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SUMMARY

Plexins are a family of single pass transmembrane proteins that serve as cell surface receptors for
Semaphorins during the embryonic development of animals. Semaphorin-Plexin signaling is
critical for many cellular aspects of organogenesis, including cell migration, proliferation and
survival. Until recently, little was known about the function of PlexinD1, the sole member of the
vertebrate-specific PlexinD (PIxnD1) subfamily. Here we review novel findings about PIxnD1’s
roles in the development of the cardiovascular, nervous and immune systems and salivary gland
branching morphogenesis and discuss new insights concerning the molecular mechanisms of
PIxnD1 activity.

MEET THE PLEXINS

In 1995 the Xenopus cell surface axonal antigen B2 was cloned and shown to encode a novel
single-pass type | transmembrane protein with calcium-dependent homophilic cell adhesion
properties and three extra-cellular cysteine-rich clusters similar to those found in the
oncogenic family of MET/HGF (Mesenchymal-Epithelial Transition factor/Hepatocyte
Growth Factor) tyrosine kinase receptors (Ohta et al., 1995). The new molecule was
renamed Plexin (PIxn) to highlight its role in organizing the plexiform layers of the neural
retina (Ohta et al., 1992; Satoda et al., 1995).

Soon the first mammalian Plxns were discovered and found to bind to Semaphorins
(Semas), a large family of related extracellular proteins that includes both secreted (class 2
and 3) and membrane-tethered (classes 1, 4-7 and V) forms (Comeau et al., 1998;
Kameyama et al., 1996a, b; Maestrini et al., 1996). The first human Plxns were identified in
1996 (Maestrini et al., 1996). The cloning of human PIxns was completed in 1999 and the
current system of PlIxn classification which groups these proteins into one of four
subfamilies (A, B, C and D) based on the sequence similarity of their ectodomains was
simultaneously devised (Tamagnone et al., 1999). In 1998 studies revealed that Drosophila
PIxnA, which is expressed in the developing nervous system, functions as a Sema-
responsive axon guidance receptor, thus uncovering the role of PIxns as Sema receptors
(Winberg et al., 1998).
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Today we know that Sema-PIxn signaling is important during eumetazoan development not
only for axonal guidance, but also for the patterning of many other tissues and organs (see
(Roth et al., 2009; Yazdani and Terman, 2006)). In this review we focus on PIxnD1
(Tamagnone et al., 1999), the sole member of the vertebrate-specific D subfamily of PIxn
receptors and a key player in vascular, neuronal and immune system development
implicated the etiology of congenital defects and cancer.

THE DEVELOPMENTAL BIOLOGY OF PLXND1

Itis in your blood (vessels)

pIxnD1 is dynamically expressed in many embryonic tissues. In particular, plxnD1
transcripts are prominent in endothelial cells of the developing vasculature (Fig. 1A-C). For
example, in E9.5-12.5 mouse embryos pIxnD1 expression is found in most, if not all, of the
vascular endothelium. By E14.5-18.5 pIxnD1 continues to be expressed in both the
endothelium and the heart’s endocardium. Similarly, early embryonic plxnD1 expression in
the zebrafish is mostly endothelial-specific (Cheng et al., 2001; Gitler et al., 2004; Gu et al.,
2005; Torres-Véazquez et al., 2004; van der Zwaag et al., 2002; Zhang et al., 2008).

Sema3-PIxnD1 signaling guides angiogenic pathfinding—The reproducible
anatomy of the vasculature ensures homeostasis and survival by enabling the adequate
distribution of gases, metabolites, hormones and immunity factors through the body (Jain,
2003; Weinstein, 1999). Others and we have shown that the stereotypical organization of the
blood vessels is guided by the same genetic mechanisms that guide axons (reviewed in
(Carmeliet and Tessier-Lavigne, 2005). For example, vertebrate-specific Semas of the class
3 (Sema3s) inhibit the migration of neuronal growth cones expressing both Plxns and
Neuropilins (Nrps/Npns) to restrict their navigation pathways (reviewed in (Casazza et al.,
2007; Shim and Ming, 2007). Nrps are cell surface transmembrane proteins that are
expressed in both the nerves and the endothelium that serve as Sema3 and VEGF (Vascular
Endothelial Growth Factor) co-receptors for PIxns and VEGFR-2 (VEGF Receptor 2/FIk1/
Kdr/), respectively (reviewed in (Geretti et al., 2008; Schwarz and Ruhrberg, 2010)).

Pioneer in vitro and in vivo experiments revealed that endothelial cells also respond to
Sema3 cues. Given that Nrps act as VEGF co-receptors during cardiovascular development,
the inhibitory effect of Sema3s on angiogenic sprouting and endothelial cell migration was
attributed to Sema3/VEGF competition for Nrp binding (Bates et al., 2003; Miao et al.,
1999; Shoji et al., 2003). However, an alternative molecular mechanism for explaining the
effects of Sema3s on cardiovascular development was suggested by the endothelial
expression of pIxnD1 in both mouse and zebrafish embryos (Torres-Vazquez et al., 2004;
van der Zwaag et al., 2002). By following upon this observation we, along with others, were
able to demonstrate that paracrine Sema3 signaling via PIxnD1 guides the anatomical
patterning of specific subsets of angiogenic vessels (Gitler et al., 2004; Gu et al., 2005).

For example, in our studies we used time-lapse confocal imaging to visualize the developing
zebrafish vasculature in embryos carrying endothelial-specific fluorescent reporters. In wild
type animals angiogenic Segmental Arteries (SeAs) sprout next to the somite boundaries
from both the left and right sides of the Dorsal Aorta (DA) at approximately 21 hours post-
fertilization (hpf). These nascent vessels extend dynamic filopodia-like processes as they
grow dorsally acquiring a characteristic chevron shape that reflects their trajectory, which
tracks along most of the somite boundary. By 30-32 hpf the SeAs have extended past the
roof of the neural tube. Here they branch in an antero-posterior manner, interconnecting with
their ipsilateral neighbors to form each of the two Dorsal Longitudinal Anastomotic Vessels
(DLAVs) that run along the trunk dorsally to the neural tube (Fig. 2C) (Isogai et al.,
2003;Torres-Vézquez et al., 2004).
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In contrast, plxnD1-deficient embryos, such as out of bounds (obd) homozygous mutants
and wild type animals injected with anti-pIxnD1 morpholinos show dramatic defects in SeA
development, such as premature and ectopic sprouting, aberrant pathfinding accompanied by
the formation of abnormally long filopodia and improper branching (Fig. 2D). In contrast,
pIxnD1 is not required for DLAV positioning, vascular lumenization or circulatory blood
flow (Childs et al., 2002; Torres-Véazquez et al., 2004).

The class 3 Semas encoded by the zebrafish sema3aa/3al (Shoji et al., 1998) and sema3ab/
3a2 (Shoji et al., 2003) genes are expressed in the developing somites, in overlapping
patterns that are largely complementary to the paths followed by growing SeA sprouts (Fig.
2E). Zebrafish embryos with reduced Sema3a function display disorganized SeAs, similar to
those found in pIxnD1-deficient animals. Conversely, somite-specific over-expression of
Sema3s inhibits SeA growth in a plxnD1-dependent manner (Torres-Vazquez et al., 2004).
Together, our findings indicate that paracrine repulsive Sema3-PIxnD1 signaling from the
somites to the developing vasculature shapes the reproducible anatomy of the SeAs by
regulating fundamental aspects of their angiogenic development, such as their sprouting
schedule, launching position, pathfinding and branching morphogenesis (Fig. 2F).

Importantly, studies about the role of PIxnD1 (Gitler et al., 2004; Gu et al., 2005; Zhang et
al., 2008) and its canonical murine ligand, Sema3E (Gitler et al., 2004; Gu et al., 2005) fully
support this model. For example, knockout mouse embryos lacking either PIxnD1
(pIxnD1XO) or Sema3E activity show identical Se vessel phenotypes (Fig. 2A-B), which
parallel those of obd mutants. Accordingly, Sema3E induces the collapse of PIxnD1-
expressing COS-7 cells and vascular repulsion in chick (Gitler et al., 2004; Gu et al., 2005).
Finally, two lines of evidence indicate that Sema3-PIxnD1 signaling is required in the
endothelium for proper Se vessel development. First, endothelial-specific inactivation of
murine pIxnD1 (plxnD1ECKO) ysing a floxed allele induces all of the cardiovascular defects
observed in pIxnD1KC mice (Zhang et al., 2008). Second, we found that SeA defects of obd
mutants are rescued when wild type, exogenous pIxnD1 cDNA is provided in an endothelial-
specific manner (Tomasz Zygmunt and Jesus Torres-Vazquez, unpublished results).
However, the cell autonomy of pIxnD1 in the endothelium has not been defined.
Nonetheless, these observations indicate that Sema3-PIxnD1 signaling plays an
evolutionarily conserved role in shaping the anatomy of the Se vessels.

Beyond Se vessel development—plxnD1K© mouse embryos also display
hypervascularization of the heart’s epicardium (Gitler et al., 2004), ectopic vascular
branching in the hindbrain (Vieira et al., 2007) and reduction of the fourth and sixth aortic
arch arteries. Furthermore, the pups exhibit mispatterned intercostal vessels and persistent
truncus arteriosus (PTA), a congenital form of heart disease caused by defective remodeling
of the heart’s outflow tract (OT). Specifically, a lack of conotruncal septation fails to
separate the pulmonary artery and the aorta, leading to perinatal cyanosis and lethality (Fig.
2G-H).

Notably, migration of cardiac neural crest cells (which also express plxnD1) is not impaired
in pIxnD1KO embryos, thus suggesting that the PTA’s etiology is endothelial-specific.
Similar OT abnormalities are observed in animals lacking Sema3C or with impaired Nrp
activity, but not in sema3e-deficient animals, suggesting that loss of Sema3C-PIxnD1/Nrpl
signaling is the cause for these abnormalities. Accordingly, Sema3C binds to Nrps in an
enhanced manner in the presence PIxnD1 (Gitler et al., 2004) (see also (Banu et al., 2006;
Gu et al., 2003; Toyofuku et al., 2008).

In contrast to mice, zebrafish lack OT septation. This allows the survival of obd mutants and
enables the analysis of phenotypes related to loss of pIxnD1 activity through life (Childs et
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al., 2002; Gitler et al., 2004). We have found that in adult obd mutants the stereotypical
organization of the fin vasculature is disrupted (JesUs Torres-Vazquez, unpublished
observations).

Surprisingly, even the morphogenesis of some vascular beds that do not exhibit a fixed
anatomical pattern is also plxnD1-dependent. For example, obd mutant embryos display
retinal (Alvarez et al., 2009; Alvarez et al., 2007) and subintestinal vessels that are
aberrantly branched (Jesis Torres-Vazquez, unpublished observations) as well as abnormal
remodeling of the caudal vein plexus (Torres-Véazquez et al., 2004). Importantly, similar
defects in retinal vasculature organization are observed in mice with endothelial-specific
deletion of pIxnD1 activity (Zhang et al., 2008). Overall, these observations indicate that
endothelial PIxnD1 activity plays an evolutionarily conserved role in shaping many different
vascular beds, including vessels with stereotypical and non-stereotypical anatomies.

Besides Sema3C and Sema3E, the transmembrane Sema4A is also a PIxnD1 ligand in mice,
although of low affinity. Sema4A is expressed in the heart’s ventricle and the Se vessels of
E10.5 embryos. Although Sema4A appears to suppress angiogenesis in a PIxnD1-dependent
manner, SemadA does not appear to be involved in shaping the vasculature, since Sema4A-
deficient mice display normally patterned vessels. Instead, Sema4A-deficient adult mice
exhibit enhanced wound-induced neo-angiogenesis (Kumanogoh et al., 2005; Toyofuku et
al., 2007).

Finally, endothelial PIxnD1 signaling appears to be required for proper development of the
heart’s myocardium and bones. For example, pIxnD1ECKO mouse embryos display atrial
defects and ventricular septal abnormalities. These phenotypes are likely due to disrupted
endocardial-myocardial communication. In addition, plxnD1KO and pIxnD1ECKO mice
display defects in the patterning of the axial skeleton (Fig. 21-J), such as hemivertebrae and
vertebral fusions, which likely stem from improper bone vascularization (Kanda et al., 2007;
Toyofuku et al., 2007).

Getting nervous

pIxnD1 transcription occurs also in the nervous system (Fig. 1G—H). In the E14.5-18.5
mouse embryo plxnD1 is expressed in the CNS at the forebrain, trigeminal and dorsal root
ganglia and choroid plexus (Zhang et al., 2008). At E15.5-E17.5 pIxnD1 is expressed in the
cortex’s ventrolateral regions (piriform, perirhinal, and insular cortices), striatum and the
pyramidal layer of the subiculum during the formation of the forebrain’s descending axon
tracts. In particular, at E17.5 pIxnD1 is expressed in the cortifugal and striatonigral
projections that grow through the mesencephalic cerebral peduncle to innervate lower brain
centers as well as the subiculo-mammillary tract, the main output structure of the
hippocampus (Chauvet et al., 2007). In addition, postnatal day 1 (P1) mice display plxnD1
expression in the hippocampus (outer molecular layer of the dentate gyrus and the stratum
lacunosum moleculare layers of the cornua ammonis 1 and 2). In P14 mice pIxnD1 is
expressed in a subset of callosal projection neurons (Cheng et al., 2001; Molyneaux et al.,
2009b) and in adults it is expressed in the amygdala (D’Souza et al., 2008). Finally, pIxnD1
is expressed in the neocortex of both mature mice and Japanese macaques in a laminar
distribution that is complementary to that of its ligand, sema3e (Watakabe et al., 2006).

Wiring the brain—Sema-PlIxn signaling is important for both axonal guidance and
pruning (reviewed in (Waimey and Cheng, 2006)). Accordingly, both Sema3E and PIxnD1
have been implicated in the organization of neuronal circuits. For example, in the E17.5
forebrain PIxnD1 is expressed in the descending cortifugal and striatonigral tracts (Fig. 11).
Both tracts share a common caudal projecting pathway, crossing through the internal capsule
and the cerebral peduncle to reach their lower brain centers targets (the midbrain’s
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substantia nigra and the brain stem’s pons, respectively). A second PIxnD1+ axonal pathway
(the subiculo-mamillary tract) begins in the subiculum, transverses the fimbria, fornix and
postcommisural fornix to reach the mammillary bodies in the caudal hypothalamus (Fig. 1J).

The axons of these two descending pathways extend near Sema3E-expressing cells but
display sharply different behaviors. The corticofugal and striatonigral axons avoid Sema3E
sources (the thalamic ventricular neurons and the globus pallidus) by growing between them
(through the internal capsule). In contrast, the subiculo-mammillary axons are attracted to
Sema3E and grow along the axons of Sema3E-expressing neurons of the pyramidal cell
layers in the CA1 and CA3 hyppocampal fields. Notably, the behavior of these axonal tracts
correlates with differences in Nrpl expression. Nrpl is absent in the neurons that interpret
Sema3E as a repellent (the cortifugal and striatonigral tracts) but it is present in the neurons
that sense Sema3E as a chemoattractant (the subiculo-mamillary tract). In experiments with
cultured, dissociated neurons both the repulsive and attractive effects of Sema3E are
PIxnD1-dependent, with Nrpl enabling or “gating” Sema3E-induced axonal attraction.
Remarkably, Sema3E-induced axonal attraction involves a PIxnD1/Nrpl/VEGFR2 ternary
complex in which PIxnD1 functions as the ligand binding subunit and VEGFR2 as the signal
transducing subunit (Fig. 3D) (Bellon et al., 2010;Chauvet et al., 2007).

Although the possible link between Sema3E-induced axonal attraction and p61Sema3E
expression has not been explored in this context, the authors of these studies found that the
dual Sema3/VEGF co-receptor Nrpl as well as the VEGF receptor VEGFR2 reduce in half
the number of Sema3E-binding sites of PIxnD1-expressing cells in vitro. Thus, the presence
of either co-receptor might reduce the access of Sema3E dimers to PIxnD1 (Bellon et al.,
2010; Chauvet et al., 2007) and/or enable the binding of p61Sema3E monomers, despite the
fact that p61Sema3E does not appear to bind to Nrpl (Casazza et al., 2010). Interestingly,
the endothelial cell line used to show that p61Sema3E functions as an attractant for
endothelial cells is known to express both PIxnD1 and Nrp1; whether it also expresses
VEGFR2 has not been experimentally verified (Christensen et al., 2005; Matthies et al.,
2002).

Sensory-motor circuit connectivity—Sema3E and PIxnD1 are also key determinants
for establishing the fine synaptic specificity that matches particular subsets of sensory
afferents (proprioceptive sensory neurons or PSNs) with their cognate motor neurons (MNs)
in two different spinal sensory-motor circuits of the mouse: the triceps (Tri) and the
cutaneous maximus (Cm) reflex arcs (Fig. 2K-L). In the Tri reflex arc PSNs provide
monosynaptic inputs to MNs. In contrast, Cm’s sensory afferents do not synapse with MNs.
The majority of PSNs in both reflex arcs express PIxnD1. However, Sema3e expression is
restricted to the Cm’s MNSs. In a series of beautiful experiments, the loss of SEMA3E-
PLXND1 signaling was found to induce differential effects on synaptic connectivity. When
either Sema3e or PIxnD1 activity is eliminated, the PSNs and MNs of the Cm wire together,
but Tri PSN-MN connectivity are unaffected. Conversely, forced SEMAS3E expression in
Cm MNs prevents PSN-MN connectivity in the Cm arc. Together, these observations
indicate that sensory-motor connectivity is based on a system that employs SEMA3E-
induced, PLXND1-mediated repulsion for blocking synapse formation (Pecho-Vrieseling et
al., 2009) see also (Yoshida et al., 2006).

Glandular branching morphogenesis

Formation of the salivary and mammary glands, the lungs and the kidneys is orchestrated by
interactions between epithelial cells organized in tubular buds and the mesenchyme that
surrounds them, which leads to the growth and branching of the epithelial primordium
(Andrew and Ewald, 2009).

Dev Biol. Author manuscript; available in PMC 2012 January 1.
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Recently, it was found that epithelial bud cleft formation in the developing murine
submandibular gland (SMG) requires Sema3A, Sema3C, PIxnD1, PIxnAl and Nrpl. RNA
in situ hybridization reveals that the transcripts of these five molecules are expressed within
the epithelial bud during SMG branching morphogenesis. Moreover, loss-of-function
experiments using cultured SMG explants indicate that the activity of these five proteins is
required for epithelial bud cleft formation. SMG branching morphogenesis involves cleft
formation, a process that is thought to occur via the local collapse of epithelial cells.
Surprisingly, the canonical PIxnD1 ligand Sema3E (which is expressed in the epithelial bud)
is not required for this process (Chung et al., 2007).

Notably, plxnD1 transcripts are also detected in the mouse developing mammary gland at
the terminal end buds and the stroma and in the embryonic adrenal gland. Thus, it is likely
that PIxnD1 is involved in the branching of these organs as well (Morris et al., 2006) (Zhang
etal., 2008).

Thymocyte development

Thymocyte maturation requires their proper migration within the thymus. Repulsive
Sema3E-PIxnD1 signaling controls the migration of CD4*CD8" double positive (DP)
thymocytes. Expression of both plxnD1 mRNA and PIxnD1 protein is observed in cortical
thymocytes (Fig. 1F). In contrast, Sema3E mRNA is detected in a reciprocal pattern, at the
medulla, where mature CD8+ single positive (SP) thymocytes (which lack detectable
PIxnD1 expression) are located. CCL25-CCR9 chemokine signaling promotes thymocyte
migration into the medula. Thymocyte migration experiments indicate that Sema3E-PIxnD1
signaling inhibits CCL25-CCR9 chemokine signaling, consistent with the fact that during
the DP-SP transition thymocytes down regulate PIxnD1 expression (Choi et al., 2008).
Reduced levels of PIxnD1 expression are also observed in leukemic thymocytes (Calvo,
2005;Guijosa, 2007).

Sema-PIxnD1 signaling: Going new places

pIxnD1 is expressed in many other organs and tissues where its role has not yet been
addressed. For example, in the murine podocytes (the visceral epithelial cells of the kidney
that function as the glomerular filtration barrier), in both the adrenal and mammary glands,
the lung mesenchyme, the ossification centers of vertebral bodies (Fig. 1K), osteoblastic
cells and bone tissues of both newborn and adult mice; the smooth muscle of the small
intestine and macrophages (as in humans). pIxnD1 is also prominently expressed in the
floorplate’s hypochord of the zebrafish embryo (Choi et al., 2008;Chung et al., 2007;Guan et
al., 2006;Kanda et al., 2007;Roodink et al., 2008;Roodink et al., 2005; Torres-Vazquez et al.,
2004;Zhang et al., 2008) (Morris et al., 2006).

PLXND1 AND DISEASE
Congenital defects: CHARGE syndrome

pIxnD1 is necessary for key aspects of murine cardiovascular development (Gitler et al.,
2004; Gu et al., 2005; Zhang et al., 2008). Some of these defects, notably OT abnormalities,
are incompatible with postnatal survival and likely explain why mutations in pIxnD1 have
not been causally linked to human cardiovascular birth defects.

In contrast, Sema3E-null mice are viable and recapitulate most, but not all, of the
cardiovascular defects observed in pIxnD1-deficient animals (Chauvet et al., 2007; Gu et al.,
2005). Accordingly, a missense mutation in SEMA3E was recently identified in a patient
suffering from CHARGE syndrome (Lalani et al., 2004). This is a rare and genetically
heterogenous condition named after the constellation of features first used to diagnose it
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(Coloboma of the eye, Heart defects, Atresia of the choanae, Retardation of growth and/or
development, Genital and/or urinary abnormalities, and Ear abnormalities and deafness)
(Pagon et al., 1981). Notably, CHARGE patients and both mouse sema3e and pIxnD1
knockouts show parallel abnormalities in the cardiovascular and nervous systems.
Moreover, CHARGE patients and mice lacking pIxnD1 activity display defective skeletal
development (Lalani et al., 2004; Song et al., 2008) (see also
http://chargesyndrome.org/about-charge.asp). Together, these observations suggest that
impaired Sema3E-PIxnD1 signaling is an etiological factor in CHARGE syndrome.

Tumors hijack the programs that modulate angiogenesis to gain the blood supply that
enables their survival, growth and metastasis (Carmeliet, 2005). Recent findings suggest that
Sema3-PIxnD1 signaling antagonizes tumor angiogenesis and tumor development
(Christensen et al., 2005; Roodink et al., 2005). For example, Sema3E is highly expressed in
the melanocytes of early-stage, non-invasive in situ melanomas but only in 36% of
melanoma metastases. In addition, melanoma cell lines with high Sema3E expression inhibit
tumor angiogenesis in vitro and fail to metastasize in a murine tumor transplantation model
(Kigel et al., 2008; Roodink et al., 2008). Although these experiments did not address if the
Sema3E effects are PIxnD1-dependent, these results are consistent with the known role of
Sema3E as a PIxnD1-dependent repulsive cue for endothelial cells during mammalian
embryogenesis (Gitler et al., 2004; Gu et al., 2005).

However, while full-length dimeric forms of Sema3s act as growth-repelling cues, furin-
dependent cleavage of Sema3s reduces their repelling activity. Consistent with this notion,
blocking Furin activity abolishes the invasiveness and tumorigenicity of human cancer cells
(Adams et al., 1997; Bassi et al., 2001; Klostermann et al., 1998; Koppel and Raper, 1998).
Furin cleaves Sema3E into two fragments (Fig. 3A). The large one contains the N-terminal
Sema domain, while the short C-terminal fragment includes the Cys residue involved in
Sema dimerization. Thus, furin-induced Sema3E cleavage generates four Sema3E isoforms
of different size and oligomerization state (Fig. 3B).

Surprisingly, the cleaved Sema3E monomer (p61Sema3E) acts as a pro-angiogenic
attractant in vitro (Fig. 3C), promotes lung metastasis in mouse xenografts and binds to
PIxnD1. In fact, the main Sema3E is form secreted by mouse mammary Aden carcinoma
cells is p61Sema3E. Adenocarcinoma cells that lack endogenous sema3E expression and
metastatic potential can form tumors when transected with vectors that drive the expression
of either wild type sema3E cDNA or an artificial p61Sema3E is form (Christensen et al.,
2005). Moreover, in healthy human adults PIxnD1 is expressed only in very few organs and
at low levels. However, the tumor vasculature and the malignant cells of a wide range of
tumors (including both primary and metastatic brain tumors and melanomas) display
dramatically enhanced PIxnD1 expression. Thus, PIxnD1 is the only known protein whose
expression increases in both tumor compartments: the neoplasm and its vasculature
(Roodink et al., 2005;Roodink et al., 2009).

Therefore, a recent study analyzed whether the effects of p61Sema3E on tumor metastasis
and tumor angiogenesis are PIxnD1-dependent. The authors found that in a collection of 60
different human colon carcinoma samples all of them expressed PIxnD1 (Casazza et al.,
2010). Accordingly, in a different study pIxnD1 was found to be upregulated in colorectal
cancer (Galamb et al., 2008). Interestingly, the first study found that Sema3E expression is
selectively enriched in primary tumors associated with metastatic disease (88%) and in
100% of liver metastases from colon carcinomas. This indicates that Sema3E and PIxnD1
levels are higher in metastases than in primary tumors. Similarly, both the level and number
of melanoma cells expressing Sema3E increases with tumor grade (Casazza et al., 2010).
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Consistent with this notion another study reported a parallel trend for PIxnD1 abundance in
melanoma (Roodink et al., 2008). Together, these observations indicate that increased levels
of both Sema3E and PIxnD1 correlate with the potential for metastatic spreading.

Accordingly, in tumor xenograft assays using mouse hosts reducing the level of Sema3E or
PIxnD1 in the human carcinoma cells impairs their metastasis without affecting tumor
growth. Conversely, forced expression of either Sema3E or p61Sema3E in tumor cells
increases the incidence of lung metastasis. Indeed, elevated levels of both Sema3E and
PIxnD1 are associated with enhanced risk for metastatic progression in colon cancer
patients. Interestingly, p61Sema3E-PIxnD1 autocrine signaling in tumor cells appears to
promote tumor metastasis by increasing both tumor cell migration and extravasation via
enhanced extracellular matrix (ECM) degradation/invasion (Casazza et al., 2010). Finally, it
is worth noting that Sema4D, an alternative PIxnD1 ligand also promotes tumor
development. Sema4D belongs to a class of cleavable transmembrane Semas that yield
soluble forms, further underscoring the importance of proteolytic cleavage events as
determinants for Sema activity (Basile et al., 2006; Serini et al., 2009; Sierra et al., 2008).

An unhealthy partnership: PIxnD1 and ErbB2—Remarkably, the pro-metastatic
effects of p61Sema3E/PIxnD1 require the activity of the oncogenic receptor tyrosine kinase
ErbB2 (Erythroblastic leukemia viral oncogene homolog 2). p61Sema3E does not bind to
ErbB2, but rather induces the formation of a phosphotyrosinated PIxnD1-ErbB2 complex in
human lung carcinoma cells. Interestingly, each receptor is required for the phosphorylation
of the other: ErbB2 phosphorylation is PIxnD1-dependent and PIxnD1 phosphorylation
requires ErbB2’s kinase activity. The p61Sema3E-PIxnD1 mediated metastasis of human
lung carcinoma cells is ErbB2-dependent (Casazza et al., 2010). Consistent with these
findings, ErbB2 induces the expression of the invasion-promoting matrix metalloprotease
MT1-MMP (Miyamori et al., 2000). Moreover, knockdown of MT1-MMP in human
fibrosarcoma cells in vitro leads to lower pIxnD1 levels (Rozanov et al., 2008). These
observations suggest that p61Sema3E/PIxnD1/ErbB2 signaling is modulated via positive
feedback.

Despite these important advances, key controversies remain. Studies report opposite
correlations between Sema3E abundance and melanoma and contrasting effects of
p61Sema3E on the chemotactic response of endothelial cells (Christensen et al., 2005)
(Kigel et al., 2008; Roodink et al., 2008) (Casazza et al., 2010). Undoubtedly future studies
will clarify these discrepancies. Nonetheless, these observations suggest that targeting
Sema-PIxnD1 signaling could provide the basis for novel anti-cancer therapies.

PLXND1: STRUCTURE AND MOLECULAR MECHANISMS OF ACTIVITY

The view from the outside: the ectodomain

PIxnD1 contains all the domains and motifs generally found in other PIxns (Figs. 4A, 5A-
D). The variably sized (~860-1400 aa) ectodomain of PIxns contains two regions with
homology to the Sema, MET and integrin protein families. The first is the amino-terminal
~500 aa Sema domain, which displays a seven-bladed Beta-propeller topology structurally
resembling that of integrins. The second is comprised of three cysteine-rich motifs known as
MET-Related Sequences (MRS repeats or PSI -Plexins, Semas and Integrins- domains)
that are ~50 aa long each. Notably, PIxnD1’s third MRS is atypical because it has six, rather
than eight, cysteines. The function of the MRS repeats is unknown. Finally, the last stretch
of the PIxnD1 ectodomain contains four IPT domains (Immunoglobin-like fold shared by
Plexins and Transcription factors domains; also found in MET family members). Each IPT
domain contains glycine and proline rich repeats. The role of the IPT domains is unknown,
but there is evidence that they are functionally important: in PIXnA3 a missense mutation in
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one of them renders the receptor inactive (Bork et al., 1999;Tamagnone et al., 1999;Tanaka
et al., 2007;van der Zwaag et al., 2002;Winberg et al., 1998); (Gherardi et al., 2004;Love et
al., 2003).

Functions of PIxnD1’s Sema domain—Overall, the Sema domain is the extracellular
PIxn region that is best understood. The only demonstrated role for PIxnD1’s Sema domain
is the physical interaction with the ectodomain of Npns (Gitler et al., 2004). However, Nrps
are not required for Sema3E-PIxnD1 binding and the PIxnD1-Nrp interaction is Sema3E-
independent. Nonetheless, the PIxnD1-Nrpl interaction switches axonal Sema3E-PIxnD1
signaling from repulsion to attraction during brain development (Chauvet et al., 2007; Gu et
al., 2005).

Studies of other Plxns suggest additional roles for PIxnD1’s Sema domain. These include
ligand binding (see Box 1 to learn more about PIxnD1’s ligands and co-receptors),
maintaining the receptor in an inactive state and mediating PIxn-PIxn associations. For
example, ligand binding by PIxnB1 requires its Sema domain and other C-terminal
ectodomain regions (Tamagnone et al., 1999). In addition, a missense mutation in the Sema
domain of PIxnA3 inactivates it (Tanaka et al., 2007). Accordingly, the extra-cellular region
of mammalian PIxnD1 is required for Sema3E binding (Gu et al., 2005;Watakabe et al.,
2006). Structure/function studies of PIxnAl indicate that the association of the Sema domain
with the adjacent C-terminal half of the ectodomain keeps the receptor inactive. This auto-
inhibition is relieved upon ligand binding, likely via an activating conformational change
that extends into the intracellular domain of the receptor as in Fig. 4A-B. Thus, PIxnAl
forms lacking either the Sema domain or the entire ectodomain show constitutive activity
(Takahashi and Strittmatter, 2001). Similarly, PIxnD1 forms without the ectodomain display
ligand-independent constitutive activity in heterologous assays (Uesugi et al., 2008). Finally,
homaophilic interactions between the Sema domains of B PIxns appear to mediate
homophilic interactions in cis and cell-cell adhesion in trans (Hartwig et al., 2005;0Ohta et
al., 1995).

Box 1
PIxnD1 ligands and co-receptors

Sema3E is the canonical mammalian PIxnD1 ligand. Binding studies with cultured cells
and mouse tissue sections indicate that Sema3E binds to PIxnD1 but not to other PIxns.
Typically, type 3 Semas bind and signal via Neuropilin (Npn/Nrp)-PIxn co-receptor
complexes (reviewed in (Geretti et al., 2008; Schwarz and Ruhrberg, 2010)). Co-
immunoprecipitation experiments show that Npn-1 and PIxnD1 associate with each with
or without Sema3E and that this interaction requires the Sema domain of PIxnD1.
PIxnD1 also associates with Npn-2. However, Sema3E-PIxnD1 binding is Npn-
independent. For example, an Alkaline Phosphatase-Sema3E fusion protein (AP-
Sema3E) binds to COS1 cells expressing PIxnD1, but not to COS1 cells transfected with
Npn-1 or Npn-2 expression vectors. Accordingly, AP-Sema3E binds to COS7 cells and
induces their collapse in a PIxnD1-dependent manner. Furthermore, AP-Sema3E still
binds to the endothelium of mouse embryos in which Npn-1 is only available as
Npn-15¢ma- an engineered Npn-1 form unable to bind to Sema3s but which retains
VEGF165 binding. Moreover, npn-15¢Ma-; npn-2 double mutant mice lack Se vessel
patterning defects, the hallmark phenotype of plxnD1 mutants, thus indicating that
Sema3E-induced, PIxnD1-mediated endothelial cell repulsion is Nrpl-independent (Fig.
6A-B). However, although Npn-1 is not required for Sema3E-PIxnD1 binding, in COS7
cells its presence halves Sema3E's Bpax Without affecting Sema3E’s binding affinity or
PIxnD1’s surface levels (Chauvet et al., 2007; Gitler et al., 2004; Gu et al., 2005; Stohr et
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al., 2002; Watakabe et al., 2006). Interestingly, p61Sema3E also binds to PIxnD1 but not
to Npn-1 (Casazza et al., 2010).

Netol (Neuropilin tolloid-like 1; also known as Btcll) is a transmembrane protein
expressed in the brain and retina with two extracellular CUB (complement C1r/C1s,
Uegf, Bmp1l) domains related to those found in Npns and Tolloid (Michishita et al.,
2003; Ng et al., 2009) that like Npns, also associates with PIxnD1. Specifically, Netol
and PIxnD1 form a Sema3F-specific co-receptor: Netol binds to Sema3F only in the
presence of PIxnD1 and associates with PIxnD1 in a Sema3F-dependent manner.
Experiments with COS7 cells co-expressing both Netol and PIxnD1 and with explants of
Neto1~/~ subicular neurons suggest that Sema3F-Neto1/PIxnD1 signaling is repulsive.
Notably, the ectodomain of Netol is sufficient to rescue the Sema3F-responsivennes of
Neto1~/~ subicular neurons. Overall, Netol seems to modulate the ligand binding
specificity of PIxnD1 (Gingrich et al., 2009).

Besides Nrps and Nrp-related proteins, PIxns also associate with other receptors and
transmembrane proteins. These include Met/Ron (Artigiani et al., 2004; Conrotto et al.,
2004; Conrotto et al., 2005; Giordano et al., 2002; Swiercz et al., 2008), OTK/Off-track
kinase/, VEGFR2 (Bellon et al., 2010; Catalano et al., 2009; Toyofuku et al., 2004;
Winberg et al., 2001), LLCAM/L1 Cell Adhesion Molecule (Wang et al., 2008), TREM/
TREM-like receptors (Triggering Receptor Expressed on Myeloid cells) (Ford and
McVicar, 2009; Takegahara et al., 2006), ErbB2/erythroblastic leukaemia viral oncogene
homologue 2 (Casazza et al., 2010; Swiercz et al., 2002; Swiercz et al., 2004) and
Abelson 2 (Shimizu et al., 2008). Some of these PIxn partners also associate with Nrps
and/or are active receptor tyrosine kinases (Met/Ron, VEGR2, ErbB2; OTK lacks
tyrosine kinase activity; reviewed in (Franco and Tamagnone, 2008). Among these, the
only transmembrane proteins known to associate with PIxnD1 are VEGFR2 and ErbB2.
Remarkably, VEGFR2 reduces in half Sema3E's Bpyax Without affecting Sema3E’s
binding affinity or PIxnD1’s surface levels (Bellon et al., 2010; Casazza et al., 2010).

Mice laking the canonical PIxnD1 ligand Sema3E are viable but loss of pIxnD1 induces
perinatal lethality, suggesting the existence of additional PIxnD1 ligands (Chauvet et al.,
2007; Gu et al., 2005). Accordingly, Sema3C, Sema3F and Sema4A also function
PIxnD1 ligands. Sema3C binds to both Npn-1 and Npn-2 directly, but its binding is
enhanced by PIxnD1, while Sema4A-PIxnD1 binding is Npn-independent (Gitler et al.,
2004; Toyofuku et al., 2007). Finally, Sema3F specifically binds to PIxnD1/Neto1l co-
receptor complexes (Gingrich et al., 2009).

The ectodomain of PIxnD1 is N-glycosilated—N-glycosylation is a common post-
translational modification that occurs in the endoplasmic reticulum membrane in which
polysaccharide chains are attached to target proteins. N-glycosylation plays diverse
functions, such as providing specificity to molecular recognition events, promoting protein
stability and enhancing protein folding (reviewed in (Yan and Lennarz, 2005)). The PIxnD1
ectodomain includes many predicted Asparagine (N)-linked glycosylation sites. These fit the
consensus tripeptide sequon Asn-X-Ser/Asn-X/Thr (where X is any residue except Pro)
(Yan and Lennarz, 2005). The role that N-glycosylation serves for PIxnD1 is unknown.
However, the glycosylation of Asn500, a predicted N-glycosylation site in hPIxnD1, has
been experimentally confirmed (Liu et al., 2005).

The inside story: The intracellular tail

The ~630 aa cytosolic tail of PIxnD1 resembles that of other PIxns (Figs. 4A, 5A-D). PIxns
contain an intracellular tail with a “Sex and Plexins” SP domain that harbors two highly
conserved C1 and C2 regions (Tamagnone et al., 1999). Collectively, the two C regions are
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known as the RasGAP domain because each includes a short motif with sequence similarity
to a group of Guanosine triphosphatase (GTPase)-Activating Proteins (GAPS) (Figs. 4A,5A~
B) with specificity for small monomeric GTPases of the R-Ras subfamily (reviewed in
(Pasterkamp, 2005)). These two RasGAP motifs (RasGAP1 and RasGAP2) are the only
known homology between PlIxns and a catalytic domain. Each includes conserved R residues
essential for the catalytic activity of RasGAPs. Specifically, the RasGAP1 motif at the N-
terminal C1 region includes the invariant R residue found at the finger-loop of p120
RasGAP that inserts into the Ras active center. The RasGAP2 motif in the C2 region
includes the R residue that stabilizes the finger-loop (Rohm et al., 2000). Notably, Plxns are
the only transmembrane receptors known to directly associate with small GTPases. A Rho
GTPase-Binding Domain (RBD) is sandwiched between the C regions (Figs. 4A,5C)
(Barberis et al., 2005;Driessens et al., 2001;Hu et al., 2001;0inuma et al., 2004a;0inuma et
al., 2004b;Rohm et al., 2000;Turner et al., 2004;Vikis et al., 2000;Zanata et al., 2002). The
RBD of PIxns displays a ubiquitin-like fold conformation. In PIxnB1 the RBD appears to be
dimeric. However, in PIxnD1 it appears to be monomeric (He et al., 2009;Tong and Buck,
2005;Tong et al., 2007), (http://www.rcsb.org/pdb/explore.do?structureld=3H6N). Finally,
the C2 region of PlIxns is followed by a C-terminal stretch of ~40-60 aa that includes the
COOH terminus and lacks any resemblance to known protein domains. Here we designate
this C-terminal region, which has not been previously described, as the T-segment (Fig.
5D).

PIxns as RasGAPs—Members of the R-Ras subfamily are GTPases, molecular switches
that oscillate between active (GTP-bound) and inactive (GDP-bound) states. GAPs
inactivate GTPases by increasing their intrinsic rate of GTP hydrolysis. In the active state R-
Ras GTPases enhance integrin-mediated cell adhesion to the extracellular matrix (ECM;
reviewed in (Kinbara et al., 2003)).

Accordingly, biochemical assays using cultured neuronal or COS7 cells indicate that Plxns
inactivate R-Ras related proteins by acting as GAPs and that this effect requires the highly-
conserved R residues found at their RasGAP-like motifs. The GAP activity of Plxns
abrogates integrin-mediated cell-ECM adhesion, which in cultured neurons reduces neurite
outgrowth (lIto et al., 2006; Oinuma et al., 2004a; Oinuma et al., 2006; Rohm et al., 2000;
Uesugi et al., 2008). Ras activity also stimulates phosphoinositide 3-kinase (PI13K) signaling,
a modulator of cell survival, growth and migration (reviewed in (Cantley, 2002)).
Accordingly, down regulation of PI3K activity by neuronal Sema-PIxn signaling (Atwal et
al., 2003; Chadborn et al., 2006; Gallo, 2008; Orlova et al., 2007) requires the RasGAP
activity of PIxns, as demonstrated for Sema4D-PIxnB1 (lIto et al., 2006; Oinuma et al.,
2006).

With the exception of PIxnC1, PIxns do not function as constitutively active GAPs (Uesugi
et al., 2008). Instead, expression of the PIxn’s GAP activity requires two events. One of
them is Sema binding to the PIxn ectodomain, which “primes” the receptor likely by
inducing an intracellular conformational change. The second event is the binding of
activated monomeric GTPases of the Rho family (Rac, Cdc42 and Rnd subfamilies; Rho-
like GTPases or RLGs) to the RBD. RBD-RLG binding disrupts the inhibitory association
between the C1 and C2 regions, thus enabling the GAP activity of PIxns.

In some PIxns the RBD also plays a second role, that of preventing the bound RLG from
interacting with its downstream effectors. For example, in fly PlexB the physical interaction
of the RBD with GTP-bound Rac/Cdc42 (RacCP) sequesters RacC TP away from its effector
p21-activated kinase (PAK), thus blocking PAK activation. This antagonizes the
stabilization of actin filaments and promotes neuronal growth cone collapse (Barberis et al.,
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2005; Driessens et al., 2001; Hu et al., 2001; Oinuma et al., 2004a; Oinuma et al., 2004b;
Rohm et al., 2000; Turner et al., 2004; Vikis et al., 2000; Zanata et al., 2002).

PIxnD1 has GAP activity—Several observations indicate that similar to other PIxns,
PIxnD1 acts as a RasGAP to antagonize both integrin-mediated cell-ECM adhesion and
P13K signaling. For instance, Sema3E treatment of cultured endothelial cells decreases the
phosphorylation of Focal Adhesion Kinase (FAK), a key molecule that regulates the
turnover of integrin-containing focal adhesions. In addition, Sema3E-treated COS-7 cells
grown on integrin ligands such as collagen or fibronectin, collapse if transfected with
constructs for the expression of wild type PIxnD1. In contrast, COS-7 cells grown on poly-
L-lisine or expressing PIxnD1 forms with mutated RasGAP motifs fail to collapse upon
Sema3E treatment (Sakurai et al., 2010). In addition, unpublished evidence suggests that
repulsive Sema3E-PIxnD1 signaling in neurons downregulates PI3K activity in a RasGAP-
dependent manner (Eickholt, 2008).

Activation of the RasGAP activity of PIxnB1 and PIxnAl requires RLGs of the Rnd
subfamily, which are unique in that they exist in a constitutively-active GTP-bound state due
to their lack of intrinsic GTPase activity (Foster et al., 1996; Ito et al., 2006; Nobes et al.,
1998; Oinuma et al., 2004a; Oinuma et al., 2003; Oinuma et al., 2006; Tong et al., 2007;
Toyofuku et al., 2005). Therefore, the ability of Rnd1, 2 and 3 to bind to the intracellular tail
of murine PIxnD1 (mPIxnD1) was recently tested. Extracts from transfected COS-7 cells
indicate that these three Rnds can bind to PIxnD1. However, Rnd2 (Rho7/RhoN/ARHN)
exhibits preferential PIxnD1 binding. The Rnd2-binding region of PIxnD1 maps to the N-
terminal half of the cytosolic tail, which contains both the C1 region and the RBD. Hence,
these observations suggest that the PIxnD1-Rnd2 physical interaction is mediated by
PIxnD1’s RBD.

Moreover, different lines of evidence support the idea that Rnd2 is required for the
activation of the RasGAP activity of PIxnD1 in vivo. First, Sema3E blocks axon elongation
in cultured cortical neurons in an Rnd2-dependent manner. Second, endogenous PIxnD1-
Rnd2 complexes can be isolated from these cells via co-immunoprecipitation (Uesugi et al.,
2008). Additional observations provide insights into the molecular mechanisms by which
Rnd proteins might modulate PIxnD1 function. First, formation of a PIxnD1-Rnd2 complex
occurs even without Sema3E stimulation in transfected COS-7 cells. Second, formation of a
PIxnD1-Rnd2 complex does not result in the expression of PIxnD1's GAP activity. Third,
the GAP activity of a membrane-targeted form of PIxnD1 lacking its extracellular domain is
Sema3-independent but Rnd2-dependent (Uesugi et al., 2008).

There are conflicting reports about the effects of p61Sema3E on endothelial cell migration
(Christensen et al., 2005) (Kigel et al., 2008; Roodink et al., 2008) (Casazza et al., 2010).
Nonetheless, it is interesting to note that p61Sema3E provided by human carcinoma cells
inhibits tumor vascularization by the murine hosts. Accordingly, p61Sema3E collapses and
inhibits the migration of HUVECs (Human Vein Endothelial Cells) in a manner that requires
both PIxnD1 and Rnd2 (Casazza et al., 2010; Gitler et al., 2004). Thus, these experiments
suggest that Sema3E and p61Sema3E-induced cell repulsion are Rnd2-dependent.

Sema3E, the canonical ligand for mammalian PIxnD1, induces both repulsive and attractive
responses in axons (Fig. 3D) (Bellon et al., 2010;Chauvet et al., 2007). Interestingly, Rnd2
also mediates opposite effects in neuronal morphology. Rnd2’s differential effects depend
on its choice of partner. Rnd2 can bind to Pragmin (pragma for Rnd2), a neuronal molecule
that can associate with RhoA simultaneously. Pragmin promotes Rho activity to stimulate
cell contraction via a poorly defined non-GEF mechanism (Govek et al., 2005;Tanaka et al.,
2006). However, Rnd2 is also capable of binding to Rapostlin (apostle of Rnd2), a
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microtubule-binding protein. Rapostlin induces neurite branching in PC12 cells in the
presence of constitutively active Rnd2 (Fujita et al., 2002). These observations suggest that
Rnd2 might be involved in both repulsive and attractive responses downstream of Sema3E.
However, it is unlikely that Sema3E-induced axonal attraction/growth requires a PIxnD1-
Rnd2 interaction, since these effects are independent of the intracellular tail of PIxnD1
(Bellon et al., 2010). Nonetheless, the factors that modulate Rnd2's choice of partner,
whether Pragmin or Rapostlin associate individually and/or simultaneously with PIxnD1-
bound Rnd2 in vivo and the precise role of these interactions remain unexplored.

The substrate specificity of PIxnD1's GAP activity was recently explored using COS-7 cells
transfected with two different R-Ras subfamily members, TC21 and M-Ras. Under these
conditions PIxnD1 exhibits Rnd2-dependent GAP activity only towards M-Ras (Uesugi et
al., 2008). This suggests that M-Ras is involved in Sema3E-PIxnD1 signaling in the brain
(Bellon et al., 2010; Chauvet et al., 2007), since M-Ras is predominantly expressed in the
CNS (Kimmelman et al., 1997). However, given PIxnD1’s prominent role in cardiovascular
development (Gitler et al., 2004; Gu et al., 2005; Torres-Vazquez et al., 2004; Zhang et al.,
2008) another likely substrate for PIxnD1’s GAP activity is R-Ras, which is enriched in
endothelial cells (Komatsu and Ruoslahti, 2005). However, the involvement of R-Ras in
Sema-PIxnD1 signaling has not been directly tested.

Finally, it is possible that PIxnD1 antagonizes the activity of R-Ras family members non-
catalytically, by sequestering them in a manner that still requires the RasGAP1/2 motifs
(Sakurai et al., 2010).

A general model for Sema-PIxnD1 signaling—Based on the above observations we
propose the following model (Fig. 6A-B). Upon Sema3E stimulation PIxnD1 in pre-existing
PIxnD1-Rnd2/RLG complexes undergoes an Rnd2/RLG-dependent intracellular
conformation change that translates the concentration and distribution of extracellular
Sema3 cues into an intracellular gradient of distinct PIxnD1 activities.

In cells interpreting Sema cues as repulsive, such as endothelial cells and neurons (Bellon et
al., 2010; Chauvet et al., 2007; Gitler et al., 2004; Gu et al., 2005; Torres-Vazquez et al.,
2004; Zhang et al., 2008), these activities would be the RasGAP1/2-dependent inhibition of
members of the R-Ras subfamily to antagonize integrin-mediated adhesion, PI3K signaling
and the RhoA/Pragmin dependent collapse of the cytoskeleton.

In contrast, when Sema3E functions as an attractive cue, as it does for some mammalian
axon tracts, the intracellular domain of PIxnD1 is not required, thus indicating that this
effect is mediated by a different molecular mechanism. Indeed, it was recently shown that
Sema3E-induced axonal attraction/growth occurs via a PIxXnD1/Nrpl/VEGFR2 trimeric
complex that increases PI3K signaling in a VEGFR2-dependent manner (Bellon et al., 2010;
Chauvet et al., 2007; Eickholt, 2008; Sakurai et al., 2010). Whether the same mechanism is
responsible for the pro-angiogenic effects of specific Sema3E isoforms secreted by some
tumors (see (Christensen et al., 2005) or whether these effects are promoted by the
simultaneous interaction of Rnd2/RLGs with both PIxnD1 and with Rapostlin -or a
functionally similar molecule- remains to be elucidated.

Sema-PIxn signaling: Output specificity

The inactivation of R-Ras related proteins and the regulation of cytoskeletal dynamics are
common PIxn outputs. Yet each PIxn plays seemingly distinct biological roles. This is likely
due to the unique expression pattern of each PlIxn, their differential ligand specificity and/or
affinity and the specific pathway repertoire active in each tissue. However, another key
contributing factor is that individual PIxns also engage specific suites of modulators and/or
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effectors via subfamily-specific intracellular binding motifs. For instance, B PIxns contain
additional motifs between their C1 and C2 regions besides the short RBD shared by all
PIxns: Drosophila PIxnB binds and promotes RhoA activity via a 40 aa motif that is absent
from other Plxn subfamilies (Hu et al., 2001). Similarly, both human PIxnB1 and B2 contain
a Cdc42/Rac interactive binding-like motif (CRIB-LM) that binds active Rac in a ligand-
dependent manner (Vikis et al., 2000). In contrast, PIxnAl, A2 and D1 lack a CRIB-LM and
do not bind to active Rac in vitro (Driessens et al., 2001) (see also (Turner et al., 2004).
Moreover, except for the RBD, the sequence between the halves of the SP domain is poorly
conserved across Plxn subfamilies. Hence, novel subfamily-specific molecular determinants
of PIxn activity are likely to reside here.

The T-segment is a candidate region for providing signaling specificity to each PIxn. We
have found through sequence comparisons that T-segments are highly conserved within Plxn
subfamilies but very dissimilar across subfamilies. Thus T-segment sequence conservation
parallels that of the ectodomains, the criteria for PIxn subfamily classification (see
(Tamagnone et al., 1999). For example, the only significant hits obtained by BLASTing
(McGinnis and Madden, 2004) the ~37 aa T-segment of hPIxnD1 are the T-segments of
PIxnD1 proteins from mammals, birds, amphibians and fish, which are 94-100% identical
and 100% similar. In contrast, the T-segment of hPIxnD1 lacks any similarity with that of
PIxnC1 and is only 25-53% identical and 45-69% similar to the T-segments of A and B
PIxns.

Accordingly, in B PIxns the T-segment terminates in a short protein-protein interaction
motif that mediates binding to the PDZ (PSD-95, Dlg, ZO-1) domain of Leukemia-
Associated Rho Guanine exchange factor (LARG or PDZ-RhoGEF/Leukemia). This PDZ-
binding motif (B-PBM) seems to be essential for LARG binding, since Plxns from the other
three subfamilies lack this motif and fail to associate with LARG. The B/PDZ-BM
dependent recruitment of LARG is essential for the ability of B PIxns to activate RhoA
(Aurandt et al., 2002; Driessens et al., 2002; Hirotani et al., 2002; Hu et al., 2001; Oinuma et
al., 2003; Perrot et al., 2002; Swiercz et al., 2002).

PIxnD1 contains a unique binding motif in its T-segment—BYy comparing the
sequence of PIxn T-segments we uncovered a highly conserved, PIxnD1-specific C-terminal
sequence similar to a motif (S/T-X-A/V/L/1) known for binding to proteins containing a
PDZ type | domain (De Vries et al., 1998; Hu et al., 2003) reviewed in (Jele et al., 2003).
We thus refer to this sequence as the D1-PBM (PIxnD1 PDZ-binding motif; Figs. 4A, 5D).
The consensus D1-PBM sequence, derived from the PIxnD1 proteins of fish, amphibians,
birds and mammals, is SEA-COOH. Importantly, we found that the D1-PBM is essential for
PIxnD1's ability to physically associate with the PDZ domain of GIPC1 (GAIP Interacting
Protein, C terminus; also known as Synectin among many other names) (Carl M. Gay, Brant
M. Weinstein and JesUs Torres-Vazquez; unpublished observations), see also (Linhares and
Gutkind, 2005). GIPC1 is an intracellular protein that, like PIxnD1, plays key roles during
angiogenesis (Cai and Reed, 1999; Chittenden et al., 2006; Lanahan et al., 2010; Ren et al.,
2010; Wang et al., 2006). Thus it is likely that GIPC1 functions as a PIxnD1-specific
modulator/effector (see Box 2).

Box 2
Other potential intracellular effectors/modulators of PIxnD1

GIPC1 is an scaffolding protein that associates with many single-pass type |
transmembrane proteins via its central PDZ-domain. For example, GIPC1 binds to the
cytosolic tail of Nrpl via its C-terminal PDZ-binding motif SEA-COOH. This event
promotes the association between Nrpl and VEGFR2 and enhances VEGF-induced
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angiogenesis. For example, gipcl morphants display stunted SeAs (Cai and Reed, 1999;
Chittenden et al., 2006; Lanahan et al., 2010; Ren et al., 2010; Wang et al., 2006).

Remarkably, we isolated the entire gipcl cDNA twice as a prey in a yeast-two-hybrid
screen for proteins that bind to the PIxnD1 cytosolic tail. We have found that the PIxnD1-
GIPC1 interaction is mediated by GIPC1’s PDZ domain and PIxnD1’s PDZ-binding
motif, which is located in the T-segment and is identical to the Nrp1 motif (Brant
Weinstein, Carl M. Gay and Jesus Torres-Vazquez, unpublished results), (see also
(Linhares and Gutkind, 2005). These observations suggest that GIPC1 might play
additional roles in the vasculature, such as specifically modulating Sema3-PIxnD1
signaling or enabling the integration of Sema3-PIxnD1 and VEGF-Nrpl/VEGFR2
signals. The potential importance of GIPC1 in the context of Sema-PIxnD1 signaling is
further underscored by bioinformatic predictions that suggest the existence of
alternatively spliced plxnD1 isoforms in human and chimpanzee. Among the various
sequence changes that distinguish these predicted PIxnD1 variants is the substitution of
the D1-PBM for a 43 aa stretch without identifiable PDZ-binding motifs. Overall, these
observations suggest that PIxnD1’s T-segment engages unique effectors/modulators,
including GIPC1, to fulfill its biological roles.

The MICALSs (from Molecule Interacting with CasL) (Suzuki et al., 2002) are a family
of multidomain cytosolic proteins with flavoenzymatic redox activity expressed in the
vertebrate and Drosophila nervous systems. Fly MICAL is required for axonal repulsion
by Sema-1a/PlexA and the C-terminal coiled coil domain (cc) of fly MICAL binds to a
fragment of fly PlexA containing both the C2 region and the T-segment (Terman et al.,
2002). MICAL also binds to cytoskeletal components, small GTPases and to CRMPs,
another group of A PIxn associated proteins (Kolk and Pasterkamp, 2007). In flies
Sema-1a/1b-PlexA signaling binds and destabilizes F-actin via MICAL’s redox activity
to modulate the morphology of bristle and axon growth cones (Hung et al., 2010).
However, whether MICAL s oxidoreductase activity involves direct REDOX
modification of its substrates or occurs via the generation of reactive oxygen species
remains unclear (reviewed in (Kolk and Pasterkamp, 2007).

The MICAL-Like proteins are structurally similar to MICALSs but lack the
monooxygenase domain required for MICAL-mediated F-actin destabilization (Hung et
al., 2010; Terman et al., 2002). MICAL-L.ike proteins have a cc domain, but it is not
known if they bind to PIxns. Interestingly, MICAL-Like proteins associate with actin
binding proteins (Nakatsuji et al., 2008), function as modulators of the actin cytoskeleton
during neurite outgrowth (Sakane et al., 2010), promote cell migration (Kanda et al.,
2008) and are found in tissues where Plxns, including PIxnD1, are expressed, such as the
nervous (Terman et al., 2002) and vascular systems (Weber et al., 2005). MICAL-L
proteins have been implicated in the endocytic recycling of some transmembrane proteins
(Sharma et al., 2009; Terai et al., 2006) and thus they might exert a similar effect on PIxn
receptors.

The Collapsin Response Mediator Proteins (CRMPs) is a family of tetrameric
phosphoproteins expressed in the nervous system that function as positive effectors of
repulsive Sema-PIxnA signaling. Despite sequence and structural similarities with
dihydropyrimidinases and metal-dependent amidohydrolases CRMPs lack enzymatic
activity. Biochemical evidence indicates that CRMPs interact physically with MICALSs
and suggests that they link PIxn signaling with membrane endocytosis during growth
cone steering (reviewed in (Schmidt and Strittmatter, 2007; Shih et al., 2003).

Nervy belongs to the Myeloid Translocation Gene (MTG) family of A kinase Anchoring
Proteins (AKAPs). It is expressed in the Drosophila CNS and associates with the
intracellular region of fly PlexA containing the C2 region and the T-segment. Nervy is
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postulated to act as a negative cytosolic regulator of Semala/PIxnA-induced axonal
repulsion by linking PIxnA with the cAMP (cyclic adenosine monophosphate)-dependent
protein kinase A (PKA) (Terman and Kolodkin, 2004). Indeed, vertebrate PIxnA1l and
PIxnA3 are phosphorylated in vitro by PKA and the vertebrate Nervy homologue
MTG16b specifically interacts physically with PIxns Al and A3 but not PIxnB1 (Fiedler
et al., 2010). The mechanism by which Nervy antagonizes PIxnA signaling remains
controversial because Nervy and its vertebrate homologs (the myeloid translocation
genes MTG8/ETO, MTG16 and MTGR1) also localize to the nucleus and act as
transcriptional co-repressors, thus raising the possibility that Nervy’s effects on Sema-
PIxn signaling have a transcriptional basis (Terman and Kolodkin, 2005; Wildonger and
Mann, 2005).

Arf6 (ADP-ribosylation factor 6) is a small GTPase that regulates both clathrin-
dependent and clathrin-independent endocytic pathways as well as actin and membrane
remodeling (reviewed in (D'Souza-Schorey and Chavrier, 2006)). Accordingly, Arf6 has
been shown to regulate the trafficking of 1 integrins, which play important roles in
angiogenic development. Moreover, downregulation of Arfé impairs cell adhesion and
migration (Dunphy et al., 2006; Mettouchi and Meneguzzi, 2006; Powelka et al., 2004).
Interestingly, Sema3E-PIxnD1 signaling reduces endothelial cell adhesion to the ECM by
promoting the disassembly of focal adhesions, which are integrin-based adhesive
structures. These effects seem to be in part related to the activation of Arf6, since
Sema3E-PIxnD1 signaling in COS-7 cells elevates active Arf6 levels in a manner that
requires the RasGAP motifs of PIxnD1. Conversely, in COS-7 cells a dominant negative
form of Arf6 blocks Sema3E/PIxnD1-mediated cell collapse. However, the mechanistic
link between R-Ras inhibition and Arf6 activation remains unclear and there is no
evidence supporting a direct physical interaction between Arf6 and PIxnD1 (Sakurai et
al., 2010).

Additional candidate effectors and modulators of PIxnD1—Besides Rnd2, M-Ras
(Uesugi et al., 2008) and GIPC1 (Carl M. Gay, Brant M. Weinstein and Jesus Torres-
Vazquez; unpublished observations), (Linhares and Gutkind, 2005), the other intracellular
proteins that associate with the cytosolic tail of PIxnD1 are ACF7 (Actin Cross-linking
Family Protein 7), FLNA (Filamin A) and CKAP1 (Cytoskeleton Associated Protein 1).
These three candidate PIxnD1 effectors/modulators are the first cytoskeletal proteins
known to interact directly with any PIxn (see Box 3).

Box 3
Cytoskeletal proteins that interact physically with PIxnD1

ACFT7 is a large spectraplakin cytoskeletal crosslinking protein. It contains an N-terminal
head domain with two actin-binding (ABD) Calponin-homology (CHD) domains and a
plakin-like globular domain. Its central region includes a rod domain with many
dystrophin-like spectrin repeats and an active ATPase region. Finally, the C-terminus
harbors two putative calcium-binding EF-hand motifs and a microtubule-binding region
with homology to Gas2 (growth arrest-speci ¢ protein 2/GAR) (Bernier et al., 1996;
Byers et al., 1995; Karakesisoglou et al., 2000; Leung et al., 1999; Sawamura et al.,
1990; Sun et al., 1999). ACF7 was identified as a PIxnD1-binding protein in a large
yeast-two-hybrid screen for interactions between the cytosolic tails of large
transmembrane human brain proteins and other human proteins. Specifically, a bait
containing aa 1352-1985 of hPIxnD1 trapped an N-terminal 317 aa ACF7 fragment
(Nakayama et al., 2002) (see also http://www.kazusa.or.jp/huge/ppi/), suggesting
PIxnD1's cytosolic tail binds to ACF7's ABDs.
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In the murine skin epidermis ACF7 coordinates the growth of microtubules along F-actin
by directing them to focal adhesions and enhancing their turnover during cell migration
(Leung et al., 1999; Wu et al., 2008). ACF7 also promotes Wnt signaling (Chen et al.,
2006). ACF7 is expressed in many murine embryonic tissues, including the nervous
system (Bernier et al., 2000) and is also likely expressed in the endothelium, since its
transcription is up regulated in human coronary artery endothelial cells by laminar shear
stress (Chu and Peters, 2008). Thus, it seems likely that ACF7 and pIxnD1 are co-
expressed in some tissues, consistent with the potential involvement of ACF7 in PIxnD1-
mediated cytoskeleton modulation.

FLNA is a large cytoplasmic, non-muscle actin-binding protein that forms filamentous v-
shaped dimers which cross-link cortical actin filaments into a dynamic orthogonal
network. Like ACF7, its N-terminus contains two CHDs and an ABD, which is followed
by 24 Filamin repeat modules of ~100 aa which together form two rod domains joined by
a pair of flexible hinge regions. In addition to F-actin, FLNA binds more than 30 other
partners, including PIxnD1 (via modules 10 and/or 11) as well as other molecules
implicated in PIxn signaling, like integrins and Rho family GTPases. FLNA’s repeats
function as protein-protein interaction modules that belong to four sequence-based
subgroups with presumably distinct ligand-binding specificity. It has been suggested that
this property enables FLNA to function as a scaffold for clustering interacting receptors
and their effectors at the cell surface and link their activity to the regulation of the
cytoskeleton. Thus, it is tempting to speculate that FLNA serves to bring together PIxnD1
with its effectors/modulators (Feng and Walsh, 2004; Horowitz, 2007; Ithychanda et al.,
2009; Popowicz et al., 2006; Robertson, 2005; Stossel et al., 2001). (See also (Lu et al.,
2007)).

FLNA mutations are associated with human genetic diseases characterized by
abnormalities in the development of the nervous, skeletal and cardiovascular systems
(reviewed in (Popowicz et al., 2006; Robertson, 2005). In the murine embryonic
cardiovascular system FLNA transcripts are enriched in the endothelium and the heart's
endocardial cushion, outflow tract and cardiac valves. FLNA null mouse embryos dye at
midgestation and display massive hemorrhage, misguided Se vessels, PTA and
incomplete cardiac septation (Feng et al., 2006). Notably, the cardiovascular defects of
FLNA null mouse embryos parallel those found in mouse pIxnD1 knockouts (Gitler et al.,
2004; Gu et al., 2005; Zhang et al., 2008), consistent with the putative involvement of
FLNA in PIxnD1 signaling.

CKAP1 is a widely expressed 250 aa protein whose relatives are implicated in tubulin
dynamics, such as folding, heterodimer formation, storage, dissociation and degradation.
It is abundant in neuroblasts and enriched at the growth cone transition zone. CKAP1
contains an N-terminal ubiquitin (UBL)-like domain, a central coiled-coil region and a C-
terminal cytoskeleton-associated protein glycine-rich (CAP-Gly) domain. CAP-Gly
domains are common in proteins that bind to the C-terminus of alfa-tubulin (although
CKAP1’s ability to bind alfa-tubulin is controversial) and also mediate other protein-
protein interactions and regulate intracellular signaling, vesicle transport, cell migration
and polarity (Grynberg et al., 2003; Kortazar et al., 2007; Lopez-Fanarraga et al., 2007;
Steinmetz and Akhmanova, 2008; Vadlamudi et al., 2005). Notably, several lines of
evidence implicate CKAP1 in the modulation of microtuble dynamics and axonal growth.
For example, over-expression of murine CKAP1 promotes microtubule depolymerization
(Kortazar et al., 2007) and high CKAP1 levels in macrophage/microglia are associated
with low microtubule densities (Fanarraga et al., 2009). Similarly, mutations in
gigaxonin, a CKAP1-binding protein that targets CKAP1 for degradation induce giant
axonal neurophaty (GAN) disorder. This disease features high levels of neuronal

CKAP1, microtubule depolymerization, growth cone retraction, axonal damage and
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neuronal degeneration (Wang et al., 2005). Conversely, reducing CKAPL1 levels in
cultured neurons enhances axonal growth (Lopez-Fanarraga et al., 2007) and the PAK-
mediated phosphorylation of CKAP1 modulates microtubule growth (Vadlamudi et al.,
2005). We isolated mouse CKAP1 in a yeast two-hybrid screen for proteins that bind to
the cytosolic tail of murine PIxnD1 (Carl M. Gay, Brant M. Weinstein, and JesUs Torres-
Véazquez; unpublished results). CKAP1 was also found in a similar screen using
PIxnAl’s C1 region as bait. This screen yielded other microtubule-regulating proteins,
implicating the C1 region of PIxns in microtubule regulation (Togashi et al., 2006). The
potential involvement of CKAPL1 in PIxnD1 and/or PIxnAl signaling is consistent with
other observations, including the role of PAK, whose activity is antagonized by Sema-
PIxn signaling (Driessens et al., 2001; Rohm et al., 2000; Vikis et al., 2000) in
modulating CKAP1 function (Vadlamudi et al., 2005), the inverse correlation between
Sema and tubulin abundance in human ovarian adenocarcinoma cell lines (Prislei et al.,
2008) and the prominent expression of ckapl in zebrafish embryonic tissues where
PIxnAl and/or PIxnD1 are also expressed (Carl M. Gay and JesUs Torres-Vazquez;
unpublished results).

Overall, the identification of intracellular PIxnD1-binding proteins represents the first
step towards a molecular understanding how PIxnD1 transforms Sema cues into
intracellular signals. Future studies will elucidate the role that these proteins play during
PIxnD1 signaling in vivo and uncover the significance of other candidate PIxnD1
effectors/modulators (see Box 3).

Hence, unraveling the role of these proteins as well as those of other candidate intracellular
effectors/modulators of PIxnD1 such as the MICALS, MICAL-like proteins, CRMPs and
the vertebrate homologs of Drosophila Nervy (see Box 2) will likely provide key insights
into the molecular mechanisms by which chemotactic Sema-PIxnD1/PIxn signaling
modulates cytoskeletal dynamics to guide cell migration and induce cell shape changes.

Post-translational PIxn modifications: Phosphorylation

PIxns are tyrosine phosphorylated at their cytosolic tails—Although Plxns lack
intrinsic kinase activity they are phosphorylated at cytosolic tyrosine residues in vivo
(Tamagnone et al., 1999). Tyrosine phosphorylation is a key regulatory protein modification
made by both receptor and non-receptor tyrosine kinases. It creates docking sites for
proteins with SH2 (Src Homology 2) or PTB (PhosphoTyrosine Binding) domains for the
downstream activation of the Ras/ERK MAP and the PI3K cascades. It also leads to the
recruitment of proteins with PTP (Protein Tyrosine Phospatase) domains. PTP-containing
proteins that are catalytically active dephosphorylate regulatory tyrosine phosphates while
those that are catalytically dead engage in phosphotyrosine-recognition to mediate
scaffolding and localization functions (reviewed in (Hunter, 2009; Moorhead et al., 2009).

PIxnD1 is also tyrosine phosphorylated and contains unique tyrosine
residues—Members of the four PIxn subfamilies share thirteen conserved intracellular
tyrosines. Except for the fourth one, which is in the RBD, all of them are found in the SP
domain. The corresponding residues in human PIxnD1 (hPIxnD1) are listed in Table 1 and
shown in a sequence context in Fig. 5A-D (Franco and Tamagnone, 2008).

In addition, eleven tyrosine residues are conserved across the PIxnD1 proteins of mammals,
birds, amphibians and fish (Table 1 and Fig. 5A-D). Six of them are PIxnD1-specific (in
hPIxnD1: Y1367, Y1371, Y1618, Y1673, Y1919 and Y1922). The latter two are in the T-
segment; Y1371 is absent from fishes. The remaining five tyrosines are shared with one
(Y1303, Y1459, Y1597, Y1864) or two (Y1503) Plxn subfamilies (hPIxnD1 positions).
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Conversely, PIxnD1 proteins lack tyrosine residues that are highly conserved in other Plxn
subfamilies. For example Y1708, which appears to be specific for B PIxns (see (Franco and
Tamagnone, 2008;Swiercz et al., 2009b).

Overall, many of the conserved tyrosine residues in PIxnD1 proteins reside within sequence
contexts predicted to be substrates for tyrosine kinases (both receptor and non-receptor) and
phosphatases (Amanchy et al., 2007). Some of these sequences also match the consensus
binding sites for known protein-protein interaction modules, such as those of adaptor
proteins, which might enable cross talk and/or integration between Sema-PIxnD1 signaling
and other cascades (see Table 1). Importantly, tyrosine phosphorylation of PIxnD1 has been
experimentally confirmed in the human and mouse proteins for two residues: the PIxnD1-
specific Y1367 and Y1642, which is located at the RBD and conserved across PIxn
subfamilies (http://www.phosphosite.org),
(http://www.abgent.com/products/catalog_no/AP3584a/specification), (Franco and
Tamagnone, 2008).

PIxns associate with tyrosine kinases—PIxns lack kinase activity but are
phosphotyrosine proteins. Accordingly, they form complexes with both receptor and non-
receptor tyrosine kinases (reviewed in (Franco and Tamagnone, 2008). For example, ErbB2
phosphorylates PIxnB1 at both Y1708 (a PIxnB-specific residue) and at Y1732 (one of the
thirteen tyrosines conserved across PIxns), while c-Met phosphorylates other PIxnB1
tyrosine residues. In particular, the phosphotyrosines Y1708 and Y1732 serve as docking
sites for the SH2 domains of phospholipase C (PLC ), which in a lipase-independent manner
activates RhoA to promote growth cone collapse. Interestingly, ErbB2 and PLC are not
required for PIxnB1-mediated R-Ras inactivation (Swiercz et al., 2009b). Together, these
results suggest that different tyrosine kinases are involved in Plxn phosphorylation and that
each kinase is likely to modulate distinct PIxn-mediated events.

PIxnD1 interacts physically with tyrosine kinases—PIxnD1 forms a complex with
VEGFR2 within a ternary complex that also includes Nrpl. The PIxnD1/Nrpl/VEGFR2
complex promotes Sema3E-induced/VEGFR2-mediated growth of subicular axons. While
this event does not appear to involve the phosphorylation of PIxnD1’s tyrosine residues
(Bellon et al., 2010), it is possible that in other contexts VEGFR2 might phosphorylate
PIxnD1 to modify its activity. It would be interesting to determine if this is the case in the
endothelium, where all three proteins are expressed.

In addition, in human lung carcinoma cells p61Sema3E induces the formation of a PIxnD1-
ErbB2 complex in which both partners are phosphotyrosinated. Remarkably, PIxnD1
phosphorylation requires ErbB2’s kinase activity. However, ErbB2’s activation usually
involves its transphosphorylation in association with either EGFR (Epidermal Growth
Factor Receptor) or ErbB3. Accordingly, p61Sema3E also induces EGFR tyrosine
phosphorylation. Thus, it remains unclear if ErbB2, EGFR or both mediate PIxnD1’s
tyrosine phosphorylation. In addition, the specific tyrosine residue(s) of PIxnD1
phosphorylated in carcinoma cells in response to p61Sema3E treatment have not been
reported (Casazza et al., 2010).

PIxns are also Serine phosphorylated

PIxns are also phosphorylated at cytosolic Serine (S) residues, but the role of this
modification remains to be characterized (see Phospho.ELM server) and (Collins et al.,
2005; Dai et al., 2007; Trost et al., 2009). A candidate for this activity is the cAMP (cyclic
adenosine monophosphate)-dependent protein kinase A (PKA) which phosphorylates S and
Threonine (T) residues on its substrates and has been implicated as a negative regulator of
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Semala/PIxnA-induced axonal repulsion (see comments about Nervy on Box 3). The S/T
phosphorylation of PIxnD1 has not been reported. However, PIxnD1 proteins contain six
conserved predicted PKA phosphorylation sites (Table 2).

CONCLUDING REMARKS

The biological roles of Sema-PIxnD1 signaling are being elucidated at a fast pace. The
recent isolation of the first candidate modulator/effectors of PIxnD1 promises to illuminate
the molecular mechanisms by which the Sema-PIxnD1 pathway orchestrates organ
morphogenesis. Key future research directions in this exciting field include elucidation of
the Sema/PIxnD1-specific functions of new cascade components such as GIPC1, GTPases
(both R-Ras and Rho-like), cytoskeletal binding proteins and other PIxn effectors/
modulators and defining if these molecules play similar or distinct roles in different tissues,
determine how Nrpl and VEGFR2, which are co-expressed with PIxnD1 in both the
vascular and nervous systems, contribute to the differential effects -repulsion vs attraction-
of Sema-PIxnD1 signaling in these tissues (Bellon et al., 2010; Chauvet et al., 2007,
Christensen et al., 2005), understand how PIxnD1 signals are integrated with the inputs of
other cascades to modulate the development of different organs (see (Alvarez et al., 2009;
Childs et al., 2002; Choi et al., 2008; Eickholt, 2008; Lamont et al., 2009; Moriya et al.,
2010) and uncovering the factors that regulate the expression patterns, levels, stability and
activity of Sema-PIxnD1 signaling components (for example, see (Franco and Tamagnone,
2008; Liu et al., 2005; Parra and Zou, 2010). Finally, it is critical to explore the potential of
Sema-PIxnD1 signaling as a therapeutic target for improving the health of patients suffering
from ischemia, vascular disorders, cancer and nerve regeneration deficits (see (Casazza et
al., 2010; Galamb et al., 2008; Moriya et al., 2010; Neufeld and Kessler, 2008; Pasterkamp
and Giger, 2009; Roodink et al., 2005; Rozanov et al., 2008; Suzuki et al., 2003).
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Fig. 1. Expression of plxnD1 mRNA and PIxnD1 protein in the cardiovascular, immune, nervous
and skeletal systems

A-E, Endothelial-specific expression of pIxnD1 mRNA (A, purple; B-C, blue) and PIxnD1
protein (D-E). A, E9.5 mouse embryo (left lateral view). The head is up. Anterior dorsal
side, left. pIxnD1 is detected in the entire vasculature. Segmental vessel, yellow arrow. B, C,
28 hpf zebrafish embryo. Left lateral views. Anterior, left. Dorsal is up. B, pIxnD1 is
detected in the entire vasculature. C, Trunk detail. Segmental Arteries (SeAs; black
arrowhead). Dorsal Aorta (DA, red arrowhead). Posterior Cardinal Vein (PCV; yellow
arrowhead). Floorplate's hypochord, black asterisk. D, E11.5 murine heart cross-section.
PIxnD1 (brown). E, Murine dorsal root ganglia (DRG; blue, delimited by yellow dotted
line). Vessel with PIxnD1 (green) expression, yellow arrow. F, Murine immune system
(paraffin section of the thymus). Cortical thymocytes expressing PIxnD1, dark blue. G-J,
Expression of pIxnD1/PIxnD1 in the murine nervous system. G, P8 cortex section. Only
some cortical commissural neurons (callosal projection neurons; CPN, red) express plxnD1
(green) (rectangle). H, E14.5 murine section of the brain. Forebrain, fb. Trigeminal
ganglion, gv. Choroid plexus, cp. pIxnD1, red. I1-J, Diagrams of coronal sections of E17.5
murine forebrains showing sites were Sema3E (blue) and PIxnD1 (red) are expressed and
locales where PIxnD1 and Nrpl are co-expressed (light orange). Rostral, left. Caudal, right.
Dorsal is up. I, PIxnD1 is expressed along the corticofugal and striatonigral projections that
originate from the ventrolateral cortex (Ctx) and striatum (St), respectively and which
transverse both the internal capsule (ic) and the cerebral peduncle (cp). At the level of the
midbrain the striatonigral projections leave the cp and terminate in the substantia nigra (SN),
while corticofugal axons continue into the pons (not shown). Robust Sema3E expression is
observed in the globus pallidus (GP) and thalamic reticular nucleus (TRN). J, PIxnD1 and
Nrpl are co-expressed in the subiculo-mammillary tract, which projects from the subiculum
(Sub) through the fimbria (fim), fornix (f) and postcommissural fornix (pf). Sema3E
expression is observed in the hippocampal pyramidal cell layers of the cornus ammonis 1
and 3 (CA1/3) adjacent to the Sub. The anterior commissure (ac), hippocampal commissure
(hipc) and septum (Sp) are indicated. K, E18.5 murine vertebral bodies, lateral cross-section.
Ossification center, oc. pIxnD1, red. Credits for reproduced and/or modified images: A, D
and E from (Gitler et al., 2004); B and C from (Torres-Vazquez et al., 2004); F from (Choi
et al., 2008); G from (Molyneaux et al., 2009a); H and K from (Zhang et al., 2008); I-J from
(Chauvet et al., 2007).
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Fig. 2. Sema/PIxnD1 signaling functions to pattern the cardiovascular, skeletal and nervous
systems

A-B, E11.5 murine trunks. Lateral views. Dorsal is up. Endothelium, dark brown. A,
Phenotypically wild type sema3E*/~ heterozygote. Segmental vessel, white arrow. Note loss
of avascular areas. B, sema3E "~ homozygous mutant displaying disorganized Segmental
vessels. Notably, pIxnD1 ~/~ homozygous mutants display identical vascular patterning
defects (not shown). C, D, 48 hpf zebrafish embryos. Lateral views. Anterior, left. Dorsal is
up. Endothelium, green. Segmental Arteries (SeAs), white arrowheads. Dorsal Aorta (DA),
red arrowheads. Posterior Cardinal Vein (PCV), yellow arrowheads. C, Wild type. D,
Animal lacking pIxnD1 activity. Note aberrant vascular pattern, resembling that of
sema3E~/~ homozygous mutant mice (B). E, Model for the evolutionarily conserved role of
Sema-PIxnD1 signaling in shaping the Segmental vasculature. Paracrine Sema signals from
the somites (pink) are sensed by PIXnD1 receptors expressed in the endothelium (blue) to
guide the patterning of nascent Se vessels via a repulsive mechanism. F, Without Sema-
PIxnD1 signaling Se vesels grow aberrantly. G-H, pIxnD1 activity is required for proper
formation of the murine heart’s outflow tract. Images of PO-stage hearts. G, Wild type heart
showing two major vessels, the aorta (Ao) and the pulmonary artery (PA). H, plxnD1 mutant
displaying persistent truncus arteriosus (TA; a single great vessel), a form of congenital
heart disease. In addition, the coronary artery (white arrow) displays an abnormal origin. 1-
J, PO murine lumbar skeletons (dorsal views) Anterior, left. Mineralized bone, red.
Cartilage, blue. I, Wild type. J, pIxnD1~/~ mutant pup showing axial skeletal defects and
malformations such as splitting (green arrow) and fusion (green circle) of the vertebral
bodies. K, Connectivity patterns between sensory and motor neurons in the triceps (Tri, dark
brown) and cutaneous maximus (Cm, light green) reflex arcs in the mouse. Muscles, ovals
(Tri; light brown, Cm; dark green). Dotted lines surround synapses between sensory
afferents and motor neurons in these reflex arcs. L, Diagram summarizing the role of
Sema3E-PIxnD1 repulsive signaling in establishing the fine synaptic specificity between
sensory afferents (top) and motor neurons (bottom) in the Cm (green) and Tri (brown) arcs.
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Left half, wild type wiring pattern. Normally, pIxnD1 is expressed in both Cm and Tri
sensory neurons and sema3E is expressed only in Cm motor neurons. Therefore only the Tri
motor neurons receive direct proprioceptive inputs from Tri sensory neurons (homonymous
connectivity). The right half of the figure shows the rewiring of homonymous connectivity
resulting from perturbing Sema3E-PIxnD1 signaling. Absence of either pIxnD1 activity or
sema3E expression induces abnormal homonymous monosynaptic Cm connectivity (left). In
contrast, ectopic sema3E expression in the Tri motorneurons (right) prevents the
establishment of monosynaptic connections in the Tri reflex arc. Notably, perturbing
Sema3E-PIxnD1 signaling does not induce heteronymous sensory—motor connections (Cm
to Tri or vice versa). This indicates that additional factors regulate motor pool specificity.
Credits for reproduced and/or modified images: A-B from (Gu et al., 2005); C-F from
(Torres-Véazquez et al., 2004); G-H from (Gitler et al., 2004); 1-J from (Zhang et al., 2008);
K adapted from (Maro et al., 2009) L adapted from (Pecho-Vrieseling et al., 2009).
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Sema3E oligomerization possibilities

Furin- p61-Sema3E
dependent
cleavage
oo
1 2 3

‘ p25-Sema3E

p87-Sema3E

Dimers Monomer

D
PixnD1 PixnD1 PixnD1 PixnD1

Repulsion Repulsion

Fig. 3.

Sema3/PIxnD1 signaling is capable of promoting attraction and repulsion in both the
vascular and nervous systems. A, In adenocarcinoma cells the full-length Sema3E (p87-
Sema3E) is cleaved by a furin-like endoprotease to yield two products. The longer one
contains the Sema domain (p61-Sema3E) while the shorter one contains the dimerization
domain (p25-Sema3E). B, As a result, adenocarcinoma cells secrete three combinations of
Sema3E dimers (1-3) and one monomer (4) (Christensen et al., 2005). C, In the vascular
system (left) full-length Sema3E dimers induce repulsion via PIxnD1. However, the p61-
Sema3E monomer containing the Sema domain can function as an attractant in some
endothelial lines expressing PIxnD1 (right). However, the requirement for PIxnD1 to
mediate this attractive response has not been tested (Christensen et al., 2005). D, In the
nervous system, Sema3E acts as a repellant when signaling through PIxnD1 alone (left).
However, in neurons expressing also Nrpl and the VEGF receptor VEGFR2, binding of
Sema3E elicits an attractive/growth-promoting axonal response (right). Remarkably, this
attractive response requires only the extracellular domains of PIxnD1 and Nrp1 (as shown),
with PIxnD1 functioning as the ligand-binding subunit of the complex. In contrast,
VEGFR?2’s intracellular tail is required in this context as the signal transducing subunit
(Bellon et al., 2010). Note however, that the precise Sema3E oligomerization form that
mediates these responses is unknown.
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Fig. 4.

Structure of the Sema receptor PIxnD1. A, PIxnD1 is a type | transmembrane protein. The
extracellular N-terminal portion contains a Sema domain (blue), likely involved in
mediating ligand binding. Following the Sema domain there are three MRS (MET-Related
Sequence) repeats (green), four IPT (Immunoglobin-like fold shared by Plexins and
Transcription factors) domains (orange) and the transmembrane domain (brown). The
cytosolic tail of PIxnD1 is also known as the Sex and Plexins (SP) domain. It contains a split
GAP (GTPase Activating Protein) domain with two highly conserved C regions (C1 and C2;
red). Each C region contains a Ras GAP motif (RasGAP1 and RasGAP2; black), each of
which includes conserved arginine residues required to inhibit the activity of R-Ras proteins.
A Rho GTPase-binding domain (RBD, beige) is located between the C1 and C2 regions.
Finally, the GAP domain is followed by a short C-terminal region that lacks any
resemblance to known protein domains and which is highly conserved between members of
the same PIxn subfamily. Here we designate this region as the terminal (T) segment (pink).
The T segment of PIxnD1 ends in a short PDZ-binding motif (D1-PBM; aqua) that
physically associates with GIPC1. B, Activation model of PIxnD1. In the absence of its
Sema ligands, PIxnD1 is in a conformationally inactive folded state, in which the Sema
domain contacts the rest of the extracellular portion and the GAP domain is non-functional.
Upon Sema binding PlexinD1 undergoes conformational changes that activate its GAP
domain and likely enable additional protein-protein interactions.
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A RasGAP1 C_ Rho GTPase Binding Domain
Human KLMLRRITESVVE Drosophila PIxnB
Chimpanzee KLMLRR|ITESVVE
Mouse KLMLRRTESVVE Human RKKLINTLAHYK]| PEG
Rat KLMLRRTESVVE Chimpanzee RKKLINTLAHYK|I PEG
Zebrafish KLMLRRITESVVE Mouse RKKLINTLAHYK]|Il PEG

Rat RKKLINTLAHYK|I PEG
Consensus KLMLRRITESVVE Zebrafish RKKLINT HYQjl P G

Consensus RKKL|NT HYQ|l PEG
B RasGAP2 D T-Segment
Human DTLHIWKTNSLPL|R|F Human MAALEANPTARRTAQL
Chimpanzee DTLHIWKTNSLPLR|F Chimpanzee MAALEANPTARRTAQL
Mouse DTLHIWKTNSLPLRFF Mouse MAALEANPTARRTAQL
Rat DTLHIWKTNSLPL|R|F Rat MAALEANPTARRTAQL
Zebrafish DTLHIWKTNSLPLR Zebrafish AL NPTARRTAQL
Consensus DTLHIWKTNSLPLRI|F Consensus AL NPTARRTAQL
Human WYNILKNPQF Human QHKFEQVVALMEDNI
Chimpanzee WYNILKNPQF Chimpanzee QHKFEQVVALMEDNI
Mouse WYNILKNPQF Mouse QHKFEQVVALME NI
Rat WYNILKNPQF Rat QYKFEQVVALME NI
Zebrafish WYNILKNPQF Zebrafish QHKFEQVI ALVEDNI
Consensus WYNILKNPQF Consensus QHKFEQVVAL E NI

Human YECY|SEA

Chimpanzee YECY|SEA

Mouse YECY|SEA

Rat YECY|SEA

Zebrafish YECC|SEA

Consensus YECVY|SEA
Fig. 5.

Sequence conservation of PIxnD1’s intracellular domains and motifs across vertebrates. A,
B, The two RasGAP motifs are one-hundred-percent conserved amongst the species shown,
including the arginine residues (outlined in red) essential to functionally antagonize R-Ras
family members via GAP activity and/or sequestration. C, The Rho-GTPase binding
domains are highly conserved and show a high degree of similarity to the seven amino acid
sequence of Drosophila PIxnB (outlined in red) that is required for binding to active, GTP-
bound Rac (Hu et al., 2001). D, The PIxnD1-specific T-segment is highly conserved. It
includes an invariable PDZ-binding motif SEA-COOH (outlined in red) that mediates the
physical interaction between PIxnD1 and the PDZ-containing protein GIPC1. The accession
numbers of the PIxnD1 proteins used for sequence analysis are: human/Homo sapiens
(AAI150281), chimpanzee/Pan troglodytes (XP_001144444), mouse/Mus musculus
(NP_080652), rat/Rattus norvegicus (NP_001101351) and zebrafish/Danio rerio
(AAT64905).
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Fig. 6.

A general model of Sema3/PIxnD1-mediated repulsion. A, In the absence of ligand-
mediated activation PIxnD1 is in a conformation that enables its association with GTP-
bound Rnd2 but prevents its interaction with active, GTP-bound Rac and R-Ras. Thus, GTP-
bound Rac is able to bind to PAK (p21-activated kinase) to stimulate the assembly of actin
filaments to support cell migration while active GTP-bound Ras promotes integrin-mediated
adhesion to the extracellular matrix (ECM) and mediates additional downstream signaling
events. B, Upon binding of its Sema3 ligand, PIxnD1 undergoes a conformational change
and binds the active forms of both Rac and R-Ras GTPases. By sequestering Rac, PIxnD1
leads to the inactivation of PAK and the collapse of the actin-based cytoskeleton leading to
retraction and/or turning responses. PIxnD1 inactivates R-Ras GTPases by either enhancing
GTP hydrolysis (as shown) or by sequestering them resulting in the loss of integrin-based
adhesion to the ECM (lto et al., 2006; Oinuma et al., 2004a; Oinuma et al., 2006; Rohm et
al., 2000; Sakurai et al., 2010; Uesugi et al., 2008) and likely reducing as well other R-Ras
mediated signaling events.
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