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Summary
The thymus is an organ vital to proper T cell development, and the regulation of cell survival and
death contributes significantly to its efficient function. Vital to many of the developmental
processes that occur in the thymus, control over cell survival and death is orchestrated by several
signaling processes. In this review, we focus on the regulation of death in early thymocytes known
as CD4/CD8 double negative cells, including the roles of interleukin-7 and Bcl-2 family members
in this developmental stage. We next consider the survival and death of later thymocytes that
express both CD4 and CD8, the “double-positive” thymocytes. These findings are discussed
within the context of recent studies demonstrating the existence of caspase-independent cell death
pathways.
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Introduction
Among the first cell types to be characterized as undergoing steady state cell death,
thymocytes offer valuable insight into the regulation of organ system development and
tissue homeostasis. The thymus itself directs the process of early T cell differentiation, and a
number of developmental stages depend on life vs. death choices that are intricately
programmed. Perhaps unique to the genesis of lymphocytes, the essentially stochastic
process involved in the rearrangement of T and B cell antigen receptor genes requires
subsequent selective mechanisms that ensure that antigen receptors are minimally functional
without being autoreactive. Indeed, the deletion of autoreactive lymphocytes is one of the
key means by which “immunological tolerance,” the prevention of autoreactivity is
achieved. This elimination of autoreactive lymphocytes during their development is termed
“central tolerance,” and is the primary means of elimination of lymphocytes that would
otherwise potentiate autoimmune disease. Programmed mechanisms that modulate cell
survival vs. cell death are essential for many of these selective processes. Once functional
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lymphocytes are produced and released to the periphery, additional cell death mechanisms
control lymphoid homeostasis, and provide a secondary layer of self-tolerance termed
“peripheral tolerance.” Our focus in this review is specifically directed toward the cell death
processes that occur within the thymus. For those interested in peripheral tolerance and
lymphoid homeostasis, the reader is directed to other reviews on the subject.

Survival and death of early thymocytes, the “double-negative” sub-populations
A thymocyte is first generated from the interaction of a hematopoietic stem cell with a
thymic stromal cell. In order for a thymocyte to differentiate into a mature T lymphocyte it
must go through maturational stages. The first stage is termed the double negative (DN)
stage because thymocytes in this stage lack the CD4 or CD8 co-receptors. The double
negative stage can be broken down even further into four successive developmental subsets
based on the cell surface expression of the CD117, CD44, and CD25 receptors [1].
Therefore the double negative subsets are as follows: DN1 (CD117+CD44+CD25−), DN2
(CD117+,CD44+,CD25+) DN3 (CD117lo/−,CD44−,CD25+), and DN4
(CD117−,CD44−,CD25−) [Fig. 1]. DN1 cells are not yet committed T cell precursors since
they have been shown to be able to develop into other thymus-derived lineages such as
dendritic cells and natural killer cells. Transition to the DN2 subset occurs when DN1 cells
begin expressing CD25. Transition from DN1 to DN2 also triggers the developmental
program leading to a diverse T cell receptor (TCR) repertoire. This is accomplished by
distinct α and β TCR chains along with their variable region encoded by several variable
(V), joining (J), and diversity (D) gene segments. Besides expressing CD25, the DN2 subset
contains joined D and J segments of T cell receptor β chain (TCRβ). The DN2 subset
progresses to the DN3 subset by joining of the V gene segment to the DJ segments of the
TCRβ chain and losing expression of CD117 and CD44. In order to continue to the DN4
subset, the DN3 subsets must express a functional TCRβ chain and a pre-TCRα chain on the
cell surface, a process known as β-selection.

Besides successful β selection, double negative thymocytes must be able to respond to
cytokines released from thymic stromal cells in order to survive and transition to the double
positive stage [2]. IL-7 and the ligand for CD117, stem cell factor (SCF) are crucial for the
survival of double negative thymocytes (Fig. 1). CD117 is expressed on HSCs, and on DN1
through DN2 subsets. Mice deficient in CD117 or SCF contain a 40-fold reduction in DN1
cellularity and no defects in thymocyte development [3]. IL-7 receptor (IL-7R) is expressed
on DN2 and DN3 cells and mice deficient in IL-7 or the IL- 7R α chain, CD127, have
reduced numbers of thymic cells and such thymocytes fail to proceed past the DN2 subset
[4,5].

The basis for the deleterious effects of an IL-7 or IL-7R deficiency is due to the ability of
IL-7R signaling to regulate B cell lymphoma 2 (Bcl-2) family members. The Bcl-2 family is
composed of pro-apoptotic (Bim, Bax, Bak, Bik, Puma, Noxa, Bad, etc.) and anti-apoptotic
(Bcl-2, Bcl-xL, Bcl2-A1, Bcl-w, Mcl-1) proteins. A balance of the Bcl-2 family members is
crucial in maintaining mitochondrial outer membrane integrity, which is necessary for cell
survival. The link between IL-7 signaling and the ratio in expression of individual Bcl-2
family members that promotes survival of DN cells has been shown in numerous studies. T
cell development in IL7Rα−/− mice was restored by overexpressing Bcl-2 in the T cell
lineage [6], and through germline deletion of Bim [7]. Conditional deletion of Mcl-1 in
developing thymocytes results in increased cell death within the DN2 subset, consequently
preventing the development of the DN3 subset [8]. Failure of a DN2 cell line, D1, to receive
IL-7 caused translocation of Bad to mitochondria, which resulted in the inhibition of the
survival functions of Bcl-2 [9]. In a similar study, loss of IL-7R signaling in D1 cells caused
translocation of Bax to mitochondria, leading to apoptotic cell death [10]. Recently, Bak
deletion was shown to rescue the survival defect of Mcl-1−/− double negative cells [11].
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Thus, a balance in expression of the Bcl-2 family members via IL-7R signaling prevents the
demise of the double negative population.

During differentiation of DN cells up to and including the DN2 subset, cell survival is
controlled primarily by cytokines secreted from thymic stromal cells, and IL-7 is vital for
this stage of thymopoiesis. In the DN3 subset, cell survival is dependent on the ability to
generate a pre-TCR composed of a successfully rearranged β chain and the surrogate TCR α
chain called “pre-Tα”. Failure of a DN3 cell to productively rearrange a TCR β chain, e.g. in
a Rag1- or pre-Tα-deficient thymus, results in the inability of the cell to move beyond the
DN3 subset, with most cells dying prior to transition to the DN4 stage [12]. Properly
formation of a pre-TCR (e.g. a rearranged β chain a in association with pre-Tα) leads to
allelic exclusion of the TCR β loci, thereby blocking further attempts at β chain
rearrangement. Surface exposure of the pre-Tα also induces a proliferative burst and
expression of a pro-survival factor allowing the cell to proceed to the double positive stage.
Bcl2-A1 may be the pro-survival factor since its expression is upregulated by the pre-TCR
during β-selection [13] and does not inhibit proliferation, which distinguishes it from its
anti-apoptotic family members. Another potential candidate is Akt since it has the ability to
protect thymocytes from cell death at the pre-TCR or β-selection checkpoint [14].
Specifically, loss of Akt at the DN3 stage results in cell death following TCR stimulation in
vitro due to the cells decreased ability to uptake glucose. Recently, the chemokine receptor
CXCR4 has been shown to be necessary for survival following β selection since it has been
shown to associate with the pre-TCR and conditional deletion of CXCR4 results in
impairment of DN3 maturation [15].

In addition to the differential regulation of Bcl-2 family members, a potential involvement
of death receptor (DR) signaling molecules in β-selection has been demonstrated in mice
expressing a dominantly interfering form of FADD (FADDdd) in thymocytes [16]. In such
mice, expression of FADDdd leads to diminished thymic cellularity, with reduced numbers
of DN4 cells. In other studies, Newton et. al. found that expression of FADDdd led to rescue
of DN4 and double-positive thymocyte populations [17]. Given recent studies that have
demonstrated that peripheral FADDdd T cells become hyper-autophagic and die through a
programmed necrotic pathway [18], such results suggest that a similar process may take
place during the proliferative phase following β-selection. Alternatively, it may be that DR
signaling is engaged in cells failing β-selection, and that such cells are subject to DR-
induced cell death. Identification of other candidate genes and signaling pathways that may
play roles in the survival or death of thymocyte subsets following β selection are currently
underway in several research laboratories.

Death at the CD4/CD8 Double Positive developmental stage of thymopoiesis
During the DN4 precursor stage of thymocyte development, TCR α chain rearrangement
ensues, resulting in display of a fully assembled TCR. As thymocytes transit to the double
positive (DP) stage, these thymocytes enter a period of quiescence that lasts an average of
3–4 days. Several survival factors are expressed that allow the opportunity to test the newly
displayed TCR. This “TCR selection” is imperative, as it will lead to three potential fates as
dictated by the strength of the TCR interaction with major histocompatability complex
(MHC) molecules expressed on resident antigen presenting cells (APC): a) death by neglect
if the TCR fails to be stimulated by APC, b) death by negative selection if the TCR:MHC
interaction is very strong and c) positive selection to become either CD4+ T helper or CD8+
cytotoxic T cell precursors (Fig. 2). Upregulation of antiapoptotic Bcl-xL at the DP stage is
thus a key event that maintains DP thymocytes prior to TCR selection [19–21]. More
recently, Mcl-1 has been demonstrated to promote thymocyte survival through its ability to
interfere with proapoptotic Bak [11]. Proapoptotic Bim plays a central role in both death by
neglect and negative selection [22,23], and the downregulation of Bcl-2 likely sensitizes DP
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cells to Bim-mediated apoptosis. At this stage in which most thymocytes express a TCR that
cannot recognize self-MHC-peptide, up to 90% of DPs are sensitized to and undergo death
by neglect, a process that is at least in part dependent on signals from steroid hormones
[24,25].

Engagement of the TCR leads to a fate similarly dependent on the balance of pro- and anti-
apoptotic members of the Bcl-2 family. Binding avidity between self-peptide:MHC and a
thymocyte TCR determines the outcome of selection, where peptides with low-affinity and
relatively rare expression lead to positive selection and the inhibition of apoptosis, while
stronger signals through the TCR result in negative selection. The signaling mechanisms,
particularly proximal TCR events, that achieve the shift in balance of pro- and anti-apoptotic
effectors is still under interrogation, with the role of MAPKs being a focal point in this
process [26–29]. TCR crosslinking leads to activation of the MAPKs ERK1/2, JNK1/2 and
p38, as well as ERK5. Deletion of Erk1 or Erk2 indicated the requirement of this pathway
for positive selection, while Erk1/2−/− mice displayed no defect in thymic deletion in vivo
[30]. In contrast, inhibition of the JNK pathway [31], or deletion of either Jnk1 or Jnk2
[32,33], disrupts thymocyte apoptosis but not positive selection. The protein adaptor Grb2,
through recruitment of Sos, plays a central role in differentiating between positively and
negatively selecting ligands through its ability to selectively trigger the JNK and p38
pathways, but not ERK1/2 [34]. MINK, a serine/threonine kinase highly upregulated at the
DP stage, has also implicated in mediating negative selection, potentially through its
induction of JNK activity, and subsequent upregulation of Bim [35]. Whether or not MINK
mediates Bim upregulation through JNK has not been directly shown, and the control of
Bim expression remains an unresolved issue.

ERK5 activation, dependent on MEK5, correlates with the levels of Nur77 and Nor-1,
nuclear steroid receptors belonging to a family of DNA binding proteins [36]. The Nur77
family and Bim represent the two main known effector pathways of thymocyte deletion.
Induction of apoptosis through the mitochondrial pathway by Bim has been well
characterized, and antagonism by Bcl-2 of Bax/Bak is instrumental for protection against
Bim-mediated apoptosis. However, while Bim−/− mice display inefficient thymic deletion,
over-expression of Bcl-2 does not block negative selection [37]. Other Bim-dependent death
pathways are blocked in Bcl-2 transgenic mice including death by neglect, suggesting
utilization of a pathway(s) other than Bim during negative selection or interference of the
anti-apoptotic function of Bcl-2. Nur77 is required for negative selection as expression of a
dominant-negative form achieves a blockade in negative selection, and its constitutive
expression in thymocytes leads to massive apoptosis [38]. While its transcriptional activity
has been correlated with its role in apoptosis, recent work has identified its ability to
translocate to mitochondria and expose the BH3 domain of Bcl-2, thereby converting it a
proapototic form [39]. This work may explain why Bcl-2 overexpression fails to rescue
Bim-mediated apoptosis exclusively during negative selection. It will be interesting to
further determine how Nur77’s transcriptional activity versus its effector function towards
mitochondria contribute overall to its induction of thymocyte apoptosis.

Nur77 regulates expression of members of the TNF family, including TRAIL and Fas
ligand, indicating that its transcriptional activity may lead to induction of death receptor
(DR) mediated death pathways. Whether or not this is the case in thymocytes is unclear, and
reports suggesting an involvement of extrinsic apoptotic (e.g. DR-mediated) pathways in
death by neglect or negative selection remain controversial. Mice expressing FADDdd, an
inhibitor of DR signaling that prevents caspase activation by multiple death receptors, had
no defect in thymocyte deletion [16]. Surprisingly, these mice exhibited proliferative defects
[40]. Similarly, caspase-8 and FADD, and the non-catalytic caspase-8 homolog cFLIP, have
all been found to be essential for the proliferation and survival of mature T cells following
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their activation [41–43]. Such mutant T cells succumb to a non-apoptotic/caspase-
independent form of programmed necrosis termed “necroptosis,” a form of death that
requires the kinase activity of RIPK1, and in the case of TNF-alpha, RIPK3 [44–48]. RIPK1
activity is specifically required for induction of necroptosis in T cells lacking the capacity to
activate caspase-8, as blockade RIPK1 catalytic activity with Necrostatin-1, or knockdown
or RIPK1 expression led to recovery of these mutant T cells [18,48]. Given that T cell clonal
expansion requires caspase-8 catalytic activity [49], these findings support the hypothesis
that caspase-8 catalytic activity may be directed toward the inactivation of RIPK1 and
RIPK3 following stimulation of naïve T cells, thereby preventing the induction of
necroptosis. It is possible that developmental death during thymopoiesis may also involve
both apoptosis and necroptosis. Supporting this, thymocytes from TRAIL−/− mice were
described to possess defects in negative selection in multiple model systems [50]. Yet this
work has been challenged by work on TRAIL-R−/− mice [51,52], as well as by others using
distinct TRAIL−/− mice and blocking antibodies to TRAIL [53–55]. Currently, it is thought
that thymocytes are destined for demise through the intrinsic pathway unless they are tuned
in to low-avidity TCR signals that promote positive selection or regulatory T cell
development. It will be interesting to determine if caspase-independent pathways may also
contribute during thymocyte selection.

Conclusions
The thymus is an essential organ system that is imbued with the significant task of
orchestrating the development of functional T cells, and the prevention of systemic
autoimmunity. As described in this review, the proper regulation of cell death is vital to the
function of the thymus. Although the function of the thymus wanes as humans reach
adulthood, it remains active throughout one’s lifetime. The intricate control over myriad cell
survival and death processes in the thymus underscores the need to understand more about
how the signaling pathways contribute to key stages of thymopoiesis. While much has been
discovered, many mysteries are yet left to be uncovered. Recent studies have uncovered
alternative forms of cell death, many of which may play physiological roles in
developmental and homeostatic pathways. As described, necroptosis occurs in cells in a
caspase-independent manner [47,56]. It is likely that such caspase-independent pathways are
vital to cell death stages during thymopoiesis. Supporting this hypothesis, expression of the
baculovirus pan-caspase inhibitor p35 was shown to block caspase-dependent apoptosis in
thymocytes, but did not interfere with physiological negative selection when expressed at
high levels in DP thymocytes [57]. The potential exists that cellular macroautophagy may
facilitate both survival and death signaling within thymocytes at distinct stages of
development, in analogy to peripheral T cell subsets. Studies addressing these hypotheses
are very much warranted, as they may reveal important new functions for distinct extrinsic
and intrinsic (mitochondria-dependent) death pathways that have heretofore gone
unappreciated.
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Figure 1.
Development of T cells at the double negative stage. Factors that lead to double negative T
cell survival are listed above the cells and factors that lead to cell death are below the cells.
The cell-surface phenotype of each subpopulation is shown. The purple boxes indicate gene
rearrangements of the TCRβ receptor. The thymic stromal cells are represented in orange.
Please see text for more details.
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Figure 2.
Pathways involved in thymocyte development during the DP stage. The discrimination of
MAPK pathways following TCR ligation results in different selection outcomes. Low-
avidity TCR interactions with MHC-peptide (not shown) lead to positive selection,
dependent on Erk1/2, whereas high-avidity interactions lead to negative selection, dependent
on the recruitment of Grb2/Sos and activation of p38 and Jnk. Negative selecting ligands
also result in ERK5 and MINK activation. The convergence of these pathways leads to
activation of the Nur77 family and Bim death effectors. (Dotted lines represent potential
signaling outcomes). Bim antagonizes Bcl-2 to allow Bax and Bak to effect mitochondrial
dysfunction, while Nur77 family members have been shown to turn Bcl-2 into an apotosis
promoting protein at the mitochondria. Mcl-1 and Bcl-xL antagonize the function of Bax/
Bak, but in the absence of TCR signals, cannot protect cells from apoptosis. TRAIL is
induced by Nur77, although the role of this DR in thymocyte apoptosis remains to be fully
clarified.
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