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Abstract
The concept of the Logarithm of the Odds (LogOdds) is frequently used in areas such as artificial
neural networks, economics, and biology. Here, we utilize LogOdds for a shape representation that
demonstrates desirable properties for medical imaging. For example, the representation encodes
the shape of an anatomical structure as well as the variations within that structure. These variations
are embedded in a vector space that relates to a probabilistic model.

We apply our representation to a voxel based segmentation algorithm. We do so by embedding the
manifold of Signed Distance Maps (SDM) into the linear space of LogOdds. The LogOdds variant
is superior to the SDM model in an experiment segmenting 20 subjects into subcortical structures.

We also use LogOdds in the non-convex interpolation between space conditioned distributions.
We apply this model to a longitudinal schizophrenia study using quadratic splines. The resulting
time-continuous simulation of the schizophrenic aging process has a higher accuracy then a model
based on convex interpolation.

1 Introduction
Statistical shape representation in medical imaging applications is an important and
challenging problem. The challenge arises from a number of issues including the need for a
representation which lends itself to efficient statistical inference while simultaneously
capturing the intrinsic properties of shapes. Signed distance maps (SDMs) are a popular
shape representation that have recently been utilized in combination with principal
components analysis (PCA) for statistical shape modeling. Examples of such approaches
include [1,2,3,4,5] that, with some variation, essentially treat SDMs as elements of the
vector space ℝN (N being the number of voxels), perform PCA over a set of example SDMs
and then fit a statistical model to the resulting PCA coefficients. The resulting model is then
useful for inference in a variety of tasks including segmentation and longitudinal studies of
shape variation. The primary advantage of the approach is that it projects high-dimensional
SDMs into a lower dimensional representation which lends itself to concise statistical
modeling and inference. The utility of such approximate modeling has been demonstrated
successfully in varying degrees. One drawback of this approach as noted by [5], however, is
the implicit approximation of the manifold of SDMs as a linear vector space. Consequently,
samples or compositions of samples from the inferred statistical models are in general not
valid SDMs. This detail is usually dealt with by further approximation, necessitating an
additional computational step, that projects samples from the distribution over PCA
coefficients back onto the manifold of shapes. Additionally, like many shape models [6],
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SDMs do not capture space conditioned probabilities (SCP). SCPs are often used in voxel-
based segmentation (such as [7,8,9,10]) to describe the anatomical variations within a
population. Here we suggest an alternative representation, the log-odds maps (LogOdds),
that explicitly addresses the issues above.

LogOdds maps form a vector space and as such can be composed via linear methods while
simultaneously maintaining the intrinsic properties of shapes. This allows for
computationally efficient approaches to modeling and inference without the need for
projecting the representation back onto the manifold of shapes. There is a straightforward
mapping of the LogOdds representation to SCPs as each entry in the LogOdds
representation is the logarithm of the odds over an anatomical label versus the alternative.
The specific parameterization of LogOdds maps presented here provides a notion of
certainty about the boundary of the inferred shape. Thus, LogOdds not only describe the
shape of a single structure but also capture some aspects of variations within a structure
across populations and expert segmentations. SDMs can be used directly as LogOdds maps,
consequently no additional computational burden is incurred by their use. For example,
entries with zero correspond to the boundary of the structure under either interpretation. The
computational burden of mathematical operations over SCPs is reduced by performing them
in the vector space of LogOdds. Arsigny et al. [11] have made the same observation with
respect to using the logarithm on tensor data, although the logarithms of tensor data are not
comparable to LogOdds.

In Section 2, we review and establish some of the relevant properties of LogOdds maps. We
also provide a probabilistic interpretation for mathematical operations of the vector space. In
Section 3, we demonstrate the utility of LogOdds in two experiments. In the first
experiment, a Bayesian classifier [12] segments 20 sets of MR images into subcortical
structures. Each subject is automatically segmented using the deformable atlas based on both
SDMs and the LogOdds representation, and the results are compared. The second
experiment is based on a longitudinal schizophrenia study in which an atlas represents the
aging process of that population. The atlas is comprised of three SCPs representing different
time points in the development of the population. We generate a non-convex interpolation
between the three time points within the space of LogOdds with superior results to a convex
interpolation within the original space of SCPs.

2 LogOdds and Its Properties
In this section we review some properties of LogOdds representations. In so doing, we focus
on the use of the LogOdds for statistical inference over shapes. Specifically, we establish
mappings between various representations and the means by which one performs
probabilistic computations on LogOdds representations.

2.1 An Introduction to LogOdds
The LogOdds of a probability p ∈ ℙ ≜ {p|p ∈ [0,1], i.e. p is a probability} is the logarithm
of the odds between the probability p and its complement p̄ = 1− p:

In the classification problem of medical images, for example, p is the probability that a
voxel is assigned to a particular anatomical structure, while the complement p̄ is the
probability of assignment to any other structure. The function logit(p) is simply the
logarithm of their ratio. The LogOdds space is defined as ≜ {logit(p)|p ∈ ℙ}.
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Consequently, = ℝ and n defines a vector space through its equivalence to ℝn. The
inverse of the log odds function logit(·) is the standard logistic function

·) maps each element t ∈ to a unique probability p ∈ ℙ, thus, the function logit(·) and its
inverse comprise a homomorphism between ℙ and  Again, the equivalence of n to ℙn is
straightforward when ·) is applied element-wise to n.

SDMs are elements of n. The value of the SDM [ x at a voxel x is the distance from x to
the closest point on the boundary. Figure 1(b) shows an example of a SDM corresponding to
the binary map in Figure 1(a). It can be shown that any monotonic transformation 𝓥 (·) of 
is in n. An obvious choice is the identity transformation [𝓥 ( ]x ≜ [ x. In the LogOdds
space, [ x is a representation for the probability px ≜ [ x) ∈ ℙ that voxel x is assigned to
the foreground. The corresponding vector p ≜ (p1, …, pn) therefore comprises a SCP of the
foreground, where n is the number of voxels in the image. The relationship between SDMs
and SCPs define a meaningful probabilistic model. The foreground is represented by the
positive values of SDM corresponding to probabilities greater 0.5 in the SCP (see Figure 1
(c)). Conversely, negative values of the SDM define the background, which maps to
probabilities less than 0.5.

2.2 The Relationship Between LogOdds and SCPs
We now make use of the Euclidean space n to induce a vector space on ℙn. This results in a
probabilistic model for addition and scalar multiplication in the log odds space n. The
derivations are performed with respect to ℙ for simplicity. It is easily extend to n,ℙn by
performing the operations individually for each vector entry.

Addition in ℙ—Based on the relationship between ℙ and  the probabilistic addition ⊕ of
p1, p2 ∈ ℙ is equivalent to the logistic function of the addition of the logarithm of odds
logit(p1) and logit(p2):

(1)

As ℙ is closed under ⊕, (ℙ,⊕) forms an Abelian group with 0.5 as the neutral element and
(1− p) the additive inverse of the element p. The complement of p1 ⊕ p2 is the probabilistic
addition of the complements of p1 and p2, that is

Using suitably normalized likelihoods, the composition is equivalent to Bayes’ rule. Let the
prior of the random variable X be p1 ≜ P(X)= 1−P(X̄) and the corresponding normalized

likelihood be  , then
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Scalar Multiplication in ℙ—The probabilistic scalar multiplication ⊛ within the space
of ℙ is equivalent to scalar multiplication, *, in the vector space  Similar to ⊕, the
multiplication between the scalar α ∈ ℝ and probability p ∈ ℙ is the logistic function of the
product between α and the LogOdds logit(p)

(ℙ,⊕,⊛) defines a vector space, which is equivalent to ( +,*;). The complement of the
probabilistic scalar multiplication α ⊛ p is equivalent to the scalar multiplication of the
complement or negating α:

Figure 2(a) shows the influence of α on α ⊛ p. Changing α has the effect of increasing (α >
1) or decreasing (α < 1) the certainty of the boundary of a SCP. Probabilistic addition and
scalar multiplication are illustrated in Figure 2 (b) using a synthetic shape description
example. The figure depicts level sets of SCPl,SCPr ∈ ℙn that describe circles which differ
in their means, radii, and boundary certainty (as captured by αl, αr). Figure 2 (b) shows how
α effect the composition of the maps via the ⊕ operator. In the first row of Figure 2(b) αl =
20 (left circle) and αr = 30 (right circle). The distance between the level sets are seen to be
closer for the right circle. Additionally, the composition of SCPs using ⊕ results in a
combined SCP, which is biased towards the circle on the right. In the second row of Figure
2(b) the values of αl and αr are reversed resulting in a bias towards the circle on the left.
Despite having different radii, if αl = αr the level sets of the combined SCP are ellipses,
although the foci of the ellipse will depend on the relative radii.

In summary, we discussed basic properties of the vector space of log-odds n relating them
to the vector space of probabilities ℙn via the logistic function. This provided a probabilistic
interpretation of scalar multiplication and vector addition in n. We used LogOdds to
describe binary maps of shapes. We note that the representation can be extended to multiple
label maps.

3 Applications in Medical Imaging
We now apply LogOdds to two relevant applications in medical imaging. The first
experiment measures the robustness of a shape based segmentation algorithm. In the second
experiment, we build a temporal interpolation function from data of a longitudinal study.
Both examples are based on MR images acquired by a 1.5-T MRI system (GE Medical
System, three-dimensional Fourier transformation spoiled gradient-recalled acquisition,
matrix=256×256×124, voxel dimension=0.9375×0.9375×1.5mm).
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3.1 The Accuracy of a Segmenter with Respect to the Deformable Shape Atlas
We investigate the impact of our shape representation on the accuracy of a voxel-based
segmenter [12]. The algorithm is guided by a deformable shape atlas that represents shape
variation by PCA on SDMs. We analyze two implementations of the algorithm, which differ
in the interpretation of the maps generated by the PCA atlas.

The first implementation (IMPL-  views as level set functions in a higher dimensional
space. Each entry [ a,x of the SDM assigns the voxel x to the inside or outside of a structure
a using the Heaviside function (·). (v) is one if v ≥ 0 and zero otherwise. A natural

definition of the SCP is  , where Σa′ ([ a′,x)) is the sum over
all structures. In general, [SCP ]a corresponds to a SCP with a steep slope along the
structure’s boundary. Thus, the algorithm segments the structure according to [SCP ]a,
which only allows shapes within the PCA subspace.

The second implementation (IMPL-  interprets the maps as a vector of LogOdds n.
According to Section 2, the logistic function [ a,x) defines the probability that voxel x is
assigned to structure a. This approach is extended to multiple structures by defining the SCP

as . [SCP ]a is characterized by a gradual slope along the
boundary of the structure. This provides the algorithm with some flexibility in determining
the course of the contour – it allows the image evidence to nudge the resulting shape
somewhat away from the PCA subspace.

Both variations were used to segment 20 test cases into ventricles (light gray), the thalamus
(gray), and caudate (black) (see Figure 3). Afterward, we compare the automatic
segmentations of the thalamus and caudate to the manual segmentations via the Dice metric
[13]. We focus on these two structures as they are characterized by different types of shapes
(see Figure 3) and are partly invisible on MR images. Thus, the accuracy of the
implementations is highly impacted by the shape model.

The graph in Figure 3 shows the result of the experiment for IMPL- (thalamus: 85.3
±1.2%, caudate: 74.3 ±1.6%; mean DICE score ± standard error) and IMPL- (thalamus:
88.4 ±1.0%, caudate: 84.9 ±0.8%). For both structures, IMPL- achieves a much higher
average score than IMPL-  In addition, the segmentation results of IMPL- are
characterized by low standard error (in comparison to IMPL-  indicating high predictive
power of the segmentation results. The differing accuracy of the implementations is mostly
due to the different interpretations of the information in the shape atlas. The atlas
underrepresents the shape variations within a population due to the limited amount of
training data. The probabilistic model of IMPL- addresses this issue by providing
flexibility around the boundary, while IMPL- in constrained to the limited-dimension PCA
subspace.

This shortcoming of the atlas only slightly impacts the segmentation of the thalamus due its
low shape variations within the healthy population. The bending of the horn shaped caudate,
however, can vary substantially among subjects. This may explain the much lower score of
IMPL- in comparison to IMPL- in case of this structure. We note that the input for the
PCA was restricted to SDMs, a particular choice LogOdds function. The impact of different
LogOdds classes on the segmentations would be interesting but outside the scope of this
paper.
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3.2 Defining an Interpolation Function from Time-Related Data Samples
Neuroscientists carry out longitudinal studies to better understand the aging process of a
population. These studies are often defined by a set of subjects which have been scanned
repeatedly at specific time points. The variations of the population at a specific point in time
can be captured via SCPs. In this section, we explore the interpolation between the SCPs
within the space of LogOdds, which results in continuous time atlases.

This experiment is based on a longitudinal data set consisting of eight Schizophrenic
patients. Each patient was scanned three times with an average 14 month separation between
first and second scan, and 23 month separation between the second and third scan. We
generate the SCPs of each time point by first aligning the 24 MR images towards their
central tendency using the population registration method by Zöllei et al. [14]. Afterward,
we segment each aligned MR image into three brain tissue classes using Pohl et al. [15]. We
then compute the SCP of an anatomical structure and time point based on the eight
corresponding segmentations.

We can interpolate among atlases in either SCP or LogOdds space, however, with SCPs, to
remain valid, we are limited to using convex combinations (CC), while we may use the
broader class of linear combinations in the LogOdds vector space. In the following we will
compare two temporal interpolation methods that are suited to the analysis of a small
number of time points. One uses linear CCs of SCP, while the other uses a quadratic spline
interpolation (that is not a CC) of LogOdds. It maps the SCPs to LogOdds’ space via the
logistic function, applies the quadratic spline function and transfers the interpolated function
back into the space of SCPs.

The first row of Figure 4 shows sample slices of the quadratic spline interpolation of the
SCPs of gray matter. Bright indicates high and dark low probability of the gray matter. An
area of particular interest is the region around the thalamus (in the center of the image) as
the corresponding SCP changes substantially throughout the scans.

The second row of Figure 4 shows a magnified version of the SCP of the thalamus region
(a), and the corresponding CC (b)+(d) and quadratic spline interpolations (c)+(d). In the
graphs, the z-axis symbolizes the probability, the x-axis is the time axis, and the y-axis
represents the row of voxels highlighted by the black line in Figure 4 (a).

The graph of Figure 4 (b) is the CC of the SCPs from the three time points. The smoother
interpolation in Figure 4 (c) is generated from quadratic splines within the LogOdds space.
Unlike (b), this interpolation is differentiable over time.

In order to compare the accuracy of the interpolations, we repeat the experiment but now
compute both functions just on the basis of the first and third scan. Samples of the results are
shown the graphs of Figure 4(d)+(e). We then calculate the sum of squared errors of the two
interpolations by comparing them to the SCP of the second scan. The quadratic spline
interpolation achieves a 2% lower error for the gray matter and 5% lower error for the white
matter in comparison to the CC. The quadratic spline interpolation may achieve this higher
accuracy because it is smoother.

In this section, we applied our representation to the automatic segmentation of MR images
as well as the interpolation of longitudinal data sets. We note that LogOdds maps can be
used for a variety of other problems in medical imaging. For example, we have found the
representation very helpful for capturing the variations between expert segmentations,
though we do not discuss this topic here due to space limitations.
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4 Conclusion
We presented a new shape representation called LogOdds. The representation can encode a
single shape as well as its variations. A generalization of distance maps, this representation
defines a vector space with a probabilistic interpretation.

We evaluate LogOdds within a voxel based segmentation algorithm. 20 subjects are
automatically segmented into subcortical structures using the LogOdds and signed distance
map model. The algorithm performs best with our new shape representation as LogOdds
better capture the boundary constraints of anatomical structures.

In a second experiment, we use quadratic splines to interpolate SCPs from a longitudinal
schizophrenia study. The splines are computed within the LogOdds space to simplify the
calculations. We show that this models achieves a higher accuracy than the convex
combination of SCPs in the original space.
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Fig. 1.
The binary map of the circle in (a) corresponds to the SDM in (b). In  positive values
(bright) define the circle, while negative values (dark) represent the background. Panel (c)
shows the corresponding SCP. Voxels inside the circle have probabilities greater 0.5.
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Fig. 2.
(a) the effect of α on α ⊛ p. (b) Resulting SCP SCPres from combining 2 SCPs of circles
(SCPl and SCPr) with different centers, radii, and α values.
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Fig. 3.
Different views of a 3D model of the thalamus (gray), the caudate (black), and the ventricles
(light gray). The model is based on a segmentation generated by IMPL-  The graph to the
right summarizes the results of our experiment. For both structures IMPL- performs much
better then IMPL-

Pohl et al. Page 11

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2010 November 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 4.
The first row shows a sample slice of the quadratic spline interpolation of a longitudinal
schizophrenia study. Each image represents an SCP of the gray matter at a specific point in
time of the study. Bright indicates high and dark low probability of the gray matter. The
second row shows the SCP of the thalamus (a) with black indicating the voxels that are
interpolated over three time point in (b)+(c) and two time points in (d) +(e). Graph (b)+(d)
were produce by convex interpolation, while the smoother quadratic spline interpolation is
representation (c)+(e).
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