data (i.e., inhibitory potency toward a specific P450 isoform). PLSR
differs from machine learning classifiers based on Bayes’ theorem or
support vector machines (Merkwirth et al., 2004; Arimoto et al., 2005)
in that it can be used to reconstruct a continuous range of predicted
values for the variable of interest, rather than simply binning it into
one of two or more categories. Compared with support vector regres-
sion, PLSR is easier to implement and interpret, and it often provides
similar results (Ustün et al., 2007; Shah et al., 2010).

We have previously found the related technique principal compo-
nents analysis useful in understanding how individual probe substrates
report on different regions of the functional space of single P450
isoforms (Nath and Atkins, 2008b) and also in the prediction of a
compound’s propensity to cause time-dependent inhibition of
CYP3A4 (Zientek et al., 2010). In this study, we extend this approach
from considering multiple probe substrates of a single enzyme to a
panel of different enzymes, with the goal of understanding how P450s
are distributed in functional space with respect to their susceptibility
toward inhibition.

Materials and Methods

Reagents. Acetonitrile (MeCN), acetaminophen, phenacetin, dehydrate
amodiaquine dichloride, dextromethorphan hydrobromide monohydrate, di-
clofenac sodium salt, dimethyl sulfoxide (DMSO), dl-isocitric acid trisodium
salt, isocitric dehydrogenase from porcine heart, 0.1 M magnesium chloride
solution, miconazole, midazolam, �-nicotinamide adenine dinucleotide phos-
phate sodium salt hydrate (NADP�), �-nicotinamide adenine dinucleotide
2�-phosphate reduced tetrasodium salt hydrate (NADPH), 1 M potassium
phosphate dibasic solution, 1 M potassium phosphate monobasic solution,
tacrine hydrochloride, buspirone, along with all the compounds in Table 1
were purchased from Sigma-Aldrich (St. Louis, MO). Tacrine free-base, 1-OH
midazolam, des-ethyl-S-amodiaquine, 4-OH-mephenytoin, and (S)-mepheny-
toin were synthesized and purified at Pfizer Global Research and Develop-
ment. Human liver microsomes (HLM), pooled from 60 male and female
donors, were obtained as a special order from BD Gentest (Woburn, MA).
Stock solutions of diclofenac, dextromethorphan, (S)-mephenytoin, midazo-
lam, and tacrine were prepared in water, 90% MeCN:10% methanol, MeCN,
66.7% methanol:33.3% MeCN, and DMSO, respectively, and at concentra-
tions such that the total organic concentration in the assay was �0.2% (v/v).
Assay buffer was 0.1 M potassium phosphate buffer (pH 7.4) containing 1 mM
magnesium chloride. All reagents were diluted with assay buffer to the
indicated concentrations.

Assay Details. IC50 determinations for compounds in S64 were conducted in
polypropylene 96-well plates (Nalge Nunc International, Rochester, NY) using
a Beckman Coulter Biomek FX (Fullerton, CA) automated system. Com-
pounds were tested in triplicate at six concentrations of 0.1, 0.3, 1, 3, 10, and
30 �M. Miconazole, a broad spectrum P450 inhibitor, served as a quality
control and was tested at 0.01, 0.03, 0.1, 0.3, 1, and 3 �M. Reactions were
performed in a final volume of 300 �l/well using final concentrations of
DMSO and acetonitrile organic solvents of 0.1 and 1.0% (v/v), respectively.
Each well contained HLM (0.1 mg/ml protein), substrate cocktail (10 �M
phenacetin, 40 �M S-mephenytoin, 5 �M dextromethorphan, 5 �M diclofe-

nac, 2 �M midazolam, and 2 �M amodiaquine), and 1 mM NADPH in 100
mM potassium phosphate buffer (pH 7.4). Samples (compound, microsomes,
and substrate cocktail) were preincubated for 5 min at 37°C on a Biomek FX
recirculating water bath heating unit before the addition of the NADPH
solution to start the reaction. After an 8-min incubation at 37°C, reactions were
terminated by the addition of 600 �l/well chilled MeCN containing 0.2 �M
buspirone, as an internal standard. P450 inhibition was quantitated by simul-
taneously analyzing the metabolites of S-mephenytoin, dextromethorphan,
diclofenac, midazolam, phenacetin, and amodiaquine using a liquid chroma-
tography/mass spectrometry method. The high-performance liquid chromatog-
raphy-tandem mass spectrometry system consisted of Shimadzu LC-10AD vp
pumps (Shimadzu, Kyoto, Japan), a CTC PAL autosampler (Leap Technolo-
gies, Carrboro, NC), and a PE Sciex API 4000 mass spectrometer (Applied
Biosystems/MDS Sciex, Foster City, CA) fitted with a turbo ion spray inter-
face in the positive ionization mode. A Phenomenex (Torrance, CA) Onyx
Monolethic C18, 4.6 	 50-mm column was used. The analytes were eluted
with a mobile phase comprising 0.1% formic acid (aqueous solvent A) and
acetonitrile with 0.1% formic acid (solvent B). The primary gradient pumps
flow rates were 0.2 ml/min (99% A:1% B), and the dilution pump’s flow rate
was 3.0 ml/min (100% A). After the analytes were focused onto the column,
the dilution pump was stopped (minimal flow was maintained at 0.01 ml/min
flow to prevent back flow) and the primary gradient pumps were ramped to 3.0
ml/min to initiate the gradient: 5 to 20% B from 0.0 to 0.5 min, 20 to 70% B
from 0.5 to 1.2 min, 70% B from 1.2 to 1.4 min, and 70 to 5% B from 1.4 to
1.5 min. The compounds were monitored using the following multiple reaction
monitoring transitions: 1-OH midazolam, 342.1 3 203.1; des-ethyl-S-amodia-
quine, 328.2 3 283.2; acetaminophen, 152.0 3 110.0; 4-OH mephenytoin,
235.23 150.1; 4-OH diclofenac, 312.33 231.1; dextrorphan, 258.13 199.1;
and internal standard, buspirone, 385.75 3 122.23. The compound concen-
trations were estimated based on standard curves that were calculated using a
weighed linear regression (1/x2) of the concentration versus ratio of analyte to
internal standard peak areas.

Inhibition values for compounds in S469 were collected as previously
described (Zientek et al., 2008) and similarly to the assay conducted for
compounds in S64. In brief, a single concentration inhibition assessment was
conducted in polypropylene 384-well plates (Greiner Bio-One; Frickenhausen,
Germany) using a Beckman Coulter Biomek FX. Compounds were tested in
duplicate at a concentration of 3 �M. Miconazole, a broad spectrum P450
inhibitor that served as a quality control, was tested at 0.015, 0.15, and 3 �M.
Reactions were performed in a final volume of 50 �l/well using final concen-
trations of DMSO and acetonitrile organic solvents of 0.1 and 1.0% (v/v),
respectively. Each well contained HLM (0.1 mg/ml protein), substrate cocktail
(40 �M S-mephenytoin, 5 �M dextromethorphan, 5 �M diclofenac, 2 �M
midazolam, and 2 �M tacrine), and a NADPH regeneration system (5 mM
isocitric acid, 1 mM NADP�, and 1 U/ml isocitrate dehydrogenase) in 100
mM potassium phosphate buffer (pH 7.4) containing 1 mM MgCl2. Samples
(compound, microsomes, and substrate cocktail) were preincubated for 5 min
at 37°C on a Biomek FX Peltier heating unit before the addition of the NADPH
regeneration system. After an 8-min incubation at 37°C, reactions were ter-
minated by the addition of 50 �l/well chilled MeCN containing 0.2 �g/ml
triazolam that was used as an internal standard. P450 inhibition was quantitated
by simultaneously analyzing the metabolites of S-mephenytoin, dextrometho-
rphan, diclofenac, midazolam, and tacrine using liquid chromatography/mass
spectrometry as described by Smith et al. (2007).

Analytical Details. Entropy-based metrics, such as Iinh, require the defini-
tion of inhibitory potency (xi) values such that xi is higher for more potent
compounds, and always greater than zero. For compounds in set S64, we define
potency as xi � 
log(IC50/100 �M), with 100 �M serving as a reference value
to ensure that xi � 0. Some compounds in S64 did not display sufficiently
potent inhibition for accurate IC50 determinations with some isoforms. We
used the percent activity remaining at 30 �M (the highest inhibitor concen-
tration used) as an approximate upper bound on IC50 for these compounds. If
there was no detectable loss of activity at 30 �M, we used 99.9 �M as a
universal upper bound on IC50. As an example, we measured the IC50 of
artemisinin with respect to CYP1A2 to be 0.83 �M. Therefore, its potency
toward CYP1A2 is 
log(0.83/100) � 2.08. Furthermore, its IC50 with respect
to CYP3A4 could not be measured, but the percent activity remaining at 30
�M artemisinin was 56%. Therefore, its potency toward CYP3A4 is taken to
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be 
log(56/100) � 0.11. For compounds in S469, we simply define potency as
percent inhibition achieved at an inhibitor concentration of 3 �M, with 0.01%
as a lower bound on potency.

Specificity and susceptibility indices were calculated using scripts in Python
and Scientific Python (Jones E, Oliphant T, and Peterson P, http://scipy.org).
PLSR was performed using a Python script adapted from a Matlab program by

TABLE 1

Inhibitory potencies towards six P450 isoforms, and calculated specificity indices of compounds in S64

Potencya Towards P450 Isoform
Specificityb (1 
 Iinh)

2C8 3A4 2D6 2C9 1A2 2C19

Albendazole 0.19 0.00 0.12 0.07 0.30 0.10 0.17
Amiodarone 0.00 0.00 0.09 0.00 0.00 0.00 0.91
Amitriptyline 0.19 0.12 0.84 0.00 0.07 0.64 0.29
Artemisinin 0.11 0.25 0.04 0.00 2.08 0.18 0.56
Astemizole 0.28 0.97 0.86 0.00 0.00 0.19 0.33
Atenolol 0.12 0.00 0.00 0.00 0.00 0.00 0.94
Bepridil 0.02 0.17 3.00 0.00 0.00 0.11 0.78
Budesonide 0.52 1.35 0.21 0.73 0.07 0.12 0.22
Carbamazepine 0.06 0.11 0.00 0.08 0.04 0.19 0.18
Chloroquine 0.19 0.00 0.10 0.05 0.10 0.09 0.15
Chlorpheniramine 0.07 0.00 0.68 0.00 0.28 0.00 0.55
Chlorthalidone 0.06 0.00 0.00 0.03 0.02 0.18 0.41
Cimetidine 0.47 0.06 0.29 0.11 0.22 1.05 0.21
Cisapride 0.10 0.12 0.28 0.10 0.15 0.11 0.05
Clotrimazole 2.10 3.00 1.13 2.85 1.90 2.06 0.02
Clozapine 0.18 0.06 0.21 0.19 0.27 0.24 0.04
Cyclosporin 0.00 1.61 0.11 0.00 0.00 0.10 0.76
Danazol 1.76 0.18 1.66 1.95 0.28 1.70 0.12
Dexamethasone 0.12 0.02 0.00 0.07 0.00 0.00 0.47
Digoxin 0.10 0.06 0.00 0.09 0.05 0.09 0.12
Diltiazem 0.08 0.00 0.04 0.00 0.06 0.04 0.24
Diphenhydramine 0.09 0.04 0.68 0.03 0.00 0.06 0.52
Diphenylhydantoin 0.09 0.00 0.00 0.29 0.00 0.08 0.49
Disulfiram 2.33 1.59 0.46 2.03 1.92 1.35 0.05
Erythromycin 0.00 0.22 0.00 0.06 0.00 0.07 0.49
Felbamate 0.05 0.00 0.00 0.00 0.00 0.00 0.86
Fluconazole 0.31 0.97 0.28 0.74 0.24 1.23 0.10
Flurbiprofen 0.11 0.00 0.00 0.92 0.00 0.05 0.72
Fluvoxamine 0.22 0.11 0.85 1.03 3.00 2.42 0.21
Haloperidol 0.12 0.10 1.54 0.00 0.21 0.29 0.42
Indomethacin 0.00 0.00 0.00 0.60 0.11 0.14 0.55
Isradipine 1.30 1.09 0.16 1.44 0.55 1.32 0.08
Ivermectin 0.22 0.14 0.11 0.17 0.02 0.12 0.07
Ketoconazole 1.42 3.00 0.91 1.09 0.63 1.06 0.08
Ketoprofen 0.12 0.10 0.03 0.19 0.11 0.15 0.06
Lansoprazole 1.24 0.26 0.87 0.72 1.19 1.54 0.06
Loratadine 1.53 0.21 1.55 0.22 0.00 3.00 0.29
Lovastatin 0.82 1.47 0.17 0.12 0.00 0.10 0.37
Mefloquine 0.11 0.19 0.83 0.11 0.12 0.13 0.23
Methoxypsoralen 0.18 0.14 0.80 0.15 3.00 0.53 0.34
Naproxen 0.10 0.00 0.00 0.02 0.09 0.00 0.44
Nicardipine 1.81 2.17 1.48 2.42 0.12 1.80 0.08
Nifedipine 0.99 0.00 0.09 0.17 3.00 0.17 0.48
Norfloxacin 1.56 3.00 1.29 1.33 0.92 1.36 0.04
Omeprazole 0.89 0.22 0.06 0.17 0.79 0.29 0.17
Orphenadrine 0.22 0.09 0.62 0.00 0.02 0.07 0.38
Paclitaxel 0.10 0.15 0.06 0.13 0.13 0.13 0.02
Paroxetine 0.27 0.68 2.04 0.24 1.09 0.93 0.13
Perphenazine 0.26 0.26 2.68 0.24 2.13 0.63 0.25
Pimozide 0.17 0.14 0.18 0.11 0.17 0.10 0.01
Pravastatin 0.00 0.00 0.00 0.00 0.00 0.01 0.54
Promethazine 0.11 0.12 1.31 0.04 1.86 0.23 0.36
Propranolol 0.00 0.74 1.26 0.05 1.05 1.05 0.21
Quercetin 1.86 0.26 0.98 0.99 1.81 0.73 0.08
Quinapril 0.09 0.00 0.00 0.00 0.00 0.00 0.91
Quinidine 0.30 0.14 3.00 0.13 0.06 0.74 0.43
Ranolazine 0.00 0.22 0.00 0.00 0.00 0.00 0.96
Sertraline 0.26 0.70 1.48 0.24 0.85 1.21 0.10
Simvastatin 1.43 1.68 0.14 0.17 0.09 0.11 0.34
Tamoxifen 0.84 0.25 0.15 0.19 0.14 0.86 0.16
Terfenadine 0.28 1.19 1.19 0.18 0.12 0.19 0.21
Ticlopidine 0.22 0.00 0.73 0.17 0.76 1.60 0.25
Verapamil 0.17 0.83 0.15 0.15 0.06 0.10 0.25
Warfarin 0.15 0.00 0.02 1.08 0.03 0.04 0.64

a Potency is defined as (
log(IC50/100 �M)), so that a potency of 1 implies an IC50 of 10 �M and a potency of 2 implies an IC50 of 1 �M.
b Specificity is defined in terms of the entropy-based Iinh metric (eq. 2), so that a value of 0 implies a completely promiscuous inhibitor and a value of 1 implies complete specificity of inhibition.
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Abdi (2003). All scripts are available upon request. Log D values were
calculated using Pipeline Pilot (Accelrys, San Diego, CA).

Results
Inhibitor Specificity. Table 1 shows potency values [i.e., 
log(IC50/

100 �M)] obtained for the 64 inhibitors and six P450 isoforms that

comprise S64, along with calculated specificity values. A potency value of
1.0 in this table corresponds to an IC50 of 10 �M; a potency of 2.0
corresponds to an IC50 of 1 �M. As shown in Fig. 1, the inhibitors
displayed a wide range of specificity, from specific inhibitors like rano-
lazine (which selectively inhibits 3A4) or atenolol (which selectively

FIG. 1. Specificity index values of the 64 drugs in S64, ranked in order from most promiscuous (top) to most specific (bottom). Iinh is defined in eq. 2.
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FIG. 2. Correlation between specificity and maximum inhibitory potency toward any P450 isoform (a and b), heavy-atom count (c and d), or calculated log D (e and f) for all 64 compounds
in S64 (a, c, and e) and 194 randomly selected compounds from S469 (b, d, and f). Both datasets show low correlation between potency and specificity toward P450 isoforms (R2 of 0.044
for S64 and 0.014 for S469), indicating that these are essentially independent quantities. Furthermore, the lack of correlation between specificity and molecular size (R2 of 3 	 10
5 for S64

and 3 	 10
4 for S469) or hydrophobicity (R2 of 0.036 for S64 and 0.019 for S469) indicates that these global physicochemical characteristics are not the primary determinants of inhibitor
specificity.
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inhibits 2C8) to promiscuous inhibitors like clotrimazole and isradipine
(which potently inhibit all six isoforms in S64). Under our experimental
conditions, some of the most specific compounds display weak inhibition
toward a particular isoform and no detectable inhibition toward the five
others; other specific inhibitors are much more potent, such as bepridil
(2D6) and cyclosporin (3A4). Note that compounds displaying weak
inhibition toward all six isoforms have low specificity as determined by
the Iinh metric.

We found very low correlation between inhibitor potency and
specificity (1 
 Iinh) for either S64 or the randomly chosen subset (194
compounds) of S469, with R2 values of 0.044 and 0.014, respectively
(Fig. 2, a and b). To better understand the determinants of inhibitor
specificity, we further correlated Iinh values with heavy-atom counts
(a proxy for the molecular mass of a compound) and calculated log D
values (a proxy for hydrophobicity). In the case of heavy-atom counts,
we found no correlation for either S64 or S469 (R2 of 3 	 10
5 and 3 	
10
4, respectively) (Fig. 2, c and d). Calculated log D values also
showed no statistically significant correlation with specificity for
either S64 or S469, with R2 values of 0.036 and 0.019, respectively
(Fig. 2, e and f).

P450 Susceptibility to Inhibition. An important related question is
the relative susceptibility of isoforms to inhibitors: i.e., how promis-
cuous or specific different P450s are in terms of how they are affected
by diverse inhibitors. Table 2 shows Isusc (defined in eq. 3) and
weighted Jsusc (eq. 4) calculated for all six isoforms from S64. The
susceptibility index values for each isoform are fairly similar before
and after weighting, indicating that S64 represents a reasonably uni-
form sampling—i.e., the inhibitors in S64 do not display a marked bias
toward any subspace of the functional space spanned by the full set.
All six isoforms have susceptibility indices within a narrow range

from 0.75 to 0.85, indicating that drug-metabolizing P450s are gen-
erally inhibited by a broad range of compounds (as might be expected
a priori for promiscuous detoxification enzymes). Within the range of
observed susceptibility values, CYP3A4 has the lowest Jsusc value,
indicating that it is slightly more resistant to inhibition by diverse
compounds. CYP2C8 has the highest Jsusc value, meaning that it is
(by a small margin) the most susceptible isoform to inhibition by
diverse compounds. We performed a jackknife (leave-one-out) anal-
ysis to estimate uncertainties in the susceptibility indices. In general,
two-tailed t tests indicated that the differences, while small, are
meaningful: except for CYP1A2-CYP3A4 and CYP2C8-CYP2C19,
the differences between each pair are significant to at least P � 0.001.
In other words, susceptibility to inhibition follows the rank-order
3A4�1A2 � 2C9 � 2D6 � 2C8�2C19.

PLSR. Because global physicochemical characteristics did not
display informative correlations with specificity, we turned to PLS
regression to gain additional insight. The results of regression on S64,
shown in Table 3, demonstrate the basic concepts of PLS and the
prediction matrix. By simultaneously regressing the S64 matrix against
a matrix of chemical descriptors for each inhibitor, we identified how
strongly the presence of each chemical feature correlates with inhib-
itory potency toward each isoform. For S64, we limited the chemical
descriptor to a 16-bit key to avoid overparametrizing the regression
problem. Elements in the prediction matrix correspond to how much
the presence of a particular chemical feature increases potency toward
a corresponding P450 isoform. For example, the value of 0.43 in the
“Azole” row and “3A4” column indicates that, on average, the pres-
ence of a triazole ring increases potency by 0.43: equivalent to a
decrease in IC50 for CYP3A4 by a factor of 100.43 � 2.7. From the S64

prediction matrix, it is obvious that nitroaromatic and triazole moieties
result in higher potency across the panel of P450 isoforms. This result
agrees with the large body of data (Nivoix et al., 2008; Wen et al.,
2008) collected with various members of these classes of compounds:
the quantitative confirmation validates the PLSR method. Numbers in
italics indicate negative values, i.e., a decrease in potency associated
with the presence of the corresponding feature. For example, the
presence of more than 45 nonhydrogen atoms in a compound was
associated with a decreased potency toward all isoforms except
CYP3A4; the presence of a tertiary amine moiety was associated with
an increase in IC50 for CYP1A2 by a factor of 100.46 � 2.9. However,
regression with a 16-bit key can capture only a limited amount of
information regarding the chemical characteristics of an inhibitor, and

TABLE 2

Inhibitory susceptibility indices for six P450 isoforms calculated from the
inhibitory potencies displayed by compounds in S64

Isoform Isusc
a Jsusc

a

3A4 0.7734 � 0.0034 0.7830 � 0.0036
1A2 0.7616 � 0.0035 0.7858 � 0.0037
2C9 0.7741 � 0.0034 0.8040 � 0.0034
2D6 0.8268 � 0.0031 0.8232 � 0.0033
2C19 0.8253 � 0.0027 0.8444 � 0.0029
2C8 0.8278 � 0.0022 0.8495 � 0.0022

a Higher values indicate inhibition by a wider range of compounds. Jsusc values are weighted
by the relative chemical similarities of the inhibitors, and Isusc values are unweighted. Error
values represent S.D.s calculated by jackknife (leave-one-out) analysis of the compounds in S64.

TABLE 3

PLSR predictions of change in potency towards six P450 isoforms as a function of 16 chemical features, calculated for the compounds in S64

Feature 2C8 3A4 2D6 2C9 1A2 2C19

�25 Heavy atoms 
0.03a 
0.13 0.03 0.00 0.06 0.07
25–45 Heavy atoms 0.10 0.09 0.06 0.06 
0.04 0.01
�45 Heavy atoms 
0.14 0.07 
0.16 
0.10 
0.03 
0.14
Positive charge 
0.14 
0.14 
0.04 
0.12 
0.05 
0.05
Negative charge 0.12 
0.03 
0.25 0.18 
0.29 
0.21
1 Ring 0.02 
0.04 0.17 
0.02 
0.05 0.13
2 Fused rings 0.16 0.02 0.16 0.00 0.03 0.14
3 Fused rings 0.00 
0.11 0.30 
0.11 0.36 0.25
4 � Fused rings 0.11 
0.07 0.10 0.11 
0.27 0.09
Ester 
0.02 
0.06 
0.25 
0.10 
0.26 
0.10
Ether 
0.16 
0.09 0.03 
0.15 0.13 
0.05
Acid 
0.21 0.02 0.04 
0.12 0.02 0.01
Secondary amine 
0.08 0.18 0.06 
0.08 
0.02 
0.04
Tertiary amine 0.02 0.13 0.15 
0.08 
0.46 
0.06
Nitroaromatic 0.23 0.18 0.24 0.21 0.48 0.27
Azole 0.25 0.43 0.00 0.31 0.06 0.31

a Italics indicate values �0, i.e., presence of a feature correlates with lower potency (higher IC50) towards a particular isoform. A value of 0.5 corresponds to a 100.5 � 3.2-fold decrease in IC50.
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results are highly dependent on the choice of characteristics included
in the key.

The larger number of compounds in S469 instead allowed us to
more rigorously evaluate the accuracy of PLSR and generate a more
detailed prediction matrix without overparametrizing the regression
problem. We regressed S469 against a matrix derived from 166-bit
MDL keys of each inhibitor and derived an average contribution for
each feature, analogous to the S64 feature contributions shown in
Table 3. We found that the feature-based approach captured much of
the functional diversity of S469: there was reasonable correlation
(R2 � 0.60) between experimental percent inhibition values and those
predicted by our regression (i.e., the product of the MDL-derived
feature matrix and the prediction matrix obtained by PLSR). To
validate the accuracy of regression, we randomly selected 23 com-
pounds from S469 to be a test set and performed PLSR on the
remaining 95% of S469. We then predicted percent inhibition values
for the test set (open circles in Fig. 3) and again found a modest
correlation (R2 � 0.53) with the experimental values.

PLSR can also be used to predict specificity directly (rather than
potency values for the individual isoforms), by using a data matrix of
specificity values and the same MDL-derived descriptor matrix as
before. Performing this procedure on all compounds from S469 that
showed detectable inhibition, we found again a good correlation
(R2 � 0.66) between measured and predicted specificity for com-

pounds in the training set and an R2 of 0.44 for compounds in the test
set (open circles in Fig. 4) a level of correlation that should enable
prediction of the specificity with which novel drug candidates will
inhibit drug-metabolizing P450 isoforms.

Discussion

Quantitative specificity measurement may lead to better choices of
prototypical specific inhibitors for in vitro and in vivo drug metabolism
studies. For example, the FDA currently recommends (Food
and Drug Administration, http://www.fda.gov/downloads/Drugs/
GuidanceComplianceRegulatoryInformation/Guidances/ucm072101.pdf)
that quinidine (Iinh � 0.57) be used as a 2D6 inhibitor; of the compounds in
S64, bepridil displays similar potency and is more specific (Iinh � 0.22), and
therefore would be a better choice to selectively inhibit 2D6 in vitro. Even if
other experimental considerations make the use of bepridil impractical, ap-
plying Iinh calculations to larger panels of potential inhibitors should identify
other compounds that display similar high specificity and potency toward the
major P450 isoforms. From S64, the following compounds are relatively
specific (Iinh � 0.5) and relatively potent (potency �1, i.e., IC50 � 10 �M)
toward the isoform in parentheses: bepridil (2D6); cyclosporine (3A4); war-
farin (2C9); and artemisinin (1A2). Our data suggest that these compounds
are perhaps good choices as prototypical inhibitors for their respective
isoforms.

An important aspect of entropy-based metrics, such as Iinh, is that
they are (by design) independent of overall potency, allowing us to
test for a correlation between potency and specificity for both datasets.
This finding is broadly important because, in different contexts, both
positive (Maly et al., 2000) and negative (Ghoreschi et al., 2009)
relationships between potency and specificity have been posited. We
found essentially no correlation, indicating that under our experimen-
tal and analytical conditions, potency and specificity must essentially
be considered independent quantities for drug-metabolizing P450s.
Analogous Iinh-based experiments for other families of drug targets
will enable a more rigorous understanding of the trade-offs between
potency and specificity in different pharmacological contexts. Like-
wise, the lack of correlation between heavy-atom count and specificity
indicates that for the compounds in our study (heavy-atom counts
range from 16 to 85 for S64 and from 17 to 52 for S469), the size of
a compound does not influence its propensity for promiscuous inhi-
bition. Furthermore, the lack of correlation between calculated log D
and specificity indicates that nonspecific hydrophobic interactions are
neither necessary nor sufficient for promiscuous P450 inhibition.
Although it has been shown that aggregate formation by hydrophobic
compounds can lead to nonspecific interactions, promiscuous inhibi-
tion, and consequent false-positives in drug discovery contexts
(Shoichet, 2006; Coan and Shoichet, 2008), the weak negative corre-
lations we observe indicate that aggregate-based inhibition is probably
not a major contributing factor under our assay conditions.

PLSR applied to feature-based chemical descriptors and P450 in-
hibition behavior provided much more predictive insight than the
(univariate) linear regression results discussed above. It is quite prob-
able that more complete descriptors of chemical features and struc-
ture, possibly combined with more advanced regression or machine
learning techniques such as support vector machines (Merkwirth et
al., 2004) or Bayesian classifiers (Arimoto et al., 2005), would lead to
increases in accuracy. This type of analysis is made possible using a
continuous, quantitative measure of specificity such as the one we
have presented in this work, and the simpler approach demonstrated
here as a proof of principle may itself prove useful in identifying poten-
tially problematic P450 inhibitors early in the development process.

In an extremely comprehensive high-throughput study of P450
inhibition, Veith et al. (2009) recently studied the inhibition of five

FIG. 3. Correlation between measured inhibitory potency values and values pre-
dicted by PLSR from a training (closed circles) set of 95% of the compounds in S469

(R2 of 0.60). Open circles indicate values predicted by the PLSR model for a test set
of the remaining 5% of the compounds (R2 of 0.53, gray line), showing successful
prediction of isoform-specific inhibition.

FIG. 4. Correlation between measured inhibition specificity (1 
 Iinh) values and
values predicted by PLSR from a training (closed circles) set of 95% of the S469

compounds that showed detectable inhibition toward at least one isoform (R2 of
0.66). Open circles indicate values predicted by the PLSR model for a test set of the
remaining 5% of the compounds (R2 of 0.44, gray line), showing successful
prediction of inhibitor promiscuity.
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P450 isoforms by a panel of almost 17,000 compounds. They classi-
fied compounds as inhibitors, activators or inactive, and then used a
fingerprint-based search to identify structural features that were un-
der-represented in active compounds and over-represented in inactive
compounds from a “biofocused” subset (i.e., drugs and drug-like
molecules), compared to a more general subset of compounds. Such
features are assumed to correlate with decreased potency toward
P450s. Our analysis differs from that of Veith et al. (2009) in that we
retain potency as a continuous value (rather than binning inhibitory
behavior), enabling explicit predictions of inhibitory potency values
for new compounds outside our training set. In addition, the PLSR
approach effectively compares individual compounds to identify
structural features correlated with increased or decreased potency, rather
than comparing groups of compounds. This treatment eliminates any
possibility of bias in the recovered structural features based on the
assignment of compounds to the biofocused and general subsets.

Conclusions

Several aspects of drug metabolism are explored here, which con-
cern the relative specificity of interaction between small molecules
and several cytochrome P450s. It is clear that inhibitory metabolic
drug interactions resulting from overlapping preferences of drugs for
the various P450s can severely limit the use of some drug combina-
tions, whereas specific P450 inhibitors could improve the therapeutic
power of certain highly metabolized drugs. As a result, tools that aid
in the prediction of the propensity of drugs to share metabolic or
inhibitory overlap could facilitate the prediction and modulation of
DDIs. In this study, we applied a novel metric for inhibitory speci-
ficity and partial least-squares regression to explore the range of
specificities for P450 isoforms among 533 common drugs or propri-
etary drug candidates.

The strategy laid out here succeeds in that it agrees well with
qualitatively “known” aspects of P450 inhibition: for instance, that the
presence of certain functional groups on small molecules (such as
triazoles and nitroaromatics) often increases inhibition for certain
drug-metabolizing P450s. However, this strategy provides a more
rigorous and systematic framework with which to understand and
quantify these correlations. Fingerprint-based regression also suc-
ceeds quantitatively in that it predicts isoform-specific activity, or
inhibitor promiscuity per se, with reasonable accuracy when per-
formed with a sufficiently large training set.

The other major finding of this work is that there is essentially no
correlation between inhibitory potency and specificity, at least for drug-
metabolizing P450s. Understanding and quantifying the nature and
strength of this correlation for other families of enzymes has important
implications for drug design in general. Given the growing recognition of
drug promiscuity (Roth et al., 2004; Keiser et al., 2009; Peters et al.,
2009) in pharmacology, similar studies correlating drug potency and
specificity and identifying the determinants of drug promiscuity may
prove to be powerful tools for future drug design efforts.
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Nivoix Y, Levêque D, Herbrecht R, Koffel JC, Beretz L, and Ubeaud-Sequier G (2008) The
enzymatic basis of drug-drug interactions with systemic triazole antifungals. Clin Pharmaco-
kinet 47:779–792.

Peters JU, Schnider P, Mattei P, and Kansy M (2009) Pharmacological promiscuity: dependence
on compound properties and target specificity in a set of recent Roche compounds. ChemMed-
Chem 4:680–686.

Roth BL, Sheffler DJ, and Kroeze WK (2004) Magic shotguns versus magic bullets: selec-
tively non-selective drugs for mood disorders and schizophrenia. Nat Rev Drug Discov
3:353–359.

Shah AR, Agarwal K, Baker ES, Singhal M, Mayampurath AM, Ibrahim YM, Kangas LJ,
Monroe ME, Zhao R, Belov ME, et al. (2010) Machine learning based prediction for peptide
drift times in ion mobility spectrometry. Bioinformatics 26:1601–1607.

Shannon CE (1948) A mathematical theory of communication. Bell System Technical Journal
27:379–423.

Shoichet BK (2006) Screening in a spirit haunted world. Drug Discov Today 11:607–615.
Smith D, Sadagopan N, Zientek M, Reddy A, and Cohen L (2007) Analytical approaches to

determine cytochrome P450 inhibitory potential of new chemical entities in drug discovery.
J Chromatogr B Analyt Technol Biomed Life Sci 850:455–463.

Stoner CL, Wester MR, and Burke BJ (2010) In silico approaches to predict DDIs, in Enzyme-
and Transporter-Based Drug-Drug Interactions (Pang KS, Rodrigues AD, and Peter RM eds),
pp 151–168, Springer, New York.

Ustün B, Melssen WJ, and Buydens LM (2007) Visualisation and interpretation of support vector
regression models. Anal Chim Acta 595:299–309.

Veith H, Southall N, Huang R, James T, Fayne D, Artemenko N, Shen M, Inglese J, Austin CP,
Lloyd DG, et al. (2009) Comprehensive characterization of cytochrome P450 isozyme selec-
tivity across chemical libraries. Nat Biotechnol 27:1050–1055.

Wen B, Coe KJ, Rademacher P, Fitch WL, Monshouwer M, and Nelson SD (2008)
Comparison of in vitro bioactivation of flutamide and its cyano analogue: evidence for
reductive activation by human NADPH:cytochrome P450 reductase. Chem Res Toxicol
21:2393–2406.

Zientek M, Miller H, Smith D, Dunklee MB, Heinle L, Thurston A, Lee C, Hyland R, Fahmi O,
and Burdette D (2008) Development of an in vitro drug-drug interaction assay to simulta-
neously monitor five cytochrome P450 isoforms and performance assessment using drug
library compounds. J Pharmacol Toxicol Methods 58:206–214.

Zientek M, Stoner C, Ayscue R, Klug-McLeod J, Jiang Y, West M, Collins C, and Ekins S (2010)
Integrated in silico-in vitro strategy for addressing cytochrome P450 3A4 time-dependent
inhibition. Chem Res Toxicol 23:664–676.

Address correspondence to: Abhinav Nath, Department of Molecular Bio-

physics & Biochemistry, Yale University, P.O. Box 208114, New Haven, CT

06520-8114. E-mail: abhinav.nath@yale.edu

2203QUANTIFYING INHIBITOR SPECIFICITY AND PROMISCUITY


