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Abstract

The impact of ectomycorrhiza formation on the secretion of exoenzymes by the host plant and the symbiont is

unknown. Thirty-eight F1 individuals from an interspecific Populus deltoides (Bartr.)3Populus trichocarpa (Torr. &

A. Gray) controlled cross were inoculated with the ectomycorrhizal fungus Laccaria bicolor. The colonization of

poplar roots by L. bicolor dramatically modified their ability to secrete enzymes involved in organic matter
breakdown or organic phosphorus mobilization, such as N-acetylglucosaminidase, b-glucuronidase, cellobiohydro-

lase, b-glucosidase, b-xylosidase, laccase, and acid phosphatase. The expression of genes coding for laccase,

N-acetylglucosaminidase, and acid phosphatase was studied in mycorrhizal and non-mycorrhizal root tips.

Depending on the genes, their expression was regulated upon symbiosis development. Moreover, it appears that

poplar laccases or phosphatases contribute poorly to ectomycorrhiza metabolic activity. Enzymes secreted by

poplar roots were added to or substituted by enzymes secreted by L. bicolor. The enzymatic activities expressed in

mycorrhizal roots differed significantly between the two parents, while it did not differ in non-mycorrhizal roots.

Significant differences were found between poplar genotypes for all enzymatic activities measured on ectomycor-
rhizas except for laccases activity. In contrast, no significant differences were found between poplar genotypes for

enzymatic activities of non-mycorrhizal root tips except for acid phosphatase activity. The level of enzymes secreted

by the ectomycorrhizal root tips is under the genetic control of the host. Moreover, poplar heterosis was expressed

through the enzymatic activities of the fungal partner.
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Introduction

The fine roots of tree species in temperate and boreal

forests are symbiotically associated with fungi, forming
a composite organ called ectomycorrhiza (ECM) (Smith

and Read, 2008). The establishment and the functioning of

ECM lead to complex morphological and physiological

changes in both the plant and the fungus (Martin and

Nehls, 2009; Courty et al., 2010a). The ECM symbiosis

has been described as a mutualistic association where the

autotrophic plant supplies photosynthates to the hetero-

trophic fungus, which in turn supplies water and nutrients
to the host (Smith and Read, 2008). Several studies also

have shown that ectomycorrhizal fungi (ECMf) are able to

produce extracellular enzymes, such as proteases, involved

in the direct mobilization of nutrients from organic

substrates (Courty et al., 2005, 2006, 2010b; Lindahl et al.,

2005; Koide et al., 2008). In addition, a given species may
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contribute to significant functional variations through

metabolic activities (Buée et al., 2007; Courty et al.,

2010b).

The ecological fitness and the metabolic activity of ECMf

depend on their genotypes, environmental factors (van der

Heijden and Sanders, 2002; Smith and Read, 2008), host

plant genotypes (Barker et al., 2002; Linderman and Davis,

2004), and the interactions between all these factors (Khasa
et al., 2002; Gehring et al., 2006; Karst et al., 2009). Recent

studies also suggest that the host plant genome may play

a role in determining the dominant mycorrhizal type in

dually colonized hosts (van der Heijden and Kuyper, 2001;

Khasa et al., 2002). However, no studies have simulta-

neously examined the effect of host plant genotypes and the

metabolic activity of one ECMf species in controlled

conditions. In the Laccaria bicolor/poplar ECM symbiosis,
Tagu et al. (2005) have shown that the host genotype

impacts on root colonization by the fungus. The heritability

of mycorrhizal colonization of poplar was also studied

(Tagu et al., 2001, 2005). However, the metabolic activity of

one ECM fungal genotype colonizing different genotypes of

the same host species was never studied. In the present

study, the use of poplar as the host tree model was

motivated by the availability of large genetic and genomic
resources for this species (Brunner et al., 2004; Tuskan

et al., 2006). Moreover, heritability and variability of

physiological parameters [i.e. water use efficiency, dry

weight and leaf maximum area (LMA)] at the family level

have been intensively studied in poplar (Marron et al., 2005;

Dillen et al., 2007).

In this study, a standard set of seven enzymatic activities

routinely used in field studies were selected as relevant
functional traits (Courty et al., 2005). The enzyme activity

of a secreted laccase, an oxidative enzyme involved in the

degradation of recalcitrant plant residues, such as lig-

nin, five secreted glycosyl hydrolases (cellobiohydrolase,

b-glucosidase, b-xylosidase, b-glucuronidase, and N-acetyl-

glucosaminidase) acting on polysaccharides, and a phospho-

monoesterase involved in the mobilization of phosphorus

from soil organic matter were assessed. Laccaria bicolor has
a small set of glycosyl hydrolases able to hydrolyse plant

cell wall polysaccharides (Martin et al., 2008). However, its

genome encodes several carbohydrate-active enzymes able

to degrade bacterial, fungal, and animal polysaccharides

(Martin et al., 2008).

The impact of the host genotype on the ECM metabolic

activity is unknown. Here, the responding functional trait

in focus is the capacity to produce secreted or cell wall-
bound enzymes. The first objective was to determine

whether the enzymatic activities expressed in mycorrhizal

roots differed significantly between two parents, Populus

deltoides and P. trichocarpa, and different poplar hybrid

genotypes (P. deltoides3P. trichocarpa). The second objec-

tive was to determine the effect of host genotypes on

fungal traits by measuring the heritability of enzymatic

activities in mycorrhizal and non-mycorrhizal root tips
and by assessing a possible heterosis for these traits among

the progeny.

Materials and methods

Plant material, strain, and culture conditions

Poplar material consisted of 38 F1 individuals from an in-
terspecific P. deltoides (female clone from Illinois, no. 73028-62)
and P. trichocarpa (male clone from Washington, no. 101-74)
controlled cross (family 54B) (Tagu et al., 2001, 2005). The
ability of the two parents and the 38 breeds to form mycorrhizas
was tested by inoculating them with L. bicolor S238N
(Di Battista et al., 1996; Tagu et al., 2001). The 38 F1 genotypes
were chosen at random among the 336 genotypes used for the
construction of a genetic map (Cervera et al., 2001; Jorge et al.,
2005). The L. bicolor S238N fungal strain, coming from the
INRA-Nancy collection of ECMf, was maintained on Pachlew-
ski’s. This model fungal strain was chosen for its ability to form
ECMs with poplar and for the avaibility of genomic resources
(Tagu et al., 2001; Martin et al., 2008). The inoculum of
L. bicolor S238N was prepared by aseptically growing the
mycelium in a peat–vermiculite nutrient mix in glass jars for
2 months in the dark at 25 �C, and it was kept at 4 �C for
2 months before use (Le Tacon and Bouchard, 1986).

Inoculation

Cuttings of one internode of each of the 38 poplar progeny and the
two parents were rooted and individually inoculated at the same
time, in 1.0 l pots containing a mixture of fungal inoculum (1:9 v/v)
and calcinated attapulgite (Oil Dri US Special) for 12 weeks, in
a greenhouse during spring with day–night temperatures of 28 �C
and 15 �C, respectively. Plants were watered during the whole
experiment until measurements were taken. From the second
month, a low N, low P nutrient solution was applied weekly
(Frey-Klett et al., 1997). In order to control environmental
heterogeneity of the greenhouse, eight replicates were examined for
each poplar genotype and were randomly distributed in eight
blocks. Each block contained one pot of each of the 38 progeny
and the two parents.

Root colonization

Entire root systems, except roots present at 1 cm depth from the
collar, were carefully washed under tap water and cut into ;1 cm
pieces. For each root system, 100 randomly selected root tips were
examined and assessed as mycorrhizal or non-mycorrhizal under
a stereomicroscope (magnification 340) for calculation of ECM
percentages.

Chlorophyll content, leaf morphological measurement, and dry

weight

Before harvesting plants, the chlorophyll a and b content was
measured with a Minolta SPAD chlorophyll meter (Minolta
Corp., Ramsey, NJ, USA). Three SPAD measurements were done
on three leaves of each plant and then averaged (Monje and
Bugbee, 1992). To convert SPAD measures into chlorophyll
content, a standard curve was built by extracting chlorophylls with
the dimethylsulphoxide (DMSO) extraction technique (Monje and
Bugbee, 1992; Richardson et al., 2002). Total leaf chlorophyll
concentration (mg cm�2) of the extracts was calculated from the
equation: 0.0202A645+0.00802A663. SPAD measurements were
then converted to chlorophyll content using a third-order
polynomial equation: –0.0064SPAD3+0.5895SPAD2+2.0891SPA-
D+10.024.
Once mycorrhizal infection had been determined, leaves, stems,

and roots were separated. The leaves were placed in plastic bags
and kept at 4 �C until leaf morphological measurements were
completed. The leaf area (cm2) of all leaves of each plantlet was
measured by using a LI-COR 3100 (Li-Cor Inc., Lincoln, NE,
USA). Leaves, stems, and roots were then dried at 70 �C for
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1 week. The LMA was calculated for each clone using the
relationship between the area of each leaf and its corresponding
dry weight.

Enzymatic activity profiling of ectomycorrhizal and non-mycorrhizal

root tips

One mycorrhizal root tip and one non-mycorrhizal root tip were
collected from each of the 320 cuttings in order to determine
their potential enzymatic activities, using the high-throughput
photometric and fluorimetric microplate assays described and
detailed in Courty et al. (2005), and applied in previous studies
(Buée et al., 2007; Courty et al., 2010b). As the variability of
enzyme activities among ECM tips within a root system is low,
one tip is sufficient to obtain a representative value (Courty et al.,
2005). Each well of a 96-well microtitration plate contained
either one ectomycorrhizal root tip or one non-ectomycorrhizal
root tip. Seven activities were successively measured on root
tips: b-xylosidase (EC 3.2.1.37), b-glucuronidase (EC 3.2.1.31),
cellobiohydrolase (EC 3.2.1.91), N-acetylglucosaminidase
(EC 3.2.1.14), b-glucosidase (EC 3.2.1.3), acid phosphatase (EC
3.1.3.2), and laccase (EC 1.10.3.2). The enzymes activities were
expressed as pmol mm�2 min�1 of developed surface area of root
tips. The developed surface area of the root tips was measured
after scanning and image analysis using the Mac/Win Rhizo
software (Regent Instruments, Quebec City, Canada). They
correspond to the activities of enzymes present on the surface of
the roots or mycorrhiza mantles and released into the medium
during the incubation.

Whole-genome expression oligoarray analyses

Genes coding for laccase (Lac), N-acetylglucosaminidase (Nag),
and acid phosphatase (Pap) were already known and had been
characterized in the genome of L. bicolor and P. trichocarpa. As
the genes involved in b-xylosidase, b-glucuronidase, cellobiohy-
drolase, and b-glucosidase activity had not been characterized,
it was not possible to measure the corresponding transcript
expression. Accumulation of predicted Lac, Nag, and Pap
transcripts was detected in free-living mycelium of L. bicolor
S238N, and in ectomycorrhizal and non-mycorrhizal root tips of
poplar using the NimbleGen L. bicolor whole-genome expression
oligoarray v2 (Martin et al., 2008) and the NimbleGen
P. trichocarpa whole-genome expression oligoarray (Tuskan
et al., 2006). Data are available at the GEO platform GPL2699.
The L. bicolor 4-plex whole genome expression array contained
18 653 gene models with three oligonucleotide probes for each
gene model. For 4702 gene models, technical duplicates were
included on the oligoarray (A Kohler and F Martin, unpub-
lished results). Average expression levels were calculated for
each gene from the independent probes and were used for
further analysis. To estimate the signal background and the
resulting threshold value for significant expression, the mean
intensity of 2032 random probes present on the microarray was
calculated. Gene models with expression exceeding the threshold
by >3 were considered to be transcribed. Raw array data were
filtered for non-specific probes and renormalized using
ARRAYSTAR software (DNASTAR). Three biological repli-
cates were used. Therefore, the reported gene expression values
corresponded to the mean intensity of hybridization signals
obtained for the specific oligonucleotide probes. A Student t-test
with false discovery rate (FDR; Benjamini–Hochberg) multiple
testing corrections was applied on the data (P <0.05), using
ARRAYSTAR sofware (DNASTAR).

Statistical analysis

The percentage of mycorrhizal colonization was transformed
by arcsin OX/100 function prior to analysis of variance
(ANOVA). b-xylosidase, b-glucuronidase, cellobiohydrolase,

N-acetylglucosaminidase b-glucosidase, acid phosphatase, and
laccase activities, root, shoot, and stem dry weight, and LMA
were also submitted to ANOVA. The following mixed linear
model was applied on an individual basis to detect significant
differences among the clones:

Yijk ¼ lþ Bi þ Gj þ eijk

where l is the overall mean, B is the block effect (fixed), G is the
genotype effect (random), and e is the random residual error.
Restricted maximum likelihood estimates of genetic, block, and

residual variance components (r2
G, r

2
B, and r2

e) were computed,
and, for each trait, individual broad sense heritability (h2) was
estimated as follows:

h2 ¼ r2=
�
r2 þ r2=n

�

where n is the average number of replicates per genotype. Standard
deviations (SD) were derived from classic estimation of SD for
a ratio x/y where x¼r2

G and y¼r2
G+r

2
e/n.

All analyses were performed with the statistical programs JMP
5.0 (SAS Institute Inc., Cary, NC, USA) and R version 1.8.0 (R
Development Core Team, 2006, www.R-project.org).
The genetic coefficient of variation (CVG) was used (Cornelius,

1994) to compare the relative amounts of genetic variation of traits
with different means:

CVG ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2=lÞ

q

Relationships between the different traits were also analysed by
Pearson linear correlations.
The developed projected area of mycorrhizal and mycorrhizal

root tips were compared between genotypes by ANOVA.

Results

A total of 320 plants were harvested and studied in this

experiment. Three dead plants were not used in the analysis.
No significant block effect was found for any measured

traits.

Poplar ecophysiological traits

Significant differences (P <0.001) were found between plant
genotypes for all measured traits (chlorophyll content,

LMA, and stem and root dry weight). Significant differ-

ences were found between the parents for all measured traits

except for LMA.

Effect of poplar genotype on root colonization by
L. bicolor

Twelve weeks after inoculation, progeny and parental

clones were only colonized by L. bicolor. No other

contaminant ECMf were found on roots. The two parental

genotypes differed significantly in their mycorrhizal de-

velopment, P. trichocarpa exhibiting a rate of colonization

of 4068%, and P. deltoides a rate of 1664%. The

percentage root colonization of the different genotypes
(progeny) varied from 1268% to 6466%, with an average

of 31% (Fig. 1). The ANOVA showed a significant genotype

effect and no block effect. The developed projected area of

mycorrhizal or non-mycorrhizal root tips was not signifi-

cantly different between genotypes.
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Enzymatic activity patterns of the parental and the
hybrid root system

For each plant, the seven enzymatic activities were

measured successively on one mycorrhizal and one non-

mycorrhizal root tip (40 poplar genotypes38 plant
replicates32 root tips). Mycorrhizal root tips never lost

their ability to secrete the seven enzymes under the test

conditions, even if sometimes this was at a very low level

(e.g. for b-xylosidase, b-glucuronidase, and laccase).

The seven enzymatic activities expressed in non-mycorrhizal

roots did not differ significantly between the two parents

(Table 1a). The seven enzymatic activities measured on ECM

root tips differed significantly between the two parents
(Table 1a): five activities (b-xylosidase, cellobiohydrolase,

b-glucosidase, acid phosphatase, and laccase) had a higher

level in P. trichocarpa and two (N-acetylglucosaminidase and

b-glucuronidase) had a higher level in P. deltoides.

Enzyme activity patterns of mycorrhizal and non-

mycorrhizal root tips of the parents and of their progeny

were different (Fig. 2). Significant differences were found

between plant genotypes for all activities measured on ECM
root tips, except for laccase activity (Table 1b). No

significant differences were found between plant genotypes

for any activities measured on non-mycorrhizal root tips,

except for acid phosphatase activity (Table 1b).

Six of the enzymatic activities differed significantly

between mycorrhizal and non-mycorrhizal roots, while no

laccase activity could be detected in non-mycorrhizal roots

(Table 1b). Compared with non-mycorrhizal root tips,
N-acetylglucosaminidase activity was increased by >100-

fold in mycorrhizas, while b-glucuronidase, cellobiohydro-
lase, and b-glucosidase activities were multiplied by a factor

ranging between 50 and 100, and b-xylosidase and acid

phosphatase between 15 and 50 (Table 1b).

Heritability

Heritability values (h2) of plant phenotypic characters ranged

from 0.21 to 0.48. The highest values of heritability were

found for LMA (0.4860.01), chlorophyll content

(0.4560.01), and stem and leaf dry weight (0.4360.01 and

0.5060.01, respectively). The lowest value was found for root

dry weight (0.2160.01). A value of 0.4560.02 was found for

the percentage of mycorrhizal colonization. Heritability

values of enzymatic activities were similar for ectomycor-

rhizal and non-mycorrhizal root tips, except for laccase

activity, which was not detected on non-mycorrhizal root
tips (0.2960.01 in mycorrhizal root tips; 0 in non-mycorrhi-

zal root tips). The highest heritabilities were found for

N-acetylglucosaminidase (mycorrhizal root tips, 0.4260.01;

non-mycorrhizal root tips, 0.4060.01), acid phosphatase

(mycorrhizal root tips, 0.4160.01; non-mycorrhizal root tips,

0.4060.01), b-glucosidase (mycorrhizal root tips, 0.3660.01;

non-mycorrhizal root tips, 0.3460.01), and cellobiohydrolase

(mycorrhizal root tips, 0.3360.02; non-mycorrhizal root tips,
0.3160.02) activity. The lowest value was found for

b-glucuronidase activity (mycorrhizal root tips 0.0460.01;

non-mycorrhizal root tips, 0.0460.01). A medium value was

found for b-xylosidase activity (mycorrhizal root tips,

0.1660.01; non-mycorrhizal root tips, 0.1960.01).

Heterosis

For each trait, the ratio between the average of the hybrids

and the best parent (a) or between the average of the hybrids

and the average of the two parents (b) was calculated

(Supplementary Table S1 available at JXB online). The

LMA exhibited a high positive heterosis (a¼ +46, b¼ +51),

while the leaf dry weight exhibited a negative heterosis

(a¼ – 41, b¼ –36). The percentage mycorrhizal colonization

also exhibited a positive heterosis (a¼ +25, b¼ +75). In
mycorrhizal and non-mycorrhizal root tips, all the enzy-

matic activities displayed a positive heterosis at least for the

b values, with the exception of laccase activity in mycorrhi-

zal root tips (a¼ –15, b¼ –8) and acid phosphatase activity

in non-mycorrhizal root tips (a¼ –4, b¼ –3).

Gene expression

Expression of the genes Lcc, Nag, and Pap was assessed by

whole-genome expression oligoarray analyses in poplar and

L. bicolor (Table 2). In poplar, gene expression was

compared between non-mycorrhizal and mycorrhizal roots.

Thirty-two laccases (Lcc1–Lcc32) were detected in poplar.

Three of them are mitochondrial and 27 have a signal
peptide meaning that they belong to secreted pathways. Of

the 32 genes coding for laccases in poplar, the expression

of 11 could be assessed. Of the 11 expressed and also

putatively expressed, one (Lcc6) was significantly up-regulated

in mycorrhizas and two were down-regulated in mycorrhizas

(Lcc16 and Lcc31). Two N-acetylglucosaminidase (Nag1 and

Nag2) genes were expressed and a signal peptide was found

for both of them. The expression of Nag1 and Nag2 was
not modified by mycorrhizal establishment. Seven acid

phosphatase genes (Pap1–Pap7) were expressed and a signal

peptide was found for five of them (Pap2, Pap3, Pap5,

Pap6, and Pap7). Two (Pap5 and Pap7) were significantly

up-regulated in mycorrhizas.

Fig. 1. Percentage root colonization of the different poplar clones

(n¼40). Genotypes are ranked in mean percentage of root

colonization. Bars represent the SE (n¼8). Grey corresponds to

Populus trichocarpa (male) and black to Populus deltoides

(female).
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For L. bicolor, gene expression was compared between

mycorrhizal roots of P. trichocarpa and P. deltoides, and

mycelium growing in pure culture. On the nine laccases

previously described (Courty et al., 2009), one was mito-
chondrial (Lcc5) and eight had a signal peptide meaning

that they belong to secreted pathways. Seven of these

laccase genes were expressed, while two were not (Lcc2 and

Lcc7). Lcc5 was only expressed in the free-living mycelium.

Lcc9 was significantly down-regulated in P. deltoides and

P. trichocarpa mycorrhizas, while Lcc6 was significantly

down-regulated only in P. deltoides mycorrhizas and Lcc8

was up-regulated in P. trichocarpa mycorrhizas. The other
laccases were not significantly regulated. The only acid

phosphatase (Pap1) expressed displayed a peptide signal.

Its expression was not significantly different between

mycorrhizas and free-living mycelium. Among the two

N-acetylglucosaminidase (Nag1 and Nag2) expressed, only

Nag2 exhibited a signal peptide. The expression of Nag2 was

higher in the free-living mycelium than in P. trichocarpa–

L. bicolor and P. deltoides–L. bicolor mycorrhizas.

Correlations between the different traits

No poplar trait was correlated with enzymatic activities of
non-mycorrhizal root tips (Table 3). LMA, and stem and

root dry weight were not correlated with any activities from

either ectomycorrhizal or non-mycorrhizal root tips

(Table 3). Chlorophyll content was significantly nega-

tively correlated with b-xylosidase, cellobiohydrolase, and

b-glucosidase activities, three enzymes involved in cellulose

and hemicellulose catabolism.

Enzymatic activities of ectomycorrhizal root tips were not

correlated with those of non-mycorrhizal root tips. All the
enzymatic activities of mycorrhizal root tips were correlated

with each other, except for laccase activity. Similarly, except

for acid phosphatase, all the enzymatic activities of non-

mycorrhizal root tips were correlated with each other.

b-xylosidase activity of mycorrhizal roots was the only

activity positively correlated with the percentage of myco-

rhizal infection (Table 3). Stem and root dry weights were

also significantly correlated with the percentage of root
colonization.

Discussion

Enzymatic activities of non-mycorrhizal root tips and
mycorrhizas

The potential activities of enzymes involved in organic

matter breakdown or organic phosphorus mobilization

measured on poplar root tips colonized or not by L. bicolor

were significantly different. Here, it was found that the
ectomycorrhizal complex adds to or substitutes for enzymes

secreted from poplar roots. Compared with non-

mycorrhizal root tips, N-acetylglucosaminidase activity

is 100-fold greater in mycorrhizas, while b-glucuronidase,
cellobiohydrolase, and b-glucosidase activities were between

Table 1. Average enzymatic activities of ectomycorrhizal and non-Mycorrhizal root tips of poplar

Enzyme activities are expressed as pmol mm�2 min�1 (Courty et al., 2005). Mean and SE are given for each activity. An asterisk indicates
a significant difference (P <0.001). The effect of plant genotype on enzyme activities was assessed for mycorrhizal root tips and
non-mycorrhizal root tips.

(a) Comparison of the parents: P. trichocarpa (Pt) and P. deltoides (Pd)

Mycorrhizal root tips Non-mycorrhizal root tips

Pt Pd Pt Pd

b-xylosidase 25.4361.67 14.0461.17* 0.9460.52 0.4660.14

b-glucuronidase 23.2961.82 35.4761.47* 0.6960.41 0.8160.51

N-acetylglucosaminidase 297.83613.86 412.81617.72* 3.0260.70 4.161.42

Cellobiohydrolase 86.5162.21 22.4261.61* 0.5760.17 0.6260.24

b-glucosidase 358.94616.96 119.7769.77* 4.1361.47 2.7861.45

Acid phosphatase 368.46619.47 155.94612.84* 25.3365.15 25.7764.47

Laccase 5.6460.95 4.7660.72* 0 0

(b) Comparison of the 40 plant genotypes (the two parents and the 38 progeny). Significant differences in enzymatic activities between
mycorrhizal and non-mycorrhizal root tips are also reported

n Mycorrhizal
root tips

Non-mycorrhizal
root tips

Mycorrhizal versus
non-mycorrhizal ratio

b-xylosidase 317 31.3261.76* 1.2360.07 25.5*

b-glucuronidase 317 41.4162.90* 0.8260.06 50.5*

N-acetylglucosaminidase 317 418.30617.26* 3.1460.16 133.2*

Cellobiohydrolase 317 85.0766.48* 0.8760.06 97.8*

b-glucosidase 317 306.78616.93* 4.6860.52 65.5*

Acid phosphatase 317 396.65626.42* 24.8161.35* 16*

Laccase 317 4.860.2 0 ND
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50- and 100-fold greater, and b-xylosidase and acid

phosphatase were between 15- and 50-fold greater. More-

over, laccase activity could not be detected on non-

mycorrhizal roots. By degrading organic compounds,

including those from their own mycelia, and channelling
nutrients directly to the host tree, ECMf have the capacity

to shorten mineralization pathways in which free-living

decomposers are involved. It is well known that ECMf are

able to secrete enzymes which allow the release of nutrients

from soil organic matter (Cullings and Courty, 2009;

Courty et al., 2010a). However, the aim of this study was

not to understand the role of ECMf in the release of

nutrients. The enzymes measured should be considered as
functional traits to study the effects of soil or host tree

parameters on ECMf. It is the first time that the breadth of

the modifications induced by the symbiotic association on

the potential enzymatic secretion by the root system has

been measured.

Expression of genes involved in enzymatic activities

Although the complete sequences of the P. trichocarpa and

L. bicolor genome are available, all of the genes putatively
encoding the proteins responsible for the measured activities

were not identified. The correspondence between enzymatic

assay and gene expression could be determined for three of

them: laccase (Lcc), N-acetylglucosaminidase (Nag), and

acid phosphatase (Pho).

Fig. 2. Values of the seven enzymatic activities successively measured on one root tip of the different poplar cuttings (40 clones, eight

replicates per clone) either colonized (a) or non-colonized (b) by L. bicolor. No laccase activity was detected on non-mycorrhizal root tips.

Genotypes are ranked by mean activity. Enzyme activities are expressed as pmol mm�2 min�1 (Courty et al., 2005). Bars represent the

SE (n¼8). Grey corresponds to Populus trichocarpa (male) and black to Populus deltoides (female).
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Two genes code for a secreted N-acetylglucosaminidase

(Nag1 and Nag2) involved in chitin catabolism in poplar

and also two in L. bicolor. In this work, poplar Nag1 and

Nag2 were expressed in both root tips and mycorrhizas but

were not regulated by the symbiosis. In contrast, the expression

of L. bicolor Nag1 and Nag2 was down-regulated in mycorrhi-

zas. Nevertheless, the activity of N-acetylglucosaminidase was

130-fold greater in the mycorrhizas compared with non-

mycorrhizal root tips. The following assumptions can be

made: (i) L. bicolor N-acetylglucosaminidases are secreted

outside the mycelium of the sheath in mycorrhizas, while

the poplar N-acetylglucosaminidases are not secreted out-

side the root tips; (ii) L. bicolor N-acetylglucosaminidases
can be involved in nitrogen mobilization from chitin by

degrading its own mycelia and in defence against soil

pathogenic fungi; and (iii) L. bicolor can have the same

ability as Trichoderma asperellum (Ramot et al., 2004) to

store a high amount of this enzyme in an active form and

secrete it when the mycelium senses the substrate.

In the L. bicolor genome, nine genes coding for laccases

were characterized (Courty et al., 2009). In this experiment,
six putatively secreted genes were expressed and three (Lcc1,

Lcc3, and Lcc4) were not significantly regulated by symbio-

sis. One (Lcc8) was significantly overexpressed in mycorrhi-

zas and two (Lcc6 and Lcc9) were underexpressed. In the

P. trichocarpa genome, 32 genes code for laccases, 27 display

a signal peptide meaning that they belong to secreted

pathways, and, in this work, 20 were expressed in root tips.

Despite the large number of laccase genes which were
expressed, no laccase activity was detected by the ABTS test

on non-mycorrhizal root tips. This means that poplar

laccases are not secreted in the rhizosphere. In Arabidopsis

thaliana, only a few of the laccase genes were expressed in

a pattern that could be considered consistent with a major

role for these enzymes in lignin deposition (McCaig et al.,

2005). Poplar laccases seems to be not cell wall bound, or

secreted outside the cells. They are probably involved in the
polymerization of lignin precursors or in other functions.

Acid phosphatases, able to free phosphate groups from

complex organic compounds, are widespread in living

organisms. Both ECMf and plants secrete acid phospha-

tases in the rhizosphere. In most of the studies, mycorrhizas

secrete more phosphatases than non-colonized roots (Colpaert

et al., 1997; Conn and Dighton, 2000). Nevertheless, there

are some exceptions (Cumming, 1996). ECMf exhibit high
phosphatase release in their environment, particularly under

mineral phosphorus deficiency (Dighton, 1983; Nygren and

Rosling, 2009). The L. bicolor genome comprises only one

gene coding for a putative secreted acid phosphatase, while

the P. trichocarpa genome contains five. The phosphatase

Pap1 from L. bicolor was not regulated by symbiosis. Pap5

and Pap7 from poplar were significantly highly expressed

Fig. 2. Continued
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under mycorrhizal conditions, whereas the three others

(Pap2, Pap3, and Pap6) were not significantly expressed.

Ezawa et al. (2005) have shown, on Tagetes petala in

symbiosis with Archaeospora leptoticha, that the level of

transcripts of the T. petala acid phosphatase (TpPAP1) was
increased 8-fold by A. leptoticha colonization. The present

results support the hypothesis of Ezawa et al. (2005) on the

fungal activation of the low-phosphate adaptation system of

the plant partner and seem to show that the same

mechanism of plant phosphatase activation exists in both

arbuscular mycorrhizas and ECMs.

Another hypothesis could be involved in the explanation

of the differences in enzyme secretion between non-
mycorrhizal and mycorrhizal roots. Inside the mycorrhizas,

the root tissues, being isolated from the external medium by

the fungal sheath, probably contribute poorly to enzyme

secretion. The ability to degrade cellulose, hemicelluloses,

and lignin is widespread among fungi and soil bacteria (i.e.

Streptomyces sp., Bacillus sp., and Cellulomonas sp.; Lynd

et al., 2002). However, it is assumed that most of the

cellulose degradation in soil is performed by fungi (de Boer
et al., 2005). Even if it has been shown that laccase genes

were present in bacteria (Kellner et al., 2008), bacterial

lignin degradation appears to be negligible in terrestrial

environments compared with fungal lignin degradation

(Peng et al., 2002). This is supported by the fact that no

laccase activity was found on non-mycorrhizal root tips.

Among bacteria, Collimonas sp. display chitinolytic activi-

ties (de Boer et al., 2004). However, these bacteria are
present under specific conditions, completely different from

greenhouse experiments with artificial substrate. Thus,

despite the fact that this experiment was performed in non-

axenic conditions, it can be assumed that the secreted

enzymes that were measured in mycorrhizas were mainly

due to fungal activity.

Table 2. Quantification by exon expression array of the transcript

levels of laccase (Lcc), N-acetylglucosaminidase (Nag), and acid

phosphatase (Pap) genes under different conditions

The length (bp) of the signal peptide (Signal-P) was predicted with
Signal P 3.0 (http://www.cbs.dtu.dk/services/SignalP/). The
prediction of the subcellular location of the proteins (Target-P)
was performed with TargetP 1.1 available on the webpage (http://
www.cbs.dtu.dk/services/TargetP/); M, mitochondrial;
S, secreted; –, unknown.
Three biological replicates were used for each treatment with
NimbleGen oligoarrays (v.2.0; NG2). A Cyber-T test was performed
on the mean for each transcript (*P <0.05).

(a) Poplar genes. The NimbleGen array analysis was carried out
using P. trichocarpa root tips with or without mycorrhizal infection
by L. bicolor. Transcript levels in non-mycorrhizal root tips were
used as the control values. NT, not transcribed; –, gene not on the
array or no reliable probe left.

Protein ID Signal-P Target-P Ratio

Lcc1 820390 24 S 1.0

Lcc2 557962 24 S –

Lcc3 797646 22 S NT

Lcc4 576931 23 S –

Lcc5 762473 25 S –

Lcc6 767563 28 S 4.3*

Lcc7 219290 29 S 1.4

Lcc8 759686 – 1.2

Lcc9 653089 24 S –

Lcc10 819177 26 S NT

Lcc11 797888 31 S NT

Lcc12 579478 32 S –

Lcc13 235935 32 S –

Lcc14 831900 34 S NT

Lcc15 235930 32 S –

Lcc16 768177 26 S 0.4*

Lcc17 548008 32 S –

Lcc18 783559 32 S NT

Lcc19 822366 32 S 0.4

Lcc20 560853 23 S NT

Lcc21 592533 23 S –

Lcc22 832603 31 S 0.3

Lcc23 738903 M –

Lcc24 574533 30 S –

Lcc25 777748 23 S 0.8

Lcc26 738893 M –

Lcc27 571858 33 S –

Lcc28 574985 28 S –

Lcc29 205176 M 1.6

Lcc30 569758 28 S –

Lcc31 420672 17 S 0.4*

Lcc32 774519 – 0.2

Nag1 772972 27 S 1.4

Nag2 202916 25 S 1.5

Pap1 821155 – 1.4

Pap2 831269 28 S 0.6

Pap3 818768 27 S 0.5

Pap4 816041 – 1.4

Pap5 272725 22 S 2.1*

Pap6 259486 23 S 1.9

Pap7 825753 32 S 1.8*

Table 2. Continued

(b) L. bicolor genes. The NimbleGen array analysis was carried out
using P. trichocarpa (Pt) and P. deltoides (Pd) with mycorrhizal
infection by L. bicolor. Transcript levels in the mycelium grown in
pure culture were used as the control values. NE, not expressed in
mycorrhizas (signal below the background); –, gene not on the array
or no reliable probe left.

Protein ID Signal-P Target-P Ratio Pt Ratio Pd

Lcc1 399743 17 S 0.1 0.2

Lcc2 399744 17 S – –

Lcc3 399745 17 S 4.4 2.0

Lcc4 399746 18 S 0.8 0.6

Lcc5 399747 19 M NE NE

Lcc6 399748 20 S 0.4 0.3*

Lcc7 399750 19 S – –

Lcc8 399749 22 S 2.0* 1.4

Lcc9 399751 16 S 0.3* 0.3*

Pap1 310810 21 S 0.6 0.9

Nag1 309753 0.6 0.6*

Nag2 182604 18 S 0.4* 0.4*
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Host genetic control of ECM enzyme secretion

The enzymatic activities expressed in mycorrhizal roots

differed significantly between the two parents, while it did

not differ in non-mycorrhizal roots. Significant differences

were found between poplar genotypes for all enzymatic

activities measured on ECMs except for laccase activity. In
contrast, no significant differences were found between

poplar genotypes for enzymatic activities of non-

mycorrhizal root tips, except for acid phosphatase activity.

Heritability values of enzymatic activities were similar for

ectomycorrhizal and non-mycorrhizal root tips, except for

b-glucuronidase in both types of roots and for laccase that

was not detected on non-mycorrhizal root tips. It is

remarkable to find a high heritability value among the
poplar genotypes for the enzymatic secretions of mycorrhi-

zal roots, which are mainly due to fungal activity.

Several previous studies have demonstrated significant

genetic variability within plants and/or fungal species for

symbiotic capability in mycorrhizal interactions. Rosado

et al. (1994) reported a high value of heritability for

colonization of Pinus ellilotii by the ECMf Pisolithus

tinctorius, and moderate heritability for the development of
P. tinctorius extramatrical mycelium. Eucalyptus grandis,

E. globulus, E. marginata, and Pinus muricata varied greatly

in their growth response to different Pisolithus and Rhizo-

pogon genotypes, respectively (Tonkin et al., 1989; Burgess

et al., 1994; Piculell et al., 2008). Tagu et al. (2005) have

already shown that the ability of poplar to form ECMs is

under its genetic control. Other studies with contrasting

results have found that the plant genotype can play
a dominant role in controlling the associated soil microbial

communities (Mari et al., 2003; Korkama et al., 2007).

Short-term experiment have either shown variations in

mycorrhizal colonization, in microbial and in mycorrhizal

communities (Gehring and Whitham, 2002; Gehring et al.,

2006; Barbour et al., 2009; Lojewski et al., 2009), or few

differences in arbuscular fungal and bacterial communities

(Bever et al., 1996; Madritch and Hunter, 2002). In the

present study, the degree of fungal enzymatic secretion is

modulated according to the poplar genotype. An explana-

tion could be that the host genotype controls the amount of

fungal tissue in the mantle and that enzyme activity is

determined by the amount of fungal tissue present on the

root. However, no significant differences were found in the

projected area of mycorrhized or non-mycorrhized root tips

between genotypes. Therefore, this means that the amount

of mycelium in the root tip is similar whatever the genotype.

These results suggest the potential for the poplar genome to

drive the microbial–plant interaction, to create environ-

ments to which ECMf can respond and that could be

explained by the ‘extended phenotype’ phenomenom

(Schweitzer et al., 2008; Whitham et al., 2008). As defined

by Whitham et al. (2003), the heritable genetic variation

within individual species (poplar in this study) has commu-

nity and ecosystem consequences. In addition, a high

positive heterosis was found for the capacity of poplar to

form mycorrhizas (h2 a¼ +4 %). Positive heterosis was

found for characters such as LMA, dry weight of roots, and

for five of the seven enzymatic activities of mycorrhizal

roots. Heterosis for poplar hybrids is a well-known

phenomenon (Li and Wu, 1997; Marron et al., 2006).

Heterosis is determined by non-mutually exclusive mecha-

nisms, including genome-wide dominance complementation,

locus-specific overdominance effects, and epistasis, although

Table 3. Correlation matrix (Pearson correlation r) between poplar traits, enzymatic activities, and percentage mycorrhizal colonization

Abbreviations: %, percentage mycorrhizal colonization; Chl, chlorophyll (g m�2); DW, dry weight (g); LMA, keaf maximum area (m2); M,
mycorrhizal root tips; NM, non-mycorrhizal root tips; Pho, acid phosphatase; Nag, N-acetylglucosaminidase; Gls, b-glucosidase; Cel,
cellobiohydrolase; Xyl, b-xylosidase; Lac, laccase; Glr, b-glucuronidase.Correlation is significant for P <0.01 (values in bold).

% Chl DW stem DW roots LMA M Xyl M Glr M Nag M Cel M Gls M Pho M Lac NM Xyl NM Glr NM Nag NM Cel NM Gls NM Pho

1 �0.09 0.20 0.20 0.06 0.22 0.14 0.13 0.07 0.13 0.04 0.05 0.05 0.13 0.02 �0.02 0.06 0.13

Chl 1 �0.12 �0.12 �0.01 –0.19 �0.01 �0.07 –0.18 –0.18 �0.05 0.01 �0.00 0.02 0.08 0.08 0.00 0.11

DW stem 1 0.42 –0.28 �0.05 �0.04 0.04 �0.07 �0.13 �0.02 �0.01 �0.01 0.09 0.12 0.00 �0.02 0.01

DW roots 1 –0.20 0.05 0.04 0.06 �0.01 0.02 �0.03 0.06 �0.07 0.00 �0.09 �0.09 �0.10 �0.02

LMA 1 0.14 0.09 0.14 0.06 0.10 0.12 0.13 �0.08 �0.13 �0.04 �0.07 �0.06 0.04

M Xyl 1 0.12 0.41 0.64 0.56 0.25 0.25 0.07 0.02 �0.03 0.11 �0.03 0.09

M Glr 1 0.27 0.18 0.15 0.30 0.15 0.01 0.07 �0.12 �0.13 �0.07 0.15

M Nag 1 0.35 0.33 0.47 0.31 �0.11 �0.08 �0.04 �0.01 –0.19 0.32

M Cel 1 0.69 0.22 0.16 0.06 �0.04 0.02 0.05 �0.06 0.05

M Gls 1 0.25 0.27 0.01 �0.05 �0.07 0.06 �0.05 0.09

M Pho 1 0.29 0.01 0.08 �0.01 0.02 0.01 0.36

M Lac 1 �0.12 �0.05 �0.14 �0.06 �0.10 0.21

NM Xyl 1 0.47 0.27 0.43 0.35 �0.03

NM Glr 1 0.25 0.39 0.29 0.04

NM Nag 1 0.24 0.31 �0.03

NM Cel 1 0.28 �0.03

NM Gls 1 0.07

NM Pho 1
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the relative contribution of each of these mechanisms is still

unclear (Lippman and Zamir, 2007). However, it is also the

first time that it is has been shown that plant heterosis could

be expressed through the physiological activity of the fungal

partner.

Conclusion

The genetic diversity in tree species can influence fluxes of

nutrients as well as interactions with soil microorganisms.

Assessing tree genotype3environment interactions is a major

challenge in functional ecology. In this study, the data

linked and quantified the general relationships between

poplar plant genetics, ECM fungal infection, and physio-
logical parameters. In the association L. bicolor/poplar,

variations in plant and fungal responses in these controlled

conditions illustrate the broad plasticity of the interaction.

In this study, the role of poplar genetics in determining both

poplar growth characteristics and fungal activities has been

highlighted.

Supplementary data

Supplementary data are available at JXB online.

Table S1. Heterosis calculated as the ratio between the

average of the hybrids and the best parent or between the
average of the hybrids and the average of the two parents.
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