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Abstract
Rationale and Objectives—Multimodal imaging techniques for capturing normal and diseased
human anatomy and physiology are being developed to benefit patient clinical care, research, and
education. In the past, the incorporation of histopathology into these multimodal datasets has been
complicated by the large differences in image quality, content, and spatial association.

Materials and Methods—We have developed a novel system, the large-scale image microtome
array (LIMA), to bridge the gap between nonstructurally destructive and destructive imaging such
that reliable registration between radiological data and histopathology can be achieved.
Registration algorithms have been designed to align the multimodal datasets, which include
computed tomography, computed micro-tomography, LIMA, and histopathology data to a
common coordinate system.

Results—The resulting volumetric dataset provides an abundance of valuable information
relating to the tissue sample including density, anatomical structure, color, texture, and cellular
information in three dimensions. An image processing pipeline has been established to register all
the multimodal data to a common coordinate system.

Conclusion—In this study, we have chosen to use human lung cancer nodules as an example;
however, the flexibility of the image acquisition and subsequent processing algorithms makes it
applicable to any soft organ tissue. A novel process model has been established to generate cross
registered multimodal datasets for the investigation of human lung cancer nodule content and
associated image-based representation.
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The development of multimodal image acquisition and analysis continues to progress
rapidly, driven by the potential to improve diagnostic and therapeutic aspects of medical
care. Multimodal imaging, such as the combination of computed tomography (CT) and
positron emission tomography, have been shown to improve the ability to identify potential
disease states, such as lung nodules, and facilitate the planning of effective treatment
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approaches (1–5). However, the diagnostic “gold standard” in solid tumor oncology remains
histological examination of diseased tissue, which requires invasive tissue sampling.

To understand and exploit all the information captured in noninvasive imaging techniques,
accurate registration between the histological truth and the corresponding radiological
appearance is required. This is complicated to achieve, because of the large differences in
image quality, content, and loss of spatial association. Datasets that incorporate the
corresponding histological truth are required to effectively evaluate the diagnostic ability of
these systems.

For many years, it has been acceptable to correlate histopathological findings with external
imaging observations by general comparison. Kennel et al presented histology sections of
mouse lungs next to roughly corresponding computed micro-tomography (micro-CT) and
used arrows to highlight suspected tumor foci in the micro-CT data and confirmed foci in
the histology images (6). For this case, registration of the datasets may have made a more
compelling statement, but it was not necessary to meet the objectives of the study. A
prospective pilot study was conducted by Chan et al to correlate tumor size on CT with
tumor sizes measured microscopically in non–small-cell lung cancers (7). In this basic
study, the resected tumor was manually aligned to the approximate orientation of the in vivo
CT imaging plane and transverse sections for histological preparation were made. The
boundary from the CT data was then compared to that of the histological sections with the
conclusion that CT over-estimated the size of the tumors to a degree greater than what could
be accounted for by the significant tissue shrinkage through histological preparation. This
study effectively avoids the possibility of creating false matching by using only rigid
registration, but in doing so the investigators are unable to make any quantitative
conclusions regarding boundary representation. Although the objectives of this study are
highly important, it is clear that a methodology with greater precision, repeatability, and
accuracy is required.

For more specific comparative studies, such as boundary representation or spatial
distribution of tissues, the distortions caused by histological processing must be
compensated for in some way. Some studies have investigated the non-rigid alignment of
histology to nondestructive data, such as magnetic resonance imaging (MRI) and micro-CT.
Clarke et al composed a multimodal mapping of carotid atherosclerotic plaque components
(8). The approximate matching MRI and micro-CT slices were located by visual inspection
and nonrigidly registered using the Delaunay triangle method. Registration approaches such
as these, involve a high risk of introducing false information due to the nonrigid registration
of the histology data to a noncorresponding image slice. A spatial reference system is
required such that the correct corresponding base image can be located for each warped
image.

We previously developed a large image microscope array system (LIMA) for whole organ
sectioning, which is used in this study as the spatial reference for registration of the datasets
to a common coordinate system. Briefly, the LIMA is a purpose-built sectioning and
imaging microscopy system consisting of a microscope coupled with a digital camera. The
microscope and camera coupling raster scan over the tissue block surface acquiring many
overlapping, high-resolution images. After the complete tissue surface is captured, a
customized microtome sections the tissue, removing the top surface for histological
processing. The process of sequentially imaging and then sectioning the tissue is automated
via a computer-interfaced control system. A diagram summarizing this process is presented
in Figure 1. Sectioning and imaging of the tissue via the LIMA system produces a
volumetric image set in which no distortion of the tissue occurs between sequential images,
and the corresponding histological section for each image is known. Hence the LIMA
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dataset can serve as a reliable basis for the accurate alignment of the histopathological data
into the volumetric dataset.

The aim of this study was to develop a process model for the acquisition and registration of
multimodal data. The resulting datasets were to include in vivo multidetector CT (MDCT),
MDCT scans of the resected lobe both fresh and fixed, and the resected nodule imaged via
MDCT, micro–CT, and the LIMA system with associated histology. Through these datasets
density, structure, color, and cellular information relating to the specimen can be gained.

The process model developed could be applied to nodules of any organ; however, for this
study, the focus was directed to lung cancer nodules. The mortality from lung cancer is
higher in both men and women than from any other form of cancer, despite the fact that the
most commonly diagnosed cancers are prostate cancer in men and breast cancer in women.
MDCT is playing an increasing role in the identification and monitoring of suspicious lung
nodules. Some computer-aided detection and diagnosis algorithms based on MDCT data
have been developed and achieved promising results. However, a considerable barrier to
assisting with diagnosis is that the ground truth of lung nodule structure is not known,
significantly inhibiting the development of more sophisticated algorithms with further
informative outputs.

MATERIALS AND METHODS
Patients

Between October 2005 and May 2008, 17 patients were identified and consented for
participation in the study (8 males and 9 females). Complete lobectomy specimens were
required for inclusion into this study because a large airway was required for appropriate
inflation and fixation of the tissue. Six of the 17 potential datasets were not collected
because of changes in surgical plan or surgical pathology processing that required
immediate dissection of the lung nodule. Changes in the surgical plan included a
cancellation of surgery or removal of the nodule via wedge resection prior to lobectomy.
Lobectomy specimens were obtained for 11 cases (7 adenocarcinomas, 3 squamous cell
carcinomas, and 1 neuroendocrine carcinoma) as per the protocol approved by our
Institutional Review Board. Table 1 lists the demographics of the 11 patients for which
complete datasets were generated.

Data Acquisition Process
Figure 2 provides a summary of the data acquisition process developed, incorporating in
vivo MDCT, fresh and fixed resected lobe MDCT and micro-CT, LIMA, and
histopathological imaging for the isolated nodule.

As a component of a lung cancer patient’s clinical care, a presurgical MDCT scan is
required by the multidisciplinary cancer service at the University of Iowa. These presurgical
scans were incorporated into the study to provide some in vivo data. Clinical MDCT
protocols vary based on institution, producing slice thicknesses between 3 mm and 5 mm
and a pixel size of 600 × 600 microns to 1 × 1 mm.

MDCT data was also obtained for the isolated lobe. To prevent degradation of the tissue,
fixation was performed within an hour of resection. When no scheduling conflicts arose, the
freshly resected lobe was inflated to 15 cmH2O through the main, cannulated airway and
MDCT scanned before fixation. In some cases, the resection procedure extended beyond the
planned completion time such that the MDCT facility was unavailable when the tissue was
obtained and thus the tissue was fixed without the acquisition of a fresh MDCT scan. For all
cases, a MDCT scan of the fixed isolated lobe was obtained. As radiation dose was not an
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issue after the tissue had been removed from the patient, a high-resolution thorax protocol
with adjustments made to the voltage because of the removal of surrounding bone from the
tissue was used. The isolated lobes were imaged using a Siemens Somatom Sensation 64
MDCT scanner (Siemens Medical Solutions, Forchheim, Germany) scanning 120 kV, 140
mAs to produce isotropic voxels of 300 microns.

The nodule was isolated from the surrounding lobe to allow for the subsequent high-
resolution data acquisition. The high resolution MDCT protocol has a field of view (FOV)
restriction of 5 cm × 5 cm, the micro-CT FOV was 4 cm × 4 cm, the LIMA was very
accommodating with an FOV restriction of 30 cm × 30 cm and the maximum field of view
for a histological section was 2 cm × 3 cm: the size of a standard histology slide. Hence the
smallest of these FOV restrictions was used to determine the dimensions of the isolated
nodule, with a length and width within 2 cm × 3 cm and flexibility in the height (z-axis).

For the MDCT imaging of the isolated nodule, a high-resolution inner ear protocol was
used. The protocol again used 120 kV, 140 mAs to produce a reconstructed dataset with 100
micron isotropic voxels. The nodules were then imaged using the Siemens MicroCAT II
system (Siemens Pre-Clinical, Knoxville, TN) at 80 keV, 100 microA to produce isotropic
28 micron voxels. LIMA subsequently sectioned the tissue at 252 microns and imaged the
cut tissue surface at a resolution of 8.5 × 8.5 microns (10 × magnification) (9–12). The
LIMA system imaged the tissue surface before cutting and removing the section, hence
retaining the spatial correspondence between tissue sections as described in the introduction
(Fig 1). Each tissue slice generated by the LIMA system underwent standard
histopathological processing to generate hematoxylin and eosin (H&E) slides. The whole
field of view of each slide was digitized using ScanScope (Aperio Technology Inc, Vista,
CA) at 20 × magnification to produce a pixel size of 0.5 × 0.5 microns. The large field of
view, coupled with the ultra high resolution of the digitized histology slide results in an
image file that was too large to be manipulated on a standard computer. To reduce the
resolution of the dataset to a more manageable magnitude, bicubic resampling was used,
resulting in a pixel size of 2.5 × 2.5 microns. A surgical pathologist with a subspecialty
expertise in pulmonary pathology deemed this resampled resolution as adequate for the
analysis the digitized H&E histopathological images. For the analysis, an Intuos graphics
tablet and pen (Wacom, Vancouver, WA) were used to generate mask images corresponding
to the different tissues identified. The cellular based tissue types identified and segmented
include solid regions of cancerous tumor cells, cancerous tumor cells in a bronchoalveolar
carcinoma configuration, necrotic cells, active fibroblastic stromal tissue, inactive (hyaline)
fibrosis, red blood cells, and normal tissue (Fig 3).

Some Specific Challenges in Multimodal acquisition
Specific challenges are presented when performing multimodality studies of organs using in
vivo and ex vivo image data, including primarily tissue fixation, maintenance of orientation,
and spatial correspondence.

In regard to fixation, a process was required which preserved the organ from degradation
while also maintaining the structure and radiodensity of the organ for comparisons to the in
vivo state. The lung in particular is difficult to study ex vivo because of the inflated in vivo
state of the organ. Hence for the study of lung nodules, we used a modification of the
Heitzman fixation technique in which glycol was substituted for the water in the tissue,
allowing for comparable radiodensities between the in vivo organ and the fixed specimen
(13). The fixative solution comprised 25% polyethylene glycol 400 (Fisher Chemicals,
Fairlawn, NJ), 10% formaldehyde solution (Fisher Chemicals), 10% ethyl alcohol (190
Proof, 95%, Pharmco Products, Brookfield, CT), and 55% distilled water. Immediately after
the MDCT imaging of the freshly resected lung lobe, the fixative solution was applied
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through the cannulated major airway at a pressure of 15 cmH2O and the lobe was
concurrently submersed in fixative solution for 52 hours. After instillation of the fixative
solution, the tissue was air dried at 15 cmH2O for at least 90 hours.

Retaining the exact orientation of tissues through in vivo and ex vivo imaging is impossible.
However, it is advantageous to minimize the complexity of future registration requirements
by physically maintaining tissue orientation where possible. This is of particular importance
when the imaging datasets to be compared contain nonisotropic voxels. A nodule
stabilization system was developed consisting of a base plate, mount arm, and specimen
stage (Fig 4). The MDCT and micro-CT imaging systems acquire data in the transverse
plane, whereas the LIMA system cuts and images along the coronal plane. To ensure there
was a consistency between the direction and angle of the imaging planes, the specimen was
mounted to a purposefully designed polyethylene base plate. The polyethylene material was
selected due to its very low attenuation in radiological imaging systems, such that it would
not generate artifact (14). Parallel grooves were etched into the base plate to facilitate tissue
attachment. Nylon screws were used to vertically attach the base plate to a polymethyl
methacrylate mount arm. The specimen was imaged in this configuration on both the MDCT
and micro-CT systems.

For sectioning on the LIMA system, the base plate was removed from the mount arm and
attached horizontally with metal screws to the specimen stage. Interlocking metal stacking
support brackets were attached to the base plate and the interior space was filled with
agarose. When set, the agarose formed a solid support media to prevent tissue motion during
sectioning. The metal stacking support brackets and metal base plate become cold as the
agarose solidifies in a refrigerated environment. During sectioning, the metal insulates the
agarose, keeping it cool and hence at an ideal solid consistency. The 4-mm metal stacking
brackets were removed one by one as the specimen is sectioned. As mentioned in the
introduction, the LIMA system was specifically developed for the establishment of
multimodal whole organ databases. The extremely valuable role this system serves is to
provide a reliable spatial reference to which histopathological data can be nonrigidly
registered.

Registration
In previous studies, a significant barrier to the registration of histological data to
nondestructive data has been the lack of reliable spatial correspondence between the
datasets. However, the development of the LIMA system served to bridge this information
gap for this study. Figure 5 provides a summary of the registration pipeline developed to
bring the multimodal lung nodule datasets to a common alignment. This pipeline
incorporates three registration approaches; two-dimensional (2D) rigid registration, 2D
nonrigid registration, and three-dimensional (3D) rigid registration.

2D Rigid Registration
The 2D rigid registration algorithm consisted of a similarity transform in which the
registration landmark points were used to solve for the transform parameters by minimizing
the distance between corresponding moving and fixed landmarks. The similarity transform
fS consists of a translation vector, t, rotation matrix, A, and scale matrix λ (15).

(1)
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The parameters of the similarity transform were found using the two corresponding
registration landmark sets, Lrm and Lrf, so that the distance measure D(fs) was minimized,
where;

(2)

Landmark points were used to calculate the transform as the large difference in image
content in the micro-CT and LIMA datasets deemed them unsuitable for other intensity-
based approaches. Landmark points were manually selected using identifiable anatomical
features such as small blood vessels, distinctive airway wall features, or nodule spiculations.
Four corresponding registration landmark points, Lr, and two corresponding evaluation
landmark points, Le, were manually selected in the LIMA and micro-CT datasets for each
nodule case. These points were saved in a registration landmark file and an evaluation
landmark file and input to the registration algorithm along with the moving image set.

The output from the registration algorithm included the aligned moving dataset and the
transform parameters applied. In addition, the fiducial registration error (FRE) and the target
registration error (TRE) were output from the algorithm for validation purposes (16,17). The
FRE directly equates to the distance measure D(fs) that was being minimized to solve for the
transform using the registration landmark set.

(3)

The TRE was also calculated as a distance measure between fixed landmarks and
transformed, moving landmarks. However, the TRE was based on the evaluation landmark
set, Lem and Lef, which was not used to determine the registration parameters and hence
reflects how well the determined transform parameters map other points in the image to their
corresponding fixed target points.

(4)

In the ideal case where the determined transform exactly translated the provided moving
image to the specified fixed image, the FRE and TRE values would be zero.

2D Nonrigid Registration
A landmark-based thin-plate spline algorithm was developed to nonrigidly register each
histopathological moving image to its corresponding LIMA fixed image. The algorithm was
based on the mathematics originally presented by Bookstein (18) in which a spline, fTPS, is
found that interpolates the moving landmarks, Lrm to the fixed landmarks, Lrf (19,20). In
thin plate spline registration, the smallest possible smooth deformation is found by
minimizing the bending energy, which permits the landmarks to be exactly mapped to each
other (18).

(5)
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where U(r) = r2logr2, D is a matrix representing the affine transformation and wi is the
warping coefficient matrix that represents the non-affine deformation. The bending energy
function, E, is minimized to control the extent of warping to the smallest deformation
possible:

(6)

The correspondence between the LIMA and histology images was inherently gained through
the acquisition technique. For each LIMA and histology pair, registration landmarks, Lr, and
evaluation landmarks, Le, were manually selected and saved to text files. The number of
landmarks chosen was dependent on the size of the histology slide and the number of
reliable landmark structures available, with the average number of landmarks being 36 ± 6.
The landmark text files, the fixed base image, and the moving images were applied as inputs
to the 2D thin plate spline registration algorithm. Multiple moving histological images could
be input to the algorithm and have the same spline deformation applied. This was required in
the case of registering the tissue type maps to the global coordinate system.

The output from the registration approach included the transformed histopathology image.
The deformation field, which represented the applied spline, was also output. For evaluation
purposes, the TRE was also calculated and output. The nature of the spline calculation is to
force the moving registration landmarks Lrm to the exact position of the fixed registration
landmarks, Lrf. Hence the FRE is always equal to zero for this approach.

(7)

The TRE uses evaluation landmarks that are not used to calculate the spline warping and
hence reflects how closely the deformation field matches target points in the translated
moving image to the corresponding positions in the fixed image space.

(8)

3D Rigid Registration
Registration of the ex vivo MDCT data to the global coordinate space was achieved using
the volume dataset. A rigid registration algorithm was deemed appropriate for the
registration of the isolated lung nodule MDCT and the fixed lobe MDCT data to the micro-
CT dataset as the tissue properties were not altered between imaging.

The in vivo MDCT datasets were acquired presurgically for clinical purposes and added to
the study after a patient consented. Unfortunately, there was not consistency of the scanning
protocol across the nodule cases, and the overall quality of the in vivo scans was less than
ideal. Because different voltage, current, reconstruction kernels, and slice thicknesses were
used, this dataset was deemed inappropriate for the comparison of Hounsfield unit variance
to histopathological tissue type. Hence, the in vivo MDCT dataset was aligned to the global
coordinate system using the 3D rigid registration approach. Although it could not be
assumed that the tissue properties had not been altered between this data acquisition and the
fixed tissue acquisition, the limited resolution of these datasets deemed more sophisticated
registration approaches unnecessary.

Sieren et al. Page 7

Acad Radiol. Author manuscript; available in PMC 2010 November 29.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Manual alignment between the in vivo MDCT and the fixed lobe MDCT was first achieved
using the large airways and vessels in the lobe as structural landmarks. After a rough
alignment was achieved, the 3D rigid registration approach was applied.

The 3D rigid registration transform, fR, involved translation, t, and rotation, A:

(9)

A Quasi-Newton optimizer was used to step the transformation toward a minimum solution.
Because a significant difference in resolution was present between the micro-CT dataset and
the MDCT dataset, a multiresolution optimization was included. This involved resampling
the data to four levels; by a factor of 8 in the x and y plane and a factor of 3 in the z plane
(8,8,3), then by (4,4,2), then by (2,2,1), and finally the original resolution (1,1,1). The
registration transform was found first using the lower resolution data then that result was
used as the initial setting for the next resolution level, and so on. Incorporating the
multiresolution approach into the optimization decreased the computation time while
increasing the robustness of the registration approach. Although scaling of the datasets was
used to optimize the registration, in the resulting registered MDCT data, the original voxel
matrices of the datasets were maintained (no scaling factor in the 3D rigid registration
transform). In doing so, the introduction of false information through extensive resampling
was avoided.

The normalized mutual information metric has been found to be more robust than the
standard mutual information metric (21). This metric does not rely on the direct
correspondence between gray-level values in the dataset but rather compares the overlap in
information. The normalized mutual information of images A and B is calculated from the
sum of the marginal entropies of A and B, divided by the joint entropy:

(10)

The entropy is based on the probability distribution of the gray values that are found from
the histogram of the image.

(11)

Validation of this registration approach was performed qualitatively through checkerboard
images and quantitatively by repeating the registration process three times and calculating
the standard error between the resulting transformation parameters.

RESULTS
We have evaluated the 11 subjects enrolled in this study from which lobectomy specimens
were obtained. The result of the data acquisition process was eight volumetric datasets per
subject; 1: in vivo MDCT; 2: freshly resected lobe MDCT; 3: fixed lobe MDCT; 4: isolated
nodule MDCT; 5: isolated nodule micro-CT; 6:– LIMA; 7: H&E histopathology; and 8:
tissue type maps generated by the manual segmentation of the histopathology data. From
these datasets, we obtain increasing resolution density information from the in vivo MDCT,
isolated lobe MDCT, isolated nodule MDCT and nodule micro-CT. Color and structural
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information is contained in the LIMA dataset and cellular tissue content is established from
the histopathology. The tissue type maps allowed the clear visualization of the cellular
composition of the nodules. Figures 6 and 7 illustrate examples from the resulting cross-
registered dataset for two adenocarcinoma cases. Figure 7 reveals the severity of the
oversimplification of the nodule boundary as determined from the clinical, in vivo MDCT
when compared to that from the higher resolution datasets.

The registration of the multiple datasets to a common coordinate system was complicated by
significant differences in image content as well as image resolution. Because the purpose of
the study was to develop a methodology for examining the correlation between CT based
HU and histopathological tissue type, an error less than the highest possible resolution
MDCT dataset, 100 microns, was deemed acceptable.

The 2D rigid registration approach was employed for the registration of the LIMA and
micro-CT data. The lung nodule tissue properties were not altered between the acquisition of
the micro-CT data and the LIMA imaging and so a nonrigid registration was deemed
unnecessary to correct the misalignment between the datasets. The average and standard
deviation of the FRE was 1.59 ± 0.69 pixels and the TRE was 3.10 ± 1.40 pixels. In the
global coordinate system, this equated to a physical FRE distance of 44.57 ± 19.22 microns
and a TRE of 86.83 ± 39.23 microns.

The 2D nonrigid registration approach was used to align each digitized histopathology slide
to the corresponding LIMA image. The average and standard deviation of the TRE for the
landmark based thin plate spline warping of the histology image set to the LIMA base set
was 5.04 ± 2.20 pixels, which translated to 43.08 ± 18.83 microns in global space.

For the 3D rigid registration of the MDCT data to the micro-CT checkerboard images were
used for qualitative validation and the standard error of repeated registrations was used for
quantitative validation. Figure 8 illustrates an example of a set of checkerboard images for
an adenocarcinoma case. These images show a good alignment between the identifiable
structures in the micro-CT to isolated nodule MDCT and the micro-CT to lobe MDCT. The
resolution of the in vivo MDCT data makes the evaluation of the registration difficult and no
structural landmarks can be clearly visualized.

As a qualitative measure of registration, in the case of the isolated lung nodule MDCT to the
micro-CT dataset, the standard errors for resulting translations in x, y, and z were 0.9
microns, 4.5 microns, and 5.4 microns, respectively. The standard errors for rotation around
the x, y, and z axis were 6.3 microns, 7.3 microns, and 4.2 microns, respectively. For the
registration of the fixed lung lobe to the micro-CT data, the standard errors in translation
were 2.0 micron in x, 6.3 microns in y, and 2.0 microns in z. For rotation the standard errors
in x, y, and z axis were 2.2 microns, 7.2 microns, and 4.7 microns, respectively, which are
all subpixel registration errors. For the alignment of the in vivo MDCT to the global
coordinate system the standard errors in the transform in x, y, and z were 1.0 mm, 0.6 mm,
and 3 mm, respectively. The standard errors for rotation around the x, y, and z axis were 0.3
mm, 0.4 mm, and 3.8 mm, respectively. As one would expect, the standard errors reflect the
difficulty in registering such sparse data. The overall tendency across the datasets, for the
large slice separation to be in the global z-axis, is reflected by the large standard error in the
z translation.

DISCUSSION
The creation of a process model for the acquisition and registration of histopathological data
to corresponding ex vivo and in vivo MDCT data has high potential to impact clinical and
research arenas. Because there is no complete database containing registered lung nodule
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pathology to corresponding MDCT data, it is impossible to evaluate the extent of
information captured in an MDCT scan. This correlation may have a clinical significance in
bridging radiological and pathological classifications of cancerous nodules. This is of
particular interest in the case of lung cancer in classifying bronchoalveolar carcinoma
subtypes that have been linked to differing prognostic outcomes (22).

Non–small-cell lung cancer nodules are considered by most clinicians to be topographically
homogeneous (consisting only of cancer) with a well-defined boundary. In this study,
delineating the different tissue types within the histopathological data revealed a highly
complex intermixing of cancerous and noncancerous tissue types within the solid portion of
the nodule (Fig 3). Because of the reliable structural basis of the LIMA dataset, the
individual histopathological sections could be registered to a common coordinate system,
generating 3D reconstructions of the histopathological content. To our knowledge, this is the
first time this form of reconstruction has been established for lung adenocarcinoma nodules.
We believe these histopathological reconstructions present a valuable opportunity to
investigate relationships between histopathological content and patient diagnosis and
prognosis with a greater accuracy than current preliminary studies (23–26).

It is valuable to note that from this study it was found that the boundary complexity of the
nodules was grossly underestimated in the clinical data. Some aspect of this was
unavoidable due to the larger field of view required for clinical in vivo imaging, resulting in
a lower in-plane resolution. However, the main contributing factor to this boundary
oversimplification was the large slice thickness of the clinical MDCT scans. With a slice
thickness of 3 mm or greater, much of the valuable information regarding the nodule shape
is lost, even in these cases in which the nodules were approximately 2 cm in diameter.
Boundary shape is commonly used by both radiologists and computer-aided diagnosis
(CAD) systems as a feature for distinguishing cancerous from noncancerous lesions (27,28).
In our study, however, the complexity of the nodule boundaries was not appropriately
captured in the in vivo, clinical CT data.

Registration of multimodal, multiresolution datasets is a challenging task. In this study, both
rigid and nonrigid registration approaches were used to align the datasets to a common
coordinate system. These registration approaches were evaluated using TRE and FRE
measures and standard errors of repeated registrations. The minimum registration accuracy
for this study was determined to be the highest resolution of the MDCT dataset. This was the
resolution of the isolated nodule MDCT that had a 100-micron pixel size. The greatest
interest in this study was correlating histological tissue type to MDCT representations, and
subpixel accuracy in the registration of these datasets was considered desirable. This was
successfully achieved for all image sets, except for the in vivo MDCT data, in which the
data quality was poor. In the future, with higher resolution presurgical MDCT imaging, we
are confident a great improvement can be achieved in the alignment of this dataset. It is
believed the major contributor to the TRE and FREs in the micro-CT to LIMA registration
and the histopathology to LIMA registration was the manual selection of landmark points. In
the different modality datasets, there exists a challenge in the precise location of
corresponding landmark points. This is due to modality specific influences such as partial
volume effect in the micro-CT datasets and physical distortion of the tissue in
histopathology.

Considering the challenges in landmark selection, the 3D mutual information registration as
opposed to 2D landmark based registration may seem a better approach for the registration
of the micro-CT dataset to the LIMA. However, each slice from the LIMA dataset was
acquired from the cut tissue block so that a large depth of field was incorporated into the
image. This acquisition method was selected to allow the structural correspondence between
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LIMA sections to be preserved. Unfortunately, this large depth of field in the LIMA datasets
complicated the multimodal registration problem because of the significant difference in
airway representations between the LIMA and the micro-CT dataset. Hence, a landmark
based approach was required to achieve reliable alignment results. Landmarks were not
necessary to register the lower resolution MDCT datasets to the aligned micro-CT dataset
because of the similarity in information content.

In the future, the quality and speed of the 2D rigid and nonrigid registration approaches may
be improved by using semiautomated boundary detection approaches to delineate the nodule
perimeter and then use the contour, rather than landmark points, to drive the registration.
Some previous work in this form of registration was conducted by Jaccobs et al in the
alignment between histology sections and MRI of rat brains (29). In this study, the
Eigenimage filter technique was used to segment the MRI data, followed by an automated
multiresolution contour extraction method. A head and hat surface matching approach
mapped the lower resolution “hat” dataset (MRI) to the high resolution “head” (histology)
(30). However, an extensive investigation into the applicability of a similar approach to our
lung nodule study is required to determine feasibility and cost-to-benefit ratio.

After the registration of the histopathological tissue type maps and the radiological datasets
to the common coordinate system, a direct correspondence can be established between the
voxels in the radiological data and the tissue type labels. We plan to use this labeling to
extract out the HU values corresponding to each tissue type and statistically evaluate the
resulting HU histograms to determine if separability between the pathological tissue type
classifications exists, a crucial piece of information that is unknown.

For future cases, we intend to acquire a presurgical contrast MDCT, for blood flow, as well
as a positron emission tomography/CT scan, for glucose metabolism. Both blood flow and
glucose metabolism are forms of functional data used to aid in distinguishing cancerous
from noncancerous nodules. As enrollment continues, we aim to link patient outcomes to the
histopathological content to determine if the proportion of each tissue type has prognostic
significance. Additionally, all the datasets will be made publicly available to researchers and
clinicians through inclusion in the Large Image Database Consortium database (31).

CAD systems are becoming increasingly important in the clinical setting, serving as a
second reader in image interpretation, effectively improving detection accuracy and
consistency (32,33). To develop a CAD system, a complete dataset is required containing
numerous cases for which the final diagnoses are known, this is known as a training dataset.
From the training set, a group of features is established to describe each of the diagnoses, or
classes. The training dataset is used to guide the development of the CAD algorithm by
comparing the features of an unknown case to the features of the training set and seeing
which class (diagnosis) it most closely matches. Therefore, if the final diagnosis in the
training set has only two classes—malignant and benign—then they are the two possible
outputs when the CAD algorithm is applied to a new case. It is hoped that the datasets
produced by the methodology described in this paper can be used in the future for training
more sophisticated CAD systems. Through the reliable registration of the histopathology
ground truth to other modalities, the possible classes for classification can extend beyond the
currently used whole nodule descriptors, malignant and benign, to include specific
subnodule pathological tissue types such as cancerous tumor, fibrosis, and necrosis.

In conclusion, a novel process model has been established to generate cross-registered
multimodal datasets for the investigation of human lung cancer nodule content and
representation. We believe this methodology produces datasets of high potential to increase
the understanding of 3D histopathological tissue content and its relationship to patient
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prognosis, and also to provide a ground truth for the evaluation and further development of
CAD systems using MDCT. In this process new image-based biomarkers relevant to lung
cancer are likely (34).
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Figure 1.
Summary of the large image microscope array (LIMA) system. This system serves to
section the tissue while recording the spatial correspondence between sections by imaging
the tissue block before the removal of a section. Multiple subimages are acquired as the
camera and microscope coupling rastor scan over the tissue surface. The surface is then
sectioned and removed from the tissue block, via a vibrating knife, for subsequent
histological processing. This process results in the generation of a color dataset which can be
used as the ground truth for linking nondestructive image sets, such as computed
tomography to destructive histopathology image sets.
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Figure 2.
A summary diagram outlining the image acquisition and tissue processing procedure for the
application of investigating human lung cancer nodules.
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Figure 3.
An example of a digitized hematoxylin and eosin histology section of an adenocarcinoma
case and the corresponding tissue type map created via manual tracing by a surgical
pathologist with a pulmonary subspecialty.
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Figure 4.
Schematic diagram of the nodule stabalization system developed for maintaining the
alignment between the imaging planes from multidetector computed tomography (MDCT),
micro-CT, and the large image microscope array (LIMA) system. Shown are the
components and imaging plane of the MDCT and micro-CT modalities (a), and the LIMA
system (b). Photographs of the actual hardware is shown in (c), which show the detail of the
mount arm and the support brackets.
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Figure 5.
Summary diagram showing the registration approaches applied to map the multimodal
image datasets to a common global image space.
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Figure 6.
The result of the image acquisition and registration process for an adenocarcinoma case in
which the tissue type map can be related to the other image datasets on a voxel to voxel
basis.
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Figure 7.
Because of the developed image acquisition sequence and image registration approach, the
multimodal dataset is correlated back to the corresponding location in the in vivo
multidetector computed tomography (MDCT) dataset. Note the boundary identified in the
low-resolution, in vivo MDCT is an oversimplification of the nodule boundary as identified
from the higher resolution datasets.
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Figure 8.
The qualitative evaluation of the three-dimensional rigid registration approach was
performed using checkerboard datasets in which alternating cubes of data were displayed
from the two datasets being evaluated. Shown are three axial images through the same plane
in the dataset comparing the alignment between the registration basis, the micro-computed
tomography, and the aligned lower resolution datasets.
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TABLE 1

Patient Demographic Information

Characteristic

Mean Range

Age (y) 66 51–79

Body mass index 26 21–33

Nodule size from radiology report

 Maximum diameter 27 14–50

 Minimum diameter 19 10–15

n %

Gender

 Male 2 18

 Female 9 82

Race

 Caucasian 10 91

 African American 1 9

Site

 Right upper lobe 1 9

 Right lower lobe 6 55

 Left upper lobe 3 27%

 Left lower lobe 1 9

Diagnosis

 Adenocarcinoma 7 64

 Squamous cell carcinoma 3 27

 Neuroendocrine carcinoma 1 9

Stage

 Stage IA 5 46

 Stage IB 3 27%

 Stage IIB 2 18%

 Stage IIIA 1 9

Smoking history

 Never 1 9

 <1 pack per week 2 18

 1 pack per week 6 55

 2 pack per week 1 9

 3 pack per week 1 9
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