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Abstract
Though stents are deployed in diseased arteries drug distribution has only been quantified in
intact, non-diseased vessels. We correlated steady-state arterial drug distribution with tissue
ultrastructure and composition, in abdominal aortae from atherosclerotic human autopsy
specimens and rabbits with lesions induced by dietary manipulation and controlled injury.
Paclitaxel, everolimus, and sirolimus deposition in human aortae was maximal in the media and
scaled inversely with lipid content. Net tissue paclitaxel and everolimus levels were
indistinguishable in mildly injured rabbit arteries independent of diet. Yet, serial sectioning of
cryopreserved arterial segments demonstrated a differential transmural deposition pattern that was
amplified with disease and correlated with expression of their intracellular targets, tubulin and
FKBP-12. Tubulin distribution and paclitaxel binding increased with vascular injury and
macrophage infiltration, and were reduced with lipid content. Sirolimus analogues and their
specific binding target FKBP-12 were less sensitive to alterations of diet in mildly injured arteries,
presumably reflecting a faster transient response of FKBP-12 to injury. The data demonstrate that
disease-induced changes in the distribution of drug binding proteins and interstitial lipid alter the
distribution of these drugs, forcing one to consider how disease might affect the evaluation and
efficacy of local release of these and like compounds.
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INTRODUCTION
Local drug delivery from endovascular stents has transformed how we treat coronary artery
disease. Yet, few drugs are in fact effective when delivered from endovascular implants and
those that possess a narrow therapeutic window. The width of this window is predicated to a
great degree upon the extent of drug deposition and distribution through the arterial wall(1–
5). Drugs that are retained within the blood vessel are far more effective than those that are
not(5). Thus, for example, heparin regulates virtually every aspect of the vascular response
to injury(6), yet is so soluble and diffusible that it simply cannot stay in the artery for more
than minutes after release. Heparin therefore has no effect on intimal hyperplasia when
eluted from a stent(3,4). Paclitaxel and sirolimus in contradistinction are far smaller
compounds with perhaps more narrow and specific effects than heparin. Yet, these drugs
bind tenaciously to tissue protein elements and specific intracellular targets(7–9) and remain
beneath stent struts long after release(10,11). The clinical efficacy of paclitaxel and
sirolimus at reducing coronary artery restenosis rates following elution from stents appears
incontrovertible(12,13). However, emerging clinical and preclinical data suggest that the
benefit of the local release of these drugs is beset by significant complications, that rise with
lesion complexity(14–16), e.g. as the native composition and layered ultrastructure of the
native artery is more significantly disrupted. It has been suggested that the compositional
changes in the artery that accompany increased atherosclerosis affect local tissue capacity
for drug absorption and retention as well as the biologic response to injury and
pharmacologic response to the drug(14). In contrast to such lesion capacitance effects, local
thrombotic response to stent deployment can also affect arterial drug distribution by forming
a mural layer that impedes drug penetration into target lesions(17,18).

Thus, Virmani and others have hypothesized that the attraction of lipophilic drugs like
paclitaxel and sirolimus to fat should affect their retention within and effects upon
atheromatous lesions(14). None-the-less, this aspect of drug delivery has not been tested as
the bulk of preclinical studies to date have utilized intact, normal arteries and animals. We
now examine the spatial distribution and net compartmental deposition of paclitaxel and
sirolimus analogs in diseased arteries, human autopsy samples and controlled animal models
of disease and injury. Local deposition of these drugs correlated with local arterial
composition, falling with increasing local lipid and cholesterol contents and highlighting
that tissue deposition for locally delivered drugs is dominated by binding to intracellular and
matrix proteins(7–9), not simply by lipophilic partitioning effects. As tissue binding
capacities are independent of the mode of delivery, our results are of general relevance to
endovascular drug delivery, and of particular significance to delivery from coated
balloons(19,20). In the latter, large doses of drug are delivered by direct contact with the
artery over periods of seconds to minutes, with minimal dilution by flowing blood; sustained
tissue retention and efficacy then depend critically on drugtissue interactions(21,22).

METHODS
Model Drugs

Labeled analogs of three clinically relevant model drugs were employed, Paclitaxel (854
Da), Sirolimus (914 Da), and the Sirolimus analog, Everolimus (958 Da). H3-labeled
Paclitaxel was obtained from Vitrax (Placentia, CA), H3-labeled Everolimus was a gift from
the Guidant Corporation (Santa Monica, CA) and C14-labeled Sirolimus was a gift from
Cordis, a division of Johnson&Johnson. The cell permeable fluorescent Paclitaxel analog
(TubulinTracker™ Green, 1403 Da) was purchased from Molecular Probes (Eugene, OR).
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Arterial Samples
Tissues were obtained from three related arterial beds with variable degrees of
atherosclerosis, including abdominal aortae from human autopsy specimens, and rabbit
aortae subject to an extended period of high fat dietary intake.

Human—Sections of the abdominal aorta from four humans were obtained within 24 hours
of demise from the Pathology department of the Brigham and Women’s Hospital (Boston,
MA) under institutional guidelines that precluded access to patient specific data.
Histological characterization confirmed that vessels displayed a range of lesions, but all
contained modest to significant lipid deposits, but no thrombi, and scattered areas of
necrosis or calcifications. After cleaning, one artery sample was immunostained to examine
tissue preservation and ultrastructure, two artery samples were used for studying bulk
equilibrium drug uptake, one sample was separated into tunica layers and used to assess
compartmental drug loadings and cholesterol contents.

Rabbit—Atheromatous and atherosclerotic lesions were induced in the aortae and iliac
arteries of New Zealand White Rabbits through control of diet and catheter induced vascular
injury. Ten male rabbits, weighing 3.0–3.5kg, approximately 3 months old, were fed a
normal (n=5) or high cholesterol/high fat diet (n=5, 2% cholesterol and 6% peanut oil) for 4
weeks and injured at 2 weeks with 3F Fogarty balloon-tipped catheters (3F Fogarty Arterial
Embolectomy catheter, Edwards Lifesciences). Two different balloon-tipped catheters were
employed to provide two different degrees of injury - the first a 1cc, 40 mm and the second
0.5cc 20 mm. Each balloon was inflated to its full extent and withdrawn along the length of
the artery. Six rabbits, three from each diet group, were catheter injured at a low inflation
volume (0.5cc), sacrificed at 4 weeks and the injured artery harvested fresh without pressure
or perfusion. Arteries from these animals exhibited non-uniform lipid infiltration and were
atheromatous in nature. In the remaining animals (n=4) injury at two weeks was induced
with higher inflation volumes (1.0cc). In these animals normal diet was resumed at the end
of 4 weeks for approximately 4 additional months and tissues then harvested. Animals that
were maintained for 4 additional months after high fat diet and denuding injury developed
more sclerotic lesions. While arteries from the former animals were lipid infiltrated those
from the latter animals exhibited far greater degrees of sclerosis and changes in elastin,
collagen and calcium, as well as, lipid content. The calcified nature of these lesions
precluded their enface cryosectioning for transmural distribution, but allowed for serial
transverse sectioning with precise maintenance of tissue architecture and alignment. This
enabled in situ correlation of drug distribution and lesion content. The use of fluorescent
imaging restricted our analysis to paclitaxel for which well characterized commercial
fluorescent analogs are available.

Partition coefficient and drug distribution
Net and compartmental partition coefficients—We defined the equilibrium net
arterial and compartmental partition coefficients of radiolabeled paclitaxel, everolimus, and
sirolimus in aqueous buffered saline solutions of drug. Square (4mm×4mm) arterial
segments were weighed before being placed in drug bath solutions at room temperature for
0–96 h and then processed in triplicate for liquid scintillation counting. Normalization of the
scintillation counts to tissue mass yielded a drug concentration for each tissue sample (cT)
that was further normalized to the corresponding drug concentration in the bulk fluid (cbulk)
to determine the net arterial partition coefficient (K)

[1]
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For evaluation of the compartmental partition coefficient of human arteries, aortae were
separated into the three tunical compartments and the partition coefficient evaluated as for
the whole artery samples. Consistency in tissue density was ensured by employing only
lightly calcified arterial segments in drug partitioning studies. 2% PEG-200 were added to
all everolimus solutions to ensure its stability in the aqueous environment. Normalized
uptake transients were fit to mono-exponential kinetics, yielding estimates of the apparent
rate constant of drug uptake and the fraction of retained drug.

Transmural distribution of drug partitioning—Equilibrated transmural drug
distributions were measured through enface cryosectioning. Arterial segments were
incubated in the drug bath for 48 h, and then laid flat and snap-frozen in a plastic
encasement with Tissue-Tek OCT compound (Sakura Finetechnical, Tokyo). Segment
length and width were measured with digital calipers before freezing. Samples were stored
in a −80°C freezer until they were sectioned parallel to the intima(23–25) with a refrigerated
microtome (Cryotome SME, Shandon, Pittsburgh). Sections 0.020 mm thick were cut
parallel to the intima, and the drug content of each sample was determined by liquid
scintillation spectroscopy. The partition coefficient at each transmural location x was
calculated as the mass of drug normalized by the measured tissue area and slice thickness
(cT(x)) and by the equilibrium bulk fluid drug concentration cbulk,

[2]

Fluorescent drug distribution—Fluorescent drug distribution was determined in a
similar manner. After prescribed incubations with labeled drug, tubular arterial segments
were removed from binding media, washed with buffer, snap frozen and embedded in tissue
freezing medium (OCT) cryosectioned to yield 0.010 mm thick parallel cross-sections with a
cryostat (Shandon, Inc), and prepared for fluorescent microscopy or immunohistochemistry.
The former were fixed in ice-cold paraformaldehyde (4%) for 10 minutes, rinsed in PBS,
mounted and cover-slipped, and subsequently imaged on an epifluorescence microscope
(Leica DMRA2 equipped with a Hamamatsu C4742-95 digital camera).

Correlation of fluorescent drug distribution with arterial composition
Arterial ultrastructure—was examined in frozen sections (lipid, elastin) or paraffin
embedded sections (β-Tubulin and FKBP-12) adjacent to sections assayed for drug
distribution. Cholesterol content of 4mm×4mm square tissue segments of human aorta was
assayed in triplicate for each tunica layer using standard homogenation and cholesterol
extraction techniques(26) and cholesterol quantification by an enzymatic method(27). Lipid
distribution in rabbit aortae was defined with Oil-Red-O stain and elastin with verHoeff
stain.

Correlation of fluorescent drug distribution and histological stains—was
performed on serial sections using in house adaptations of imaging and computational
alignment technologies(28–30). Digitized images were extracted in RGB space (MATLAB,
Mathworks Inc.). The full dynamic range from absolute black (0,0,0) to absolute white
(255,255,255) was used and a scalar value of pixel luminosity L(i,j) was determined as a
weighted sum of the color values of each pixel, R(i,j), G(i,j) and B(i,j), using the Rec. 601
standard(31)

[3]
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Drug and compositional metrics were quantified and correlated at a compartmental level, in
each of the tunica layers, or at an intra-compartmental level. All images were processed to
eliminate backgrounds and artifacts, and pixel values between thresholds were extracted for
all zones of interest. Specific algorithms analyzed each of the histo/immuno-stained arterial
structures. Intra-compartmental analyses were performed by sub-dividing arterial cross-
sections into 2–64 equal sectors and evaluating the pixel-average luminosity for each sector.
Linear regression of drug versus compositional luminosities asymptotically approached
steady state after subdivision into 16 sectors, as the effects of tissue processing on
circumferential fluorescence were gradually filtered out. For compartmental correlation,
each layer of the arterial wall was carefully cropped and aligned for comparison. The net
changes in compartmental levels of drug and compositional elements were determined
sequentially using image analysis techniques. The mean luminosities of the drug and each of
the compositional elements were determined for each of the tunica layers from the
appropriate images of control arteries. Subsequently, the percentages of pixels with
luminosities above the mean in the respective control arteries were evaluated in control and
diseased arteries, and changes induced by high fat diet evaluated as the difference between
these two numbers.

Statistical analysis
Data are expressed as mean ± SE. Drug loading in control and disease groups was compared
using the unpaired Student’s t test. Differences were termed statistically significant at
p<0.05. Non-linear regression was performed using Graphpad Prism 3.02 software to fit
transient loading data to mono-exponential kinetics.

RESULTS
To examine lesion dependent morphological effects on the tissue binding capacities of
paclitaxel and sirolimus analogs independent of stent design, we delivered drug via
prolonged incubations in static drug binding media. This system controlled delivered dose
and removed the significant unpredictability in release that is imposed by variability in stent
position relative to the arterial wall, inflation techniques and stent geometry. As our steady
state tissue distribution results were obtained under constant source conditions, without
washout by flowing blood, they constitute upper bounds for arterial drug distribution
following transient modes of in vivo drug delivery wherein only a fraction of the eluted dose
is absorbed by the artery (32–34).

Human lesions
Immunostains of the human autopsy samples revealed a layered structure with smooth
muscle cells and elastin primarily localized in the media, in contrast to lipid which
distributed rather uniformly throughout the arterial wall (supplemental figure S1). The
equilibrium partitioning of lipophilic drugs within the human abdominal aortae were
estimated at the bulk and tunicae levels. The partition coefficient for paclitaxel in bulk
normal segments of the aorta was 18.4 ± 0.8 and for the sirolimus analog 6.8 ± 0.4. These
values fell 24.5% and 16.6% respectively (p<0.05, n=3) in aortic segments with high
cholesterol content. When these tissues were dissected along tunic planes the dependence of
drug uptake on tissue cholesterol content became even more apparent (Fig 1). The effect of
lipid was greatest for paclitaxel, reducing peak drug deposition almost 3-fold as lipid content
increased to its maximum (p<0.0001, R=0.81).

Atheromatous rabbit lesions
Rabbit models of controlled diets and vascular injury produced a more defined set of lesions
in which to examine systematically the impact of lesion morphology on drug distribution
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and net deposition. Arterial denudation injury with the low volume balloon catheters
induced a thin neointima in all animals, but only the cholesterol/oil-enriched diet group
(n=3) exhibited arterial lipid infiltrates. Net drug deposition into these arteries exhibited
monoexponential kinetics (Fig 2A, R2>0.65) with indistinguishable equilibrium partition
coefficients (19.4 ± 1.4) and time constants (2.12 ± 0.7 h). All arteries exhibited bell-curve
shaped drug profiles, but while disease altered the pattern of paclitaxel deposition (Fig 2B,
p=0.08), everolimus patterns were independent of ultrastructural state (Fig 2C, p=0.37).
Diseased arteries had a lower peak amount of paclitaxel, but maintained similar net drug
contents as drug penetrated deeper into the vessel. The identity of kinetics and the
similarities in distribution profiles speak to similar forces driving drug transport and
retention(7), whereas quantitative differences reflect differential binding site densities.

Atherosclerotic rabbit lesions
Control abdominal aortae from animals subject to injury by a inflation with the higher
capacity balloon catheters and 5 months of normal diet had scant lipid (Fig 3a), high levels
of β-tubulin in the neointima but low levels in the media and the adventitia (Fig 3b), and a
well defined internal elastic lamina but moderate elastin levels in the media and low levels
in the neointima and adventitia (Fig 3c). Drug deposition (bright green in Fig 3d) was
highest along the internal elastic lamina, high in the neointima, moderate in the media, and
low in the adventitia. Thus, paclitaxel seems to associate within elastin-and microtubule-rich
regions. Drug content fell 73±9% (Fig 3h) as the net lipid content rose 28±7% in diseased
arteries (Fig 3e). The significant reduction in drug deposition associated with the
intermittent fat-rich diet coincides with a marked increase in lipid within the neointima and
media (Figs 3e) and a concomitant reduction in β-tubulin (Fig 3f) and elastin (Fig 3g) in
these compartments. Thus, compartmental paclitaxel content seems to scale with tubulin and
elastin contents but inversely with lipid (Fig 4). The relative absence of elastin and minimal
presence of tubulin in these lesions allowed us to confirm and quantify the inverse linear
correlation between local lipid and drug contents (Fig 5), similar to our findings in autopsy
samples of human arteries (Fig 1).

DISCUSSION
There is much we do not yet know of drug-eluting stents and local vascular drug delivery.
Questions remain as to when and why these devices function or potentially generate
morbidity risk. There is not a clear understanding of how such devices function in acute
thrombosis, chronic metabolic derangements like diabetes mellitus or vascular beds other
than the coronary arteries. The literature suggests that efficacy of drug-eluting-stents is
impacted by lesion complexity and degree of atherosclerosis (14–16,35,36). Similarly,
emerging data infer that drug-eluting balloons can provide significant benefit to peripheral
arterial disease when introduced at the time of direct intervention on existing complex
lesions(37). The very efficacy of paclitaxel and sirolimus following local delivery is usually
attributed to their lipophilicity(10) and sustained retention in the vessel wall compared to
more hydrophilic compounds like heparin(21). It is hypothesized that deposition of
lipophilic drugs will increase with arterial wall lipid content(14) and that drug effect should
track with lesion composition and morphology. Yet, the bulk of preclinical studies to date
have utilized intact arteries and normal animals and many of the postulates regarding tissue
deposition have not been formally tested. The current study correlated drug distribution with
local arterial composition in human autopsy samples and controlled animal models of
arterial disease and injury and defied this hypothesis.

The distribution of three clinically relevant hydrophobic drugs in human autopsy samples
revealed changes in drug distribution with lesion state, but in a manner that cannot be
explained solely by drug lipophilicity or directly with arterial wall lipid content.
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Remarkably, although all three drugs are hydrophobic, their compartmental deposition in the
chronic atheromatous domains of the human aorta scaled inversely with compartmental
cholesterol content (Fig 1; p<0.0001, R=0.81). Fresh calf carotid arteries had lower levels of
cholesterol than the media of the human aorta samples, and correspondingly higher drug
partition coefficients (supplemental figure S3).

More intricate effects were observed in controlled rabbit models that examined the
compounded effects of diet and denudation on drug distribution following sustained drug
incubation. The equilibrium deposition of paclitaxel and sirolimus-like drugs are
differentially affected by lesion complexity. Whereas everolimus distribution in arteries that
were injured at low catheter inflation volumes (0.5cc) was insensitive to differences in diet,
paclitaxel distribution was significantly altered in animals that received a cholesterol rich
diet (Fig 2), particularly in the subinitmal region. High levels of paclitaxel in the subintimal
space of mildly injured arteries correlate with a diet-induced upregulation of tubulin in that
area (supplemental Fig S4). Conversely, the apparent insensitivity of FKBP-12 distribution
in mildly injured arteries to differences in diet (supplemental Fig S4) correlated with
insignificant alterations in the distribution of sirolimus (Fig 2C). Catheter injury ar the
higher inflation volume (1.0cc) allowed us to examine the correlation of paclitaxel
distribution with lesion morphology and composition in the setting of greater vascular injury
and ultimate tissue response. Acute disruption following local tissue damage removes
natural transport barriers that hinder the accumulation of interstitial lipid, and induces an
inflammatory stimulus that allows for marked increase in local accumulation of
macrophages and dendritic cells(38–41). Levels of tubulin rise in injured arteries where
hypercholesterolemia increases macrophage infiltration(42,43) and as suspected paclitaxel
deposition increases in these local areas as well. Yet, there is also a reverse effect if
interstitial lipid pools are dominant in place of macrophage infiltration. Lipid pools displace
tubulin expressing cells in the intima and media, thereby removing a binding domain for
paclitaxel (Figs 3 and 4), reducing its arterial deposition in a manner that scales inversely
with lipid content (Fig 5). Notably, although tubulin expression was upregulated in the
group of acutely injured arteries, diet abolished this effect (Fig 3), speaking to the reported
differences in tubulin distribution.

Thus, it is only when binding to drug-specific tissue sites are added to transport
considerations(44) that one can account for the differential deposition and distribution of
drugs of near identical molecular weight, similar lipophilicity and solubility across similar
arterial tissue. The differences in the dependence of drug deposition on tissue state may well
represent the different balance each drug achieves between increased absorption of drug
within macrophages and decreased binding in settings of lipid infiltration and cell
displacement(42). Paclitaxel, by virtue of its effects on tubulin, effectively fixes
macrophages in place(10,45) eliciting a mechanism for a cascade of injury, altered tissue
state and affected local drug retention and perhaps effect. In contrast, sirolimus analogs were
virtually unaffected by vascular manipulations (Fig 2), consistent with uniform, though low,
expression of FKBP-12 in a range of arteries and transient upregulation of FKBP-12 that
peaks early after and returns to baseline levels late after arterial injury(41,46). Intriguingly,
macrophage infiltration does not chronically upregulate FKBP-12, suggesting a mechanism
for differential effects of lesion complexity on the distribution and efficacy of paclitaxel and
sirolimus analogs(14,47). While drug binding to specific intracellular targets is important,
our finding of paclitaxel colocalization with elastin (Fig 3c,g), suggests that elastin displays
a high binding capacity for paclitaxel, speaking to the importance of the extracellular matrix
as a determinant of the distribution and retention of small hydrophobic drugs. In vitro
imaging studies with tissue mimics also illustrated colocalization of fluorescent paclitaxel
with elastin, and implicated the latter as a prime drug-binding substrate that impedes
paclitaxel diffusion, rather than through steric hindrance(48).
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LIMITATIONS
The idea that drug deposition after balloon inflation and stent implantation within diseased,
atheromatous and sclerotic vessels tracks so precisely with specific tissue elements is an
important consideration of drug-eluting technologies and may well require that we consider
diseased rather than naïve tissues in preclinical evaluations. We must acknowledge that
excised and autopsy specimens might undergo structural changes that we could not see after
histological characterization, and that there are ultrastructural differences and different
pathophysiologic consequences of disease in abdominal aorta and coronary arteries and
between human and leporine tissues. Our use of abdominal aorta from human autopsy
samples and rabbits subject to controlled diet and injury, rather than coronary arteries,
ensured greater tissue preservation and allowed for comparison of like tissues in best
preserved state. The immersion of tissues required for observing the differences we cite are
not identical with drug elution from endovascular balloons, stents or perivascular wraps that
specifically target a single aspect of the artery; immersion of tissue segments in binding
medium allows for drug absorption not only from the intima and adventitia but also by
lateral diffusion along the tunica layers. Nevertheless, the equilibrium effects that we report
are essentially independent of such transport issues and are primarily a reflection of the
tissue’s equilibrium binding capacity for the drug.

CONCLUSIONS
The idea that the artery as a target tissue determines and regulates uptake of locally
delivered drug is biologically appealing and consistent with concern raised as to the validity
of evaluation of devices and drug-elution in preclinical animal models that employ normal
blood vessels(14). Though animal models cannot predict human efficacy they can be used to
test mechanism of action(49,50). When uninjured animal vessels are examined the
extrapolation of mechanism to the clinical condition may be limited. The change in drug
uptake and retention with tissue architecture and disease can begin to explain seemingly
disparate findings from different clinical trials(15,16,35,36). It is only when drug binding to
specific tissue sites is added to transport considerations(44) that one can account for the
differential deposition and distribution of drugs of near identical molecular weight, similar
lipophilicity and solubility across similar arterial tissue. Binding in turn requires an
understanding of the kinetics of tissue response to injury. Indeed, the specific targets of the
leading drugs eluted from stents, paclitaxel and sirolimus analogs, may express more
abundantly in recruited inflammatory cells than in the native artery itself. Thus, the reaction
of an artery first to the initial injury, then to the vascular repair and finally to the very effect
of eluted drug will in turn influence drug absorption and distribution. It is in this way that
different drugs can be absorbed by the same artery differently even at identical degrees of
injury, cell infiltration and lipid insudation.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
The partition coefficients (n=3) of everolimus (10 µM, blue), paclitaxel (10 nM, red) and
sirolimus (10 µM, green) decrease with increasing cholesterol content (defined as the sum of
free and esterified cholesterol, n=3). These data were obtained from a single 3mm thick
human aorta sample that was separated into its three tunica layers. Each layer was then cut
into 12 square segments (4mm×4mm); 3 for cholesterol quantification and 9 for drug
quantification.
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Figure 2.
Drug absorption and transmural distribution in atheromatous rabbit aortae. (A) The kinetics
of net arterial partitioning for control (injured + normal diet, n=3) and atheromatous (injured
+ cholesterol/oil diet, n=3) samples are independent of tissue state and statistically
indistinguishable for paclitaxel (blue), everolimus (red) and sirolimus (green). A second
subset of equilibrium incubated arteries was cryosectioned and the partition coefficient
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evaluated in 0.020 mm sections (n=3), from the luminal to the adventitial side. Disease state
altered the distribution profile of paclitaxel (B) but not of everolimus (C).
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Figure 3.
Arterial ultrastructure determines drug distribution. Control or atherosclerotic arteries were
incubated for 24h in fluorescent drug, serial sectioned and either analyzed for compositional
distribution or imaged en face using a fluorescent microscope to determine drug distribution.
(a,e) oil-red-O stain for lipid. (b,f) tubulin immunostain in brown; (c,g) VerHoeff stain
shows elastin as black wavy lines; (d,h) fluorescent paclitaxel deposition (green). Diet and
injury decreased total elastin and tubulin levels by 40±5% and 37±5%, respectively.
Concomitantly, total fluorescent paclitaxel deposition dropped 73±9% and total lipid levels
increased by 28±7%.
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Figure 4.
Local paclitaxel deposition scales inversely with lipid content in control (injury+normal diet,
n=2) and diseased arteries (injury + cholesterol/oil diet+normal diet, n=2). Fluorescent
paclitaxel (green) and lipid (inset, red) distribution in control artery (a) and in lesions of
varying complexity (b)–(d). All samples imaged at the same intensity level and processed to
eliminate backgrounds and artifacts with minimal residual autofluorescence exhibited by
control arteries that were incubated in PBS (supplemental figure S2).
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Figure 5.
(Top) Images of neointima with fluorescent paclitaxel deposition in green (left) and Oil-
Red-O stain for lipid in red (right) were processed to eliminate backgrounds and artifacts.
Pixel luminosities relative to threshold values were extracted for all zones of interest, and
their percentage taken as a measure of drug and lipid contents. (Bottom) Analysis of
multiple sectors converged to an inverse linear correlation (R2=0.842) between drug content
and lipid content per section, the more lipid in the section the less drug. Circumferential
irregularities in tissue fluorescence (top) arise from unavoidable variations in tissue
processing and account for the spread in fluorescent intensity that arises from tissue regions
that express at high levels of lipid.
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