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Summary
With advancing age, the thymus undergoes striking fibrotic and fatty changes that culminate in its
transformation into adipose tissue. As the thymus involutes, reduction in thymocytes and thymic
epithelial cells precede the emergence of mature lipid-laden adipocytes. Dogma dictates that
adipocytes are ‘passive’ cells that occupy non-epithelial thymic space or ‘infiltrate’ the non
cellular thymic niches. The provenance and purpose of ectopic thymic adipocytes during aging in
an organ that is required for establishment and maintenance of T cell repertoire remains an
unsolved puzzle. Nonetheless, tantalizing clues about elaborate reciprocal relationship between
thymic fatness and thymopoietic fitness are emerging. Blocking or bypassing the route towards
thymic adiposity may complement the approaches to rejuvenate thymopoiesis and immunity in
elderly.
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Introduction
A characteristic feature of immunological aging in humans is the progressive loss of thymic
T cell production. Consistent with critical role of the thymus in adult life, recent studies
demonstrate that resection of thymus in children undergoing cardiac surgeries results in loss
of naïve T cells (1). The peripheral T cell repertoire of 22-year old thymectomized patients
is similar to that of 75-year old subjects (1). In all vertebrates studied to date, aging of the
thymus is accelerated compared to aging of many other organs. Thymic aging is
characterized by dramatic reduction in thymocyte numbers and marked perturbations in the
thymic stromal cell microenvironment. In contrast to a young thymus where thymocytes are
the major contributors to the thymic microenvironment, adipocytes constitute the bulk of an
aged thymic cellular space (2,3). The adipogenic transformation of thymus by middle-age is
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puzzling especially since the purpose of thymus is to produce naïve T cells while adipocytes
regulate energy homeostasis and have no direct role in T cell development.

According to current estimates, approximately 3 × 109 T cells have to be generated everyday
to replenish the total pool of existing 3 × 1011 T cells in human body (4). By 50 years of age
approximately 80% of thymic stromal space is dysfunctional and composed of adipose
tissue (2,3) (Figure 1). During aging, the total peripheral T cell pool is maintained by
homeostatic expansion of preexisting T cells rather than replenishment by thymic export (4–
7). The ongoing exposure to pathogens and antigenic challenge across the life-span
progressively erodes the integrity of the naïve T cell pool. Consequently, the T cell
repertoire is restricted with an expansion of memory T cells and thus limits the host’s ability
to mount responses against new antigenic challenges (4–7). Age-related thymic involution is
associated with reduced immune-surveillance, increased risk and severity of emerging
infections, certain cancers, vaccination failures and delayed T cell reconstitution in patients
undergoing hematopoietic stem cell transplantations (HSCT) (8–10). In sum, the progressive
loss of thymic function leads to a decline in adaptive immunity. Therefore, the ability to
enhance thymopoiesis is central to the rejuvenation of T cell mediated immune-surveillance
in elderly.

The three main causes of age-related thymic involution include – (a) a reduction in numbers
and intrinsic defects in hematopoietic stem cells (HSCs) (11,12) (b) Loss of thymic
epithelial cells (TECs) and deterioration of stromal microenvironment (3,13,14) (c) extrinsic
circulating factors affecting the aged microenvironment, e.g. alterations in hormones/growth
factors/cytokines (15). Accordingly, several promising strategies to rejuvenate thymic
function in aging have demonstrated the potential of targeting the mechanisms that correct
the defects in HSCs and TECs (9,10,16,17). Given that the thymus in middle-aged healthy
humans is replaced by adipocytes (Figure 1), this review highlights the importance of
thymic stromal microenvironment with emphasis on ectopic thymic adipocyte development
in aging. Reviewed below are studies illustrating that pro-longevity interventions such as
caloric restriction (CR) and neuroendocrine factors that regulate energy balance and thymic
adipogenesis can forestall thymic aging and may rejuvenate thymopoiesis.

Thymic Adipocytes: Passive aggressive or active instigators of
immunosenescence?

Thymic stromal cell composition as well as organization is severely disrupted with
advancing age (3,13,18). This includes reduction in thymic epithelial cells (TECs), increase
in fibroblasts, disruption of thymic perivascular space (PVS) and the emergence of
adipocytes (2,3,13). The thymic stromal compartment is divided into (a) thymopoietic
niches – which are mainly composed of epithelial cells and antigen presenting cells that
sustain T cell development and (b) non-thymopoietic niches –which includes connective
tissue capsule, interlobular trabeculae, septae and intricate network of thymic blood vessels.

Loss of thymocytes precedes the formation of adipocytes during thymic involution. If
emergence of adipocytes in thymus would simply be a consequence of loss of thymocytes
then one might expect lymphopenic mouse models to have fatty thymi. This simple
assumption, however, is not supported by histological evidence from RAG knock outs,
severe combined immune deficiency (SCID), IL-2 receptor γ chain knockouts, in which
there is loss of thymocytes but little spontaneous accumulation of thymic adipocytes at
younger ages (19,20). It is also believed that thymic adipocytes ‘infiltrate’ the perivascular
space (PVS); however, evidence that large lipid filled adipocytes can migrate through tight
intercellular spaces in PVS or thymic parenchyma is so far unavailable. Since PVS is not an
active thymopoietic zone, the emergence of adipose tissue in these areas is believed to be
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incidental to the process of thymic aging. However, previous studies have demonstrated that
the adipocytes and thymocytes can come in close cell-cell contact in the human thymus
during aging (21) (Figure 2). It is also established that adipocytes are not inert cells and,
depending upon their location, can secrete distinct cytokines and hormones that influence
the local and systemic environment and immune function (22). No compelling or direct
experimental evidence currently exists that would argue in favor of the dogmatic contention
that thymic adipocytes are passive cells; therefore the prevailing view of adipocyte
trafficking in the thymus may be overly simplistic. On the other hand, several studies over
the past few years support the hypothesis that adipocytes differentiate through specific
adipogenic mechanisms, and this process can compromise hematopoietic (23) and thymic
function (24–26).

Perivascular space (PVS) and adipocytes
In addition to PVS, thymic adipocytes are also present in several thymic zones which
include interlobular septae, capsular region, subcapsular cortex and medulla (Figure 3).
Since several prior histological studies of aging thymus refer to expansion of PVS and
‘infiltration’ of adipocytes within this region, the role of thymic vasculature in thymic
involution process merits revisiting.

In young mice, thymic vascular supply is primarily characterized by entry of one artery and
exit of one vein at the hilus on the dorsolateral surface of thymus (27). Importantly,
migration of T cell progenitors in thymus and selective export of mature thymocytes to the
periphery occurs via the post capillary venules (PCVs) at the corticomedullary junction
(CMJ). In young mice, the PCVs appear ‘double walled’ because of the presence of
perivascular space (PVS) between inner endothelial cell vessel wall and outer layer of thin
epithelial like cells (21,28–30). The PVS is a typical feature of PCVs at the CMJ; whereas,
in thymic capillaries, the endothelial vessel wall is anchored with the outer epithelial basal
lamina leaving no PVS between vessels and adjacent parenchyma (21,27–30). The PVS in
young mice contains migrating progenitors, T cells and pericytes (28–30). Aging is known
to cause disruption of PVS, which include gaps in outer epithelial cell layer of PCVs (27)
and presence of adipogenic cells in the PVS (2).

Elegant lineage-tracing studies provide strong evidence that neural crest derived
mesenchymal cells are ancestors of thymic pericytes and some perivascular cells (29,30).
Additionally, the neural crest derived cells in adult thymus express the mesenchymal cell
markers PDGFR-α and PDGFR-β (29,30). The PDGFR-α+ mesenchymal cells have the
potential to differentiate into adipocyte lineage and are known to give rise to ectopic
adipocytes in skeletal muscle (31). Consistent with this, in middle-aged thymus, several
PDGFR-α+ cells express PPARγ, a master proadipogenic transcription factor (26).
Furthermore, PDGFR-β+ mesenchymal cells derived from the vasculature of adipose tissue
differentiate into adipocytes through the activation of PPARγ (32). Previous studies indicate
that perivascular cells and pericytes exhibit multipotency including the ability to
differentiate into fibroblasts and adipocytes (32,33). Considering that PVS is among the sites
for accumulation of fibro-adipogenic cells in thymus, it is possible that specific perivascular
cells differentiate and serve as adipocyte precursors during aging. Such a hypothesized
mechanism remains to be formally tested, but the emerging evidence argues against oft
stated ‘adipocyte infiltration’ view of PVS. Instead, it is likely that within PVS, precursor
cells undergo adipogenic commitment with advancing age through specific molecular
mechanisms. Given a critical role played by PCVs in selective import and export of cells in
thymus through the expression of chemokines and chemokine receptors, the mechanisms
that compromise the perivascular stromal cell microenvironment in aging are likely to
contribute towards the process of thymic dysfunction.
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Epithelial-mesenchymal transition (EMT) and fibroadipogenesis in aging
thymus

The primary EMT occurs during embryonic development when epiblast cells give rise to
mesenchymal and neural crest cells (34). The primary mesenchymal cells transition to
secondary epithelial cells via the mesenchymal-epithelial transition (MET) process and
initiate organ development. (34). It is now well documented that with progressive aging,
thymic epithelial cells (TECs) decline with a concomitant increase in thymic fibroblasts
(3,13,26). Recent studies employing genetic fate-mapping, suggest that subset of FoxN1
origin TECs can transition into fibroblasts during aging via the activation of epithelial-
mesenchymal transition (EMT) process in thymus (24). Importantly, secondary EMT, also
referred as type 2 EMT, occurs during adult life when epithelial and endothelial cells
transition to give rise to tissue resident fibroblasts leading to fibrosis (34–36). The secondary
mesenchymal cells generated through the process of EMT are identified by the expression of
fibroblast specific protein-1 (FSP1) also called S100A4/Mts1/calvasculin (35). The FSP1
gene contains a position and promoter-dependent proximal element between −187 and −88
bp called fibroblast transcription site-1 (FTS-1), which is active in fibroblasts but not in
epithelium (35). FSP1 is not expressed in primary mesenchymal cells but is present in
fibroblasts derived from secondary epithelium and is therefore a strong indicator of EMT
(35). The process of thymic involution is associated with an increase in pro-EMT transcripts
including FSP1/S100A4 (24,26). The secondary mesenchymal cells retain multipotency in
vitro (37). Importantly, certain EMT cells in aging thymus express PPARγ and unilocular
lipid droplet and appear to commit to adipocyte lineage (3,24,26). In addition, activation of
PPARγ in mesenchymal cells induces ectopic adipogenesis in bone marrow and thymus
leading to reduced thymopoiesis and restricted TCR repertoire diversity (25). Thus, the loss
of TEC phenotype and emergence of fibro-adipogenic precursors from a subset of thymic
stromal cells may have direct implications in compromising thymopoiesis.

Novel strategies for thymic rejuvenation: Inhibitors of EMT and
thymoadipogenesis

Several experimental approaches for thymic and T cell reconstitution during aging have
been the subject of excellent review articles (7,9,10). This review summarizes the strategies
that target the EMT and ectopic adipogenesis mechanism as complementary strategies to
rejuvenate thymopoiesis or forestall thymic aging.

1. Caloric Restriction (CR) and CR mimetics
Induction of negative energy balance via CR remains one of the most robust non-genetic
means of extending healthspan and lifespan across several species (38). Chronic CR in mice
and monkeys sustains T cell receptor repertoire diversity and enhances thymopoiesis
(3,26,39). Conversely, chronic caloric excess seen during obesity accelerates thymic aging
and restricts TCR repertoire (40). Recent data suggest that CR efficiently blocks EMT and
age-related increase in pro-adipogenic machinery in thymus (26). This includes reduction in
PPARγ expression on PDGFRα+ mesenchymal cells (26). In addition, chronic CR prevents
age-related changes in the thymic transcriptome (41).

Although CR has been a very effective experimental approach to prolong healthy life-span
in experimental animals, it is unclear if CR is relevant to human immune function. The
impact of CR on T cell function, thymopoiesis and thymic adipogenesis in humans is being
investigated in an ongoing multi-center, parallel-group, randomized control trial called
Comprehensive Assessment of Long-Term Effects of Reducing Intake of Energy
(CALERIE). It is however, well recognized that long-term adherence to a strict CR diet in
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humans for enhancing immunity and longevity is a significant challenge in the current
‘obesogenic’ environment. In several chronic illnesses or BMT conditioning regimens where
elderly patients already have loss of appetite and frailty, recommending CR to enhance
naïve T cell production is not advisable. Therefore, identification and development of
compounds that mimic the positive biologic effects of calorie restriction could help unravel
novel pathways to enhance thymopoiesis.

2. Ghrelin and GH secretagogues
Ghrelin is predominantly secreted from the gut in response to negative energy balance and
CR (42). Ghrelin binds to specific growth hormone secretaguge receptor (GHSR) to induce
GH production and reduces pro-inflammatory cytokines from immune cells (42–45). Similar
to CR, ghrelin reduces age-related inflammation (46) and partially reverses thymic
involution process (47). On the contrary, deletion of ghrelin accelerates thymic involution,
EMT and adipogenesis in thymus (24). Consistent with anti-fibrogenic effects of ghrelin in
thymus, ghrelin also reduces fibrosis in liver (48). The synthetic long-acting small molecule
ghrelin-receptor agonists can partially reverse age-related thymic involution (49).
Importantly, such ghrelin-mimetic compounds have been shown to be safe in humans and
effective in reducing frailty in the elderly (50). Therefore, long-acting synthetic ghrelin-
receptor agonists may be ideal candidates for further clinical evaluation as potential
therapeutic candidates for thymic regeneration in aging and HSCT.

Consistent with the complementary role of ghrelin and GH axis in reducing ectopic
adipocytes in primary lymphoid organs (51), randomized clinical trials in middle-aged HIV
patients have demonstrated that GH serves as a potent pro-thymopoietic agent (52). IGF-1,
like ghrelin, also enhances thymopoiesis by expanding bone marrow Lin− Sca1+Kit+
progenitors and thymic epithelial niches while the disruption of IGF1 signaling in
thymocyte, reduces thymocyte survival (53). These data demonstrate that activation of
ghrelin-GH-IGF1 axis can regenerate thymus. Whether this can be clinically accomplished
without elevating the risk of certain cancers remains to be established.

3. Leptin
Leptin is a potent adipokine that signals the state of positive energy balance and reduces
food intake. Deficiency of leptin in mice induces severe obesity and marked thymic
involution (54). Consistent with the importance of leptin in immunity, loss of function leptin
mutations in humans lowers T cell mediated immunity (55). Administration of recombinant
leptin to leptin-deficient humans reverses T cell dysfunction (55). Furthermore, loss of
function mutation in leptin-receptor also results in development of childhood obesity that is
characterized by T cell defects and premature death due to severe infections (56).
Administration of leptin to aging mice increases peripheral IGF-1 levels (47) and despite
leptin’s well documented pro-inflammatory effects (43), it can induce thymic regeneration
and expand TCR repertoire diversity (47). These observations are consistent with pro-
survival effects of leptin on thymocytes (57) and the ability of leptin treatment to augment
thymopoiesis in models of aging, stress and endotoxemia (9,47). Recent data from Louisiana
Healthy Aging Study (LHAS) suggest that elevated levels of leptin and GH are associated
with maintenance of the CD28+CD95− naïve T cell pool and presence of recent thymic
emigrants in healthy nonagenarians (≥90-year-old) (58).

4. Pregnancy associated Plasma Protein A (PAPPA)
PAPPA is a metalloproteinase that cleaves IGF-binding proteins (IGFBPs) facilitating the
bioavailability of IGF1 to IGF receptors. Interestingly, PAPPA deficiency in mice is
associated with enhanced lifespan and maintenance of thymic and T cell function during
aging (59). Compared to the thymi of aged wild type mice which contains cortical
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adipocytes, the PAPPA−/− animals lack ectopic adipocyte development with increased
thymocyte numbers and thymopoiesis. The increased thymopoiesis in PAPPA knockout
mice is proposed to be due to slower release of thymic IGF1, which increases the survival of
T cell progenitors and thymocyte subsets (59).

Conclusions
Although the thymus undergoes rapid adipogenic transformation, the fibrosis and fatty
changes with advancing age occur in several organs and are not unique to thymus. The
mechanisms behind this age-associated phenomenon are still largely unknown. Several
recent studies have greatly expanded the understanding of basic mechanisms of age-related
thymic regeneration in mouse models. As new data emerge and future therapeutic
approaches for thymic rejuvenation are developed, preventing the deterioration of thymic
microenvironment or strategies for reversal of fibro-adipogenesis in thymus offer as-of-yet
untapped opportunity for enhancing and maintaining thymopoiesis.
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Figure 1. Thymic adiposity in humans
The magnetic resonance imaging of thymus in metabolically healthy humans reveals age-
related thymic adiposity. The Region of Interest (ROIs) depicting the thymus is highlighted
by yellow arrows. The fat in the thymus appears whitish (upper panel) while thymic
remnants are visible as pale area within the ROI. Lower panel shows thymic imaging in
same subjects at similar locations after fat saturation. Since lipid appears as a high signal on
T1 weighted images, the fat saturation sequences were applied to render the signal from fat
null at the tracheal bifurcation. Upon application of fat-sat sequence, thymic tissue is visible
(lower panel) in 25-year old individuals while in 45-year old subjects the area between
sternum and ascending aorta is largely devoid of lymphoid tissue.
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Figure 2. Scanning electron microscopy of thymus of 68 year old subject
Thymus from a 68-year-old patient observed by scanning electron microscopy. A large
number of fatty cells (F) and reticular epithelial cells (R), with a small number of
thymocytes (T), can be observed in elderly subjects. (previously published as figure 5 by
Cavalotti et al 2008, Microsc Res Tech. 71: 573–578.)
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Figure 3. Thymic Adipocytes
Location of thymic adipocytes in 18mo old thymi of C57/B6 mice. (A) Subcapsular cortical
adipocytes, (B) Interseptal adipocytes (C) Trabecular adipocytes, * denotes cortical areas of
thymus undergoing adipogenic involution. Dotted line indicates corticomeduallry junction
and adjacent ectopic adipocytes which could be in the PVS. Cortex (c) and Medulla (m). (D)
Thymus from 18m old mouse maintained on 40% caloric restriction shows absence of
adipocytes and maintenance of thymic architecture during aging.

Dixit Page 13

Curr Opin Immunol. Author manuscript; available in PMC 2011 August 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4. Approaches to reverse immunosenescence
Approaches to reverse immunosenescence. CR and metabolic regulators such as ghrelin,
leptin, GH and IGF-1 can partially reverse age-related thymic involution. Increased
thymopoiesis by these agents (including LHRH and FGF7/KGF, IL7 and IL-15) increases
naïve cells and enhanced T cell repertoire diversity.
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