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Abstract
This study presents a finite element based computational model to simulate the three-dimensional
deformation of the breast and the fibroglandular tissues under compression. The simulation was
based on 3D MR images of the breast, and the craniocaudal and mediolateral oblique compression
as used in mammography was applied. The geometry of whole breast and the segmented
fibroglandular tissues within the breast were reconstructed using triangular meshes by using the
Avizo® 6.0 software package. Due to the large deformation in breast compression, a finite
element model was used to simulate the non-linear elastic tissue deformation under compression,
using the MSC.Marc® software package. The model was tested in 4 cases. The results showed a
higher displacement along the compression direction compared to the other two directions. The
compressed breast thickness in these 4 cases at 60% compression ratio was in the range of 5-7 cm,
which is the typical range of thickness in mammography. The projection of the fibroglandular
tissue mesh at 60% compression ratio was compared to the corresponding mammograms of two
women, and they demonstrated spatially matched distributions. However, since the compression
was based on MRI, which has much coarser spatial resolution than the in-plane resolution of
mammography, this method is unlikely to generate a synthetic mammogram close to the clinical
quality. Whether this model may be used to understand the technical factors that may impact the
variations in breast density measurements needs further investigation. Since this method can be
applied to simulate compression of the breast at different views and different compression levels,
another possible application is to provide a tool for comparing breast images acquired using
different imaging modalities – such as MRI, mammography, whole breast ultrasound, and
molecular imaging – that are performed using different body positions and different compression
conditions.
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1. INTRODUCTION
Mammographic density is a quantitative estimate of the proportion of fibroglandular tissue
to the total breast area analyzed on mammograms. The fat and fibroglandular tissues are two
major components of the breast. The fibroglandular tissue is denser than the fatty tissue, and
therefore shows brighter intensity on mammograms. As such, the percentage of the dense
tissues in the breast area can be measured based on the contrast shown in the mammogram,
which is termed “mammographic density”. There is well-established evidence that a higher
mammographic density is associated with an increased risk of breast cancer (Kopans 2008,
Boyd et al 2007, Martin et al, 2008, Byrne 2008), suggesting that breast density may play an
important role in the evaluation of cancer risk. Women with mammographic density greater
than 50% have 3- to 5-fold higher breast cancer risk than those with less than 25% density
(Byrne 2008, Wolfe et al 1987, Byrne et al 1995, Boyd et al 1998, Boyd et al 2002).

Despite the established role of breast density as one of the strongest predictors of breast
cancer risk, the progress to build the density into the risk assessment model has been
relatively slow, which may be in part due to the lack of reliable measurement methods
(Boyd et al 2007, Tice et al 2008, Kerlikowske et al 2007, Vachon et al 2008a). Visual
estimation was still commonly used in recent publications (Vachon et al 2008a, Vachon et al
2008b, Johansson et al 2008, Stone et al 2006, Heine et al 2008). Quantitative
measurements by planimetry, computer-assisted thresholding, and clustering segmentation
methods (Glide-Hurst et al 2007) have been reported.

Even if a reliable method can be developed, another fundamental problem is the nature of
projection images in mammography. The measured density may depend upon the projection
angle, compression level, patient position, and x-ray intensity. Kopans (2008) indicated that
the use of two-dimensional (2D) mammograms alone to assess the ratio of dense to fatty
tissue in the breast is inaccurate for determining the volume ratios of the soft tissues, and
suggested that an accurate breast density should be obtained from the three-dimensional
(3D) data based on volumetric measurements. However, some researchers would argue that
2-dimensional measurement still provides very useful information (Hall 2008).

A simple thresholding method uses a computer-assisted technique to outline the dense
regions and calculate the percent density by normalizing to the total breast area. The
stepwise rise in breast cancer risk associated with higher density was established by using
this thresholding method (Byng et al 1994a, Byng et al 1994b, McCormack et al 2007).
Recently, there are some efforts to estimate the volumetric density on mammograms
considering the overlapping tissue along the projection direction. For example, Ding et al
(2008) developed “standard mammogram form (SMF)” to estimate the density
volumetrically, but it was found that SMF did not better predict cancer risk when compared
to the thresholding method.

Therefore, the variations in the measured density by mammography warrant more research.
To investigate this variation, the mammograms taken from the same woman using different
positions, compression angles, and compression levels should be compared; however, since
radiation is given to the woman, it is not ethical to perform such a study due to the concern
of excessive radiation exposure. In this study we explored a new approach to generate
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synthetic mammograms based on 3D MRI, aiming to demonstrate the feasibility of using
this simulation model as a reasonable method for understanding the technical factors that
may impact on the variations in breast density measurements. The first step for such a
simulation model would be to account for the effects of breast compression. A nonlinear
deformation model was applied to estimate the displacement of tissues based on different
elastic properties of fibroglandular and fatty tissues from the external force exerted by
compression paddles to simulate craniocaudal (CC) and mediolateral (MLO) view
compressions. After simulated compression, a synthetic projection image of the dense tissue
was formed and compared to the clinical mammogram of the same woman. The extent of
deformation at different compression views (CC and MLO) and different levels (20%, 40%,
and 60%) were compared. The purpose of this work is to demonstrate the feasibility of this
finite element based nonlinear deformation model for simulating breast compression. This
initial experience would provide a foundation for further refinement of this model and for
evaluation of its potential clinical applications in the future.

2. METHOD
2.1. Breast segmentation

The MRI study was performed on a 1.5 T Eclipse scanner (Philips, Cleveland, OH) using a
dedicated four-channel breast coil. For case #1 and case #2, the pre-contrast T1-weighted
images without fat saturation were obtained using a 3D SPGR (RF-FAST) pulse sequence,
with TR=1.8 ms, TE=4.0 ms, slice thickness=4.0 mm, flip angle=20, matrix size=256×256,
FOV=380 mm. A total of thirty-two axial slices were used to cover the entire breast. The
corresponding voxel size was 1.48 × 1.48 × 4 mm3. Case #3 and #4 were acquired using
different parameters, with 27 slices and the corresponding voxel size of 0.64 × 0.64 × 5
mm3. The mammograms of these two women taken within 6 months of their MRI were
available for comparison.

A computer-assisted algorithm was employed to segment the fatty and the fibroglandular
tissues from MR images, based on the method reported in Nie et al (2008). The breast was
segmented from the body using the following procedures: (a) perform an initial V-shape
cutting using three body landmarks to determine the posterior cutoff points of breast in the
lateral boundary; (b) apply a fuzzy C-means (FCM) based segmentation algorithm with the
B-spline curve fitting to obtain the boundary of the chest wall muscle. The curve is
computed by fitting to a set of data points by basis function of a fixed order and knots (Park
and Lee 2007, Wang et al 2006). Dynamic searching is used to exclude skin. After the breast
region is obtained, the fuzzy C-means clustering algorithm is applied for homogeneity
correction and segmentation between the fibroglandular and fatty tissues. Fuzzy C-means
algorithm uses a fuzzy pixel classification to segment images (Bezdek 1981, Kulkarni 2001,
Chen and Giger 2004). The number of classes in the dataset has to be determined by the
operator (Dunn 1973, Ahmed et al 2002, Bezdek 1980). The segmentation results of case #1
are shown in figure 1. On MRI, breast tumors and the fibroglandular tissues showed similar
signal intensities, which would result in the tumor being erroneously classified as
fibroglandular tissue. Therefore, for each of the 4 cases, only the normal breast without
known tumors was analyzed in this study.

2.2. 3D breast surface generation
In order to generate the volume mesh of the breast, the outside surface of the whole breast
first needed to be determined. Currently available medical imaging software for 3D
reconstruction treats objects as surface components. The surface triangulation uses a set of
triangular facets of different sizes to cover the surface (Kluess et al 2009, Cuillière 1998, Shi
et al 2006, Shewchuk 2002, Rypl and Bittnar 2004, Boissonnat et al 2005). This process was
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done using the Avizo® 6.0 software package (Visage Imaging Inc., Carlsbad, California,
USA). The Delaunay triangulation was employed to build topological structures from the
MR images. The outside surface of the whole breast contained 56,098 points and 109,248
faces (i.e., triangular elements). The 3D surface of case #1 is shown in figure 2. The 3D
surface geometry of the fibroglandular tissue within the breast was also generated, as
demonstrated in figure 3. The following step was to generate the volume mesh.

2.3. Volume mesh generation
The finite element software package MSC.Marc® (MSC Software Corporation, Santa Ana,
California, USA) was used to generate the volume mesh from the 3D surface geometry of
the breast and the fibroglandular tissues, shown in figure 4. Due to the limited computing
capacity of the PC (Intel core 2 CPU, T7400@2.16GHz, 2 GB RAM), in order for the
MSC.Marc software to work well, the number of triangular elements used to cover the
breast surface had to be reduced from 109,248 to 10,000. The tetrahedral volume mesh with
4 nodes was defined as one element. The breast was meshed into 23,777 elements, 21,417
for the fatty tissue and 2,360 for the fibroglandular tissue. After creating the volume meshes,
different elastic properties were assigned to the fatty tissue and fibroglandular tissue,
respectively.

2.4. Breast compression modeling
The compression force was applied to simulate the deformation of breast under craniocaudal
(CC) and mediolateral oblique (MLO) compression, depicted in figures 5(a) and 5(b),
respectively. The compression direction was defined as the z-axis. The MSC.Marc®
software package was used to simulate the nonlinear breast compression under mechanical
loading exerted by the compression paddles. The coefficient of friction between the breast
surface and the compression paddles was set to 0.2 (taken from Yin et al. 2004). As shown
in figure 5, the upper paddle and the lower paddle moved along the opposite z-axis direction.
The compression ratio was defined as 1-(Lf/Li), where Lf is the thickness of the breast after
compression and Li is the thickness of the breast in the compressed direction before the
external force is applied. The two compression paddles on the breast surface were treated as
a rigid body with a moving contact boundary during the compression process. For CC
compression, the direction perpendicular to the chest wall was defined as the y-axis. The
node on the posterior surface (i.e. sitting on the ribcage), shown in figure 6, should have
zero displacement along the y-direction, and was used as the boundary condition. There are
a total of 454 nodes on this surface, and they can only slide within the x-z plane parallel to
chest wall during the deformation under compression.

2.5. Nonlinear breast compression
For most medical applications with a small tissue deformation of less than 5% strain, the
linear elasticity model is commonly used. Since the deformation of breast under
mammography compression is much larger (i.e. over 5%), the hyperelastic model is required
to describe the nonlinear strain-stress behavior (Rivlin 1948, Holzapfel 2001, Azar et al
2002, Samani and Plewes 2004, Yin et al 2004,Tanner et al 2006, Bechir et al 2006,
Sokhanvar et al 2008, Horgan and Murphy 2009). A strain energy density function for
quasi-incompressible hyperelastic materials in terms of the strain invariants is defined in the
following references (Rivlin 1948, Holzapfel 2001, Bechir et al 2006, Sokhanvar et al 2008,
Horgan and Murphy 2009). The strain of the hyperelastic materials is recoverable after the
applied force is lifted.

For the Moony-Rivlin materials, the strain-energy density function can be described as the
simplest rational polynomial representation (Holzapfel 2001, Bechir et al 2006, Horgan and
Murphy 2009). Based on the polynomial model, the measured strain energy coefficients of
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fatty and fibroglandular tissues were reported by Tanner et al (2006) and Samani and Plewes
(2004), and they were used in our simulation model: (C01 =1,333 Pa and C10 = 2,000 Pa) for
fatty tissue, and (C01 =2,333.3 Pa and C10 =3,500 Pa) for fibroglandular tissue (Krouskop et
al 1998).

Finally, the finite element software package MSC.Marc® was used to simulate breast
compression at various compression ratios from 0 to 60%. The moving velocity of the two
paddles toward each other was set at 0.02 cm s-1, and the time step for each iteration was 0.5
sec. When the time reached 133 sec, each compression paddle moved 2.66 cm. The
thickness of the breast before compression was 13.3 cm, hence the compression ratio was
approximately 40% at this time point (2.66×2/13.3=0.4). Different compression ratios can
be achieved by adjusting the compression time.

3. RESULTS
Figure 7 shows the initial uncompressed breast in the z-axis direction before applying the
CC view compression for case #2. Figure 8 shows the compressed breast at 60% ratio. The
regional displacements are indicated by colors defined in the colorbar. The maximum
displacement in the z-axis is -4.01 cm in negative z direction, and 3.99 cm in the positive z
direction. At this compression ratio, the ranges of displacements are from -1.8 to 2.7 cm in
the x-axis, and from -1.7 to 0.7 cm in the y-axis, respectively. The displacement in the z-
direction (the compression direction between the two paddles) is greater compared to x- and
y- displacements. While the compression paddles were moving along the z-axis direction,
the posterior breast (i.e., the chest wall on ribcage) was fixed as the boundary condition;
thus, the breast tissue was pushed away from the chest wall, as shown in figure 8.

Figure 9 shows the corresponding z-axis deformation of the fibroglandular tissues within the
breast at 60% compression ratio. The ranges of displacement are -2.94 to 0.38 cm in the z-
axis direction, -0.03 to 2.3 cm in the x-axis, and -1.6 to -0.2 cm in the y-axis, respectively.
The fibroglandular tissue has a higher stiffness than the fatty tissue, and is expected to show
a smaller deformation.

A similar procedure can be used to simulate MLO compression by changing the location and
the angle of the compression plate (as shown in figure 5b). The displacement along the
compression direction (z-axis) was larger than along the other two directions. In order to
compare the relative displacements at different compression ratios (20%, 40%, 60%) and
along the three directions (x, y, z), the maximum total displacement is calculated from the
range and listed in Table 1. For example, at 60% compression ratio, the range along z-axis is
-4.01 to 3.99 cm, so the maximum total displacement is 8.0 cm. Similarly, for x-axis the
range is -1.8 to 2.7 cm, so the maximum total displacement is 4.5 cm; and for y-axis the
range is -1.7 to 0.7 cm, so the maximum total displacement is 2.4 cm. In Table 1, it can be
seen that in all 4 cases either under CC or MLO compression, the displacement is always
greater along the z-axis compared to x- and y-axis; also, the displacement is greater at higher
compression ratios.

Although the model yields reasonable results, it is very difficult to design validation
experiments to verify the deformation, even with simple phantoms. Since one goal of the
simulation model is to generate synthetic mammograms, the projection images of case #3
and #4 were generated for comparison with their corresponding mammograms taken within
6 months of MRI. The simulation model was applied to compress the breast to 60% ratio
under CC compression, and then a projection image of the finite element mesh was
obtained. Figure 10 shows the patient's mammogram and the simulated projection images
after CC compression for case #3, and figure 11 shows the results for case #4. In general, the
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shape of the projected fibroglandular tissue after CC compression resembles the distribution
of dense tissue on the patient's mammogram.

4. DISCUSSION
In this study we presented a nonlinear deformation model to estimate the displacement of
tissues based on different elastic properties of fibroglandular and fatty tissues under CC and
MLO compression. The motivation came from the difficulty in the analysis of the
dependence of mammographic density measurements on various technical factors, such as
compression level, compression angle (relatively with the position of the woman), and x-ray
intensity used in human studies. If a reliable simulation model can be developed, it may be
further developed to investigate these different technical factors by simulating different
conditions. The model starts with a 3D distribution of the fatty and fibroglandular tissues
analyzed from MRI. The segmentation method used in this work was published (Nie et al,
2008). Several other groups have also reported their own methods for segmentation of breast
and fibroglandular tissues on MRI (Wei et al 2004, Klifa et al 2004, Khazen et al 2008,
Ursin and Qureshi 2009). Basically all segmentation methods are based on the different
signal intensities of fatty and fibroglandular tissues, and any method that can achieve a
reasonable segmentation result can be used for the simulation using our model presented
here.

The surface of the breast was smooth yet large, and the surface of the fibroglandular tissues
was quite complex; nevertheless this 3D irregular surface could be successfully
reconstructed by using the Avizo® 6.0 software package as shown in figure 3 using 109,248
elements. However, the surface was used in the next step to generate the volume mesh for
deformation analysis, and due to the limitations in computing power, we had to reduce the
number of surface elements from 109,248 to 10,000. This led to a compromise in the spatial
resolution that can be achieved in the present simulation. The finite element software
package MSC.Marc® provided a great tool for simulating the compression, and also it
allowed analysis of displacement at each node. These two software packages can be used
together to generate 3D images of the compressed breast.

Other commonly used software packages include Amira® software for generating 3D breast
surfaces and ANSYS® software for generating breast volume meshes (Hipwell et al 2007).
The simulation of soft tissue deformation using the finite element method can be performed
using ABAQUS® and ANSYS® (Tanner et al 2006, Hipwell et al 2007, del Palomar et al
2008, Misra et al 2009). Because most finite element analysis programs use linear elastic
models, they can only simulate small deformations that do not exceed the linear elastic range
of the materials. The MSC.Marc® has no such limitations, and also it can be easily applied
to model the contact relationship between the breast surface and compression paddles.

In the 4 cases that were analyzed here, the compressed breast thickness at 60% compression
ratio was in the range of 5-7 cm, which was close to the clinical mammography compression
range. Therefore in our simulations we analyzed the compression up to this level. For
verification of our results, we generated the projection image based on 60% compression
ratio from 2 women who had corresponding mammograms taken within 6 months of MRI
for comparison. The distribution of the fibroglandular tissue inside the breast on the
projection image was similar to that on patient's mammogram (figures 10 and 11). These
initial results were encouraging.

However, in this work we have yet to realistically simulate the mammogram. Mammogram
has the highest in-plane spatial resolution (approximately 0.1 to 0.2 mm) among all medical
imaging modalities, but it acquires projection image, thus no depth resolution. The MRI
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images used in this study had the voxel resolution of 1.48 × 1.48 × 4 mm3 or 0.64 × 0.64 × 5
mm3, and even with the most advanced imaging protocol that had voxel size of 0.4 × 0.4 ×
1-1.5 mm, still it would not be possible to generate a synthetic mammogram that had 0.1-0.2
mm resolution to see the fine details of density. Nevertheless, the high resolution for
mammogram was needed only for visualization of micro-calcifications, not for measurement
of density. From this point of view, if the computation power can be enhanced to allow a
higher number of elements, the spatial resolution of the generated synthetic mammograms
may be improved.

In this work we have not attempted to generate a mammogram yet. In order to achieve this,
one needs to simulate the attenuation of x-ray penetrating through the breast tissue, and then
produce the mammogram based on either film properties for film-based mammography, or
detector properties for digital mammography. When these obstacles are resolved, a
comprehensive simulation program can be developed to assist in the investigation of the
dependence of breast density measurements on various technical factors, such as
compression level, compression angle, and x-ray sources and detectors.

Another potential application of this compression simulation model is to allow registration
of breast images acquired using different imaging modalities. Currently, mammograms are
taken when the patient is at a standing position, ultrasound is taken at a supine position, MRI
is taken at a prone position, and nuclear medicine imaging (including positron emission
mammography and breast specific scintigraphic imaging) is done at a sitting position. The
deformation of the breast between these different positions with different level of
compressions may be simulated using the model presented here, by considering both the
gravity force and the force exerted by the compression plates. This would allow registration
of images taken using different modalities to improve the diagnosis of breast lesions, based
on the collective information that is known to be taken from the same lesion.

5. CONCLUSIONS
We presented a finite element method for simulating the large deformation of breast tissues
under CC and MLO compressions at different compression levels. The simulation starts with
modeling the breast surface shown on uncompressed 3D MRI and the segmented
fibroglandular tissues within the breast. Different elastic properties were assigned to the
fatty and fibroglandular tissues to simulate deformation in different conditions. This model
provides a basis for adding more sophisticated functions in the future for addressing clinical
research problems, e.g. to generate synthetic mammograms to aid in investigation of breast
density measurements on technical factors, or to allow co-registration of breast images taken
by different imaging modalities for a better diagnosis of breast lesions.
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Fig. 1.
The segmented fatty tissue (gray areas) and the fibroglandular tissue (white areas) of case #1
by using the MRI-based segmentation method (Nie et al., 2008).
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Fig. 2.
The 3D surface of the whole breast and the fibroglandular tissues generated by using
Avizo® 6.0 software package based on the segmentation results shown in Fig.1.
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Fig. 3.
The 3D surface generation of breast and fibroglandular tissues of case #1 reconstructed by
Avizo® 6.0 software to show the coronal view (a, the front view from anterior to posterior),
sagittal view (b, the side view from lateral to medial), and axial view (c, from superior to
inferior).
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Fig. 4.
The volume mesh of the left breast and the fibroglandular tissues of case #1 generated by
using the finite element software package MSC.Marc®. The mesh lines indicate the finite
elements used.
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Fig. 5.
The breast compression using two planar paddles for CC view compression (a) and MLO
view compression (b) for case # 1. Each paddle size is 24 × 30 cm2. The arrows indicate the
moving direction of the compression paddle. The compression paddles move toward each
other. The initial distances between compression paddles are 15.3 cm for CC compressions
and 17.1 cm for MLO compressions.
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Fig. 6.
The fixed y-direction displacement on the posterior breast surface during compression as the
boundary condition. The crosses indicate the posterior nodes with fixed displacement along
the y-axis direction.
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Fig. 7.
The side view of the initial uncompressed breast before applying the CC view compression
for case #2.
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Fig. 8.
The side view of the breast deformation at 60% compression ratio in CC view compression
for case #2. The relative displacement in the z-axis direction is indicated by colors on the
sagittal view image. The range between the minimum and maximum displacement values
are equally divided into 10 levels, shown by different colors. The blue and yellow color bars
indicate the minimum and maximum values of displacements, in which the range of
displacement in the z-axis direction is -4.01 to 3.99 cm.
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Fig. 9.
The corresponding side view of the deformation of fibroglandular tissue of Fig. 7 for case #2
with CC view compression at 60% compression ratio. The blue and yellow color bars
indicate the minimum and maximum values of displacements, in which the range of
displacement in the z-axis direction is -2.94 to 0.38 cm.
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Fig. 10.
Comparison of the CC view mammogram for case #3 (a) and the projection image obtained
using our simulation model at 60% compression ratio (b). The distribution of the
fibroglandular tissues on the simulated projection image resembles the distribution of dense
tissues on the patient mammogram.
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Fig. 11.
Comparison of the CC view mammogram for case #4 (a) and the projection image obtained
using our simulation model at 60% compression ratio (b). The distribution of the
fibroglandular tissues on the simulated projection image resembles the distribution of dense
tissues on the patient mammogram.
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