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In the mid-1990s, yellow perch (Perca flavescens) and
common loons (Gavia immer) from Kejimkujik National Park
and National Historic Site (KNPNHS), Nova Scotia, Canada, had
among the highest mercury (Hg) concentrations across
North America. In 2006 and 2007, we re-examined 16 lakes to
determine whether there have been changes in Hg in the
loon’s preferred prey, yellow perch. Total Hg concentrations
were measured in up to nine perch in each of three size classes
(5-10 cm, 10-15 cm, and 15-20 cm) consumed by loons.
Between 1996/97 and 2006/07, polynomial regressions indicated
that Hg in yellow perch increased an average of 29% in ten
lakes,decreasedanaverageof21%inthree,andwereunchanged
in the remaining three lakes. In 2006/07, perch in 75% of the
study lakes had Hg concentrations (standardized to 12-cm fish
length) equal to or above the concentration (0.21 µg ·g-1

ww) associated with a 50% reduction in maximum productivity
of loons, compared with only 56% of these lakes in 1996/97.
Mercury contamination currently poses a greater threat to loon
healththanadecadeago,andfurtherreductionsinanthropogenic
emissions should be considered to reduce its impacts on
ecosystem health.

Introduction
Mercury (Hg) contamination is an issue of global concern
because numerous human activities release Hg into the
environment and increase its concentrations in many abiotic
and biotic compartments (1). These increases are largely the
result of Hg emissions from mining, cement production, and
the combustion of coal for power generation (2). This Hg can
be deposited near the source or transported around the globe
to contaminate remote environments. Once deposited onto
aquatic systems, bacteria rapidly transform inorganic Hg into
methylmercury (MeHg), the form that biomagnifies up food
webs to potentially toxic levels in top predators (1, 3).

Mercury concentrations in fish vary because of among-
system differences in their biology and in the chemical and
physical characteristics of their habitats, some of which are
affected by human activities (1). Burning of fossil fuels has
acidified freshwaters (4) and increased concentrations of Hg
in lakes and rivers, both of which are linked to higher Hg in
fishes (3, 5). Sulfate is a key substrate in the methylation of
Hg by bacteria (6), and recent reductions in its release and
deposition, combined with some controls on local Hg
emissions from incinerators, contributed to lower Hg in fishes
(up to 5.1% y-1; see for example ref 7).

Although concentrations of Hg in the atmosphere and
precipitation recently decreased near some urban or indus-
trial centers (8), global anthropogenic Hg emissions are
projected to increase if there are no further restrictions on
its use and release (2). The objective of this study was to
examine whether total Hg (THg) concentrations in fish
decreased in a region of Atlantic Canada known to be a
biological Hg hotspot, Kejimkujik National Park and National
Historic Site (KNPNHS) (9). Studies in the mid-1990s showed
that the common loons (Gavia immer) in KNPNHS had two
to six times more Hg in their blood than loons in other parts
of North America (10, 11). Yellow perch (Perca flavescens)
are the preferred prey of loons (12), and a majority of the
KNPNHS lakes examined in 1996 and 1997 contained perch
with mean THg concentrations exceeding the 0.21 µg ·g-1

(wet weight, ww) threshold associated with a 50% reduction
in loon maximum productivity (13, 14). Although concentra-
tions of Hg in precipitation declined by 2.0% yr-1 at KNPNHS,
total wet deposition of Hg has not changed appreciably and
concentrations of total gaseous mercury (TGM) at this site
are increasing [∼0.3% yr-1 (8, 15)]. In 2006 and 2007, we
revisited these acidic lakes to determine whether THg
concentrations in yellow perch changed over the past decade
and to relate any changes to physical or chemical charac-
teristics of the lakes or biological characteristics of the fish.

Methods
Study Site. KNPNHS is in southwestern Nova Scotia, Canada
(Supporting Information, Figure S1) and is not impacted by
local industrial developments or other point sources of
pollutants (16). The park is downwind of major North
American urban and industrial centers, and Hg and acidifying
substances originating from these areas are transported to
and deposited in the region (8, 13). The lakes are all
oligotrophic, polymictic, and acidic (pH < 6) but vary in size
(from 24 to 2632 ha), total organic carbon (TOC) content (2.6
to 15.4 mg ·L-1), and abundance of wetlands (0-35% of
drainage basin; Tables S1 and S2, Supporting Information).

Sample Collection. As much as possible, sampling in
2006/07 was done in a manner similar to that of the 1996/97
study (13). Fishing occurred in August and September 2006/
07 (compared to July and August 1996/97). In both studies,
minnow traps, trap nets, and angling were used to catch fish;
fyke nets were also used in 2006/07. In each lake, the aim of
both studies was to capture nine yellow perch from each size
class consumed by common loons: 5-10 cm, 10-15 cm, and
15-20 cm (12). Fork length ((0.1 cm), weight ((0.01 g), and
scales (for aging) were obtained from each fish; all fish were
kept cool on ice and then frozen within 24 h of capture. Fish
body condition was calculated as 100 × [weight (g)/length
(cm)3]. Tissues were collected and processed for Hg and stable
nitrogen isotopes (δ15Ν, used to approximate trophic position)
as described in the Supporting Information and in Wyn et
al. (17). δ15Ν was measured in each fish collected in 2006/07
and in a maximum of four composites per lake for those
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collected in 1996/97. Trichoptera (Limnephilidae) or aquatic
Lepidoptera were collected in 2006/07 to determine whether
baseline δ15Ν varied across lakes. Quality assurance infor-
mation is provided in the Supporting Information.

Surface water samples (n ) 1/lake/date) have been
collected by helicopter in spring (May/June) and fall (Sep-
tember/October) from a number of lakes in KNPNHS since
1983 as part of an Environment Canada long-term monitoring
program (4). Each sample was analyzed for pH, conductivity,
total nitrogen (TN), total organic carbon (TOC), sulfate, and
a suite of metals that periodically included THg (methods
described in Vaidya et al. (18)). Data presented are means
from 1995-1997 and 2005-2007 (n)6; 3 years of semiannual
sampling); exceptions are detailed in Table S2.

Mercury Analyses. Freeze-dried whole body homogenates
of individual perch collected in 2006/07 were analyzed for
THg using a Milestone DMA-80 at the University of New
Brunswick (UNB). Data were converted to wet weight using
individual moisture contents. Mean recoveries of certified
reference materials were 94.6 ( 2.0% [DORM-2 (dogfish
muscle), National Research Council (NRC), Ottawa, ON;
90.3-101.2%, n ) 60] in 2006 and 101.9 ( 8.0% [DORM-2
and TORT-2 (lobster hepatopancreas), NRC; 83.8-121.7%,
n ) 51] in 2007. Precision of replicate samples was 5.9 (
4.1% (n ) 84 triplicates) in 2006 and 1.1 ( 7.8% (n ) 38
duplicates) in 2007. Blanks had a mean concentration of 0.01
( 0.01 µg ·g-1 dw (n) 132); sample results were not corrected
for blank values. Additional quality control procedures and
results are described in the Supporting Information. Yellow
perch collected in 1996/97 were pooled within lake according
to size, and then wet, whole body homogenates were analyzed
for THg using the methods and quality control procedures
detailed in the Supporting Information.

Data Analyses. All data were inspected for normality and
homogeneity of variances using the Kolmogorov-Smirnov
Lilliefors test and F-ratio, respectively. When necessary, data
were log10 (THg, length, weight, conductivity, TOC, TN, SO4,
Cl, Fe) or square-root (Al, Ca, Na, Mn) transformed to
approximate normality. Residuals were examined for all
analyses, and outliers of individual fish within lakes and dates
or lakes within dates were identified as those with Studentized
residuals exceeding an absolute value of 3 (19). All analyses
were performed using SYSTAT 10 for Windows (SYSTAT
Software Inc., Chicago, IL) with R ) 0.05. Fish collected in
1996/97 were pooled prior to THg analysis; therefore, 2006/
07 data were mathematically pooled in the same way (means
of two to three fish of similar length within each size class
in each lake) before the temporal comparison.

Between-year, within lake differences in mean log-lengths,
log-weights, and ages of yellow perch were evaluated using
two-sample t-tests while temporal changes in δ15N were
assessed qualitatively due to low sample sizes and the lack
of baseline δ15Ν for 1996/97. Differences in body condition
and growth rates of perch were evaluated using analysis of
covariance (ANCOVA) with log-length as the dependent
variable and log-weight or age as the covariate, respectively.
Temporal changes in THg concentrations were analyzed
using polynomial regressions within each lake (20). The model
was log-THg)LC+LC2 + year+ year*LC+ year*LC2 (where
LC ) fish length centered); backward stepwise regression
was used to identify terms significantly related to log-THg
in each lake (see Supporting Information).

Temporal trends in water chemistry (for the periods
1995-1997 and 2005-2007) were evaluated using two sample
t-tests. For each variable that changed through time, %
changes were regressed against the physical characteristics
of the lakes (Table S1) to evaluate whether any characteristics
explained these differences.

Mean length of yellow perch across all lakes was 12 cm
in both 1996/97 and 2006/07, and THg concentrations were

standardized to this length to facilitate comparisons. Stan-
dardized THg concentrations were calculated by applying
the centered log-length for each lake (i.e, log-12 cm - mean
log-lengthlake,year) to the lake-specific polynomial regression
equations (21). Size-standardized log-THg in yellow perch
were compared to water chemistry parameters [Table S2,
plus Cl, Fe, K, Mg, and Mn (data not shown)] by simple
regressions (general linear model, GLM) across all lakes
sampled in 1996/97 or in 2006/07 (using pooled data). Both
absolute and % change [calculated as (2006/07)/(1996/97) ×
100] of perch THg were regressed against physical charac-
teristics of the lakes or against % change of biological or
chemical variables that showed significant differences through
time (simple GLM). Multiple stepwise regression (retaining
variables with F statistic >4 and eliminating collinearity) was
also performed across lakes to find the set of variables that
best described % change of THg in perch.

Results
Significant increases in THg concentrations of yellow perch
were recorded for many lakes in KNPNHS over the past
decade (Table 1). Between 1996/97 and 2006/07, mean THg
concentrations increased between 10.5 and 58.3% (polyno-
mial regressions, p < 0.004) in yellow perch from ten lakes
(two were reduced to nonsignificance when one outlier was
removed from each lake). For the remaining six lakes, THg
in perch decreased (11.1 - 36.8%, p < 0.001) in three or did
not change (see Table S3 and Figure S2, Supporting Infor-
mation, for polynomial regressions). Increases in THg
occurred predominantly in the 5-10 and 10-15 cm-sized
fish, with few increases recorded for the 15-20 cm perch
(Figure 1; raw data shown in Figure S3, Supporting Informa-
tion).

Mean log-length and log-weight did not differ significantly
(p > 0.37) within each lake from 1996/97 (overall means of
11.9 ( 3.6 cm and 25.79 ( 22.00 g, respectively) to 2006/07
(12.2 ( 3.4 cm and 26.50 ( 21.56 g), but there were some
differences in fish age, condition, growth, and δ15N (Table
1; Tables S4 and S5, Supporting Information). Compared to
fish captured in 1996/97, yellow perch from 2006/07 were
significantly younger in two lakes (two-sample t-test, p <
0.03) and had lower condition in eight lakes (intercept of
ANCOVA, p < 0.07; Table 1, plus Kejimkujik, Pebbleloggitch,
and Peskowesk lakes). Growth rates of yellow perch increased
between these two periods in three lakes (ANCOVA interac-
tion, p < 0.04) but decreased in another two lakes
(p < 0.01; Table S4). A qualitative analysis of δ15N also
suggested that perch in seven lakes were at a higher trophic
position in 2006/07 than in 1996/97 (assuming no change in
basal δ15N; Table S5). Overall, of the ten lakes with increases
in perch THg, six had decreases in condition, three had
decreases in age, three had increases in growth, and five had
increases in δ15N.

Changes in water chemistry were observed for many lakes
in KNPNHS between 1995-97 and 2005-07. TN concentra-
tions in the surface water increased in all 16 lakes by 5 to 15
mg ·L-1 (p < 0.07; Table S2). Aqueous sulfate concentrations
decreased by 0.1 to 0.3 mg ·L-1 in most lakes, with significant
reductions in six lakes (p < 0.04; Table S2). Significant
increases in pH (by 0.1 to 0.2 units) were measured in three
lakes (p < 0.05; Table S2). Alkalinity, conductivity, TOC, Al,
Ca, Fe, Mg, K, Na, and Cl were statistically similar (p > 0.19)
in 1995-1997 and 2005-2007 for the 16 lakes (insufficient
data available to test THg), although small increases in TOC,
THg, alkalinity, and conductivity were noted for many lakes
between the two periods (Table S2).

The changes in THg in perch were explained by very few
factors. For all lakes, the absolute and % change of the length-
standardized THg in perch were not related to any physical
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characteristic or to any biological or chemical variable that
differed significantly over time (i.e., % change in age,
condition, aqueous pH, TN, sulfate; GLM, p > 0.12). After
Upper Silver Lake was removed as an outlier, the % increase
in THg in yellow perch was greatest in lakes with higher pH
(using absolute values for 2005-2007; p ) 0.01, r2 ) 0.39;
Figure 2a) or lower aqueous THg (p ) 0.01, r2 ) 0.40), TOC
(p ) 0.01, r2 ) 0.39; Figure 2b), conductivity (p ) 0.02, r2 )
0.37), or Al (p)0.005, r2)0.45). It must be noted that aqueous
THg, TOC, conductivity, and Al were all positively correlated
(r > 0.79), while also being negatively correlated to pH (r <
-0.78). The best stepwise model was: % change THg )
9637-1.11 (2005-2007 conductivity) - 147.3(latitude) (p )
0.08, r2 ) 0.34). Small fish (<10 cm) from the five lakes with
the largest % change in THg also showed a significant decline
in condition (p ) 0.026) that was not present in the other
lakes or in the larger fish (>15 cm, p ) 0.55; Kruskal-Wallis).

Discussion

Between 1996/97 and 2006/07, THg concentrations in yellow
perch in KNPNHS, a biological Hg hotspot in northeastern
North America (9), increased an average of 29% in ten lakes,
decreased an average of 21% in three lakes, and remained
unchanged in the other three lakes. These results were
unexpected considering that Hg emissions from North
America declined between 1995 and 2000 (22, 23), sulfate
deposition and Hg concentrations in precipitation decreased
in the region (4, 8), and total wet Hg deposition to KNPNHS
did not change over the same time period (15). The change
in THg in yellow perch was highest in lakes where fish
condition or age decreased, or growth or δ15N increased.
Percent change of THg in perch over the decade was also
highest in lakes with higher pH or lower aqueous THg, TOC,

TABLE 1. Mean (± SD) Body Condition, Age, and Total Mercury Concentrations (THg, raw and standardized) of Yellow Perch
Caught in 1996/97 (13) and 2006/07c from 16 Lakes in Kejimkujika,b

lake year n condition (g ·cm-3) age (y) THg (µg ·g-1 ww) 12-cm THg (µg ·g-1 ww)

Back 1996 9 1.11 ( 0.08a 5.0 ( 2.1 0.13 ( 0.06a 0.12
2006 10 1.04 ( 0.08** 3.6 ( 1.1 0.21 ( 0.04 0.19***

Beaverskin 1996 10 1.10 ( 0.05a 3.7 ( 1.3 0.19 ( 0.08abc 0.20
2006 8 1.11 ( 0.06 4.2 ( 1.9 0.29 ( 0.02 0.28**

Big Dam East 1996 8 1.17 ( 0.08a 4.6 ( 1.9 0.18 ( 0.08abc 0.18
2006 8 1.06 ( 0.04*** 3.9 ( 0.9 0.20 ( 0.06 0.25*

Big Dam West 1996 7 1.31 ( 0.07b 5.4 ( 2.4 0.21 ( 0.10 abc 0.27
2006 8 1.25 ( 0.06* 4.8 ( 2.1 0.21 ( 0.06 0.24*

Big Red 1996 6 1.20 ( 0.13a 6.8 ( 2.1 0.53 ( 0.14abc 0.41
2006 7 1.19 ( 0.07 5.8 ( 1.2 0.47 ( 0.12 0.41

Cobrielle 1996 6 1.16 ( 0.07a 5.2 ( 1.2 0.26 ( 0.07abc 0.20
2006 6 1.10 ( 0.07 4.7 ( 0.8 0.33 ( 0.07 0.25*

Frozen Ocean 1996 9 1.30 ( 0.12b 5.8 ( 2.3 0.26 ( 0.16abc 0.24
2006 9 1.20 ( 0.08** 4.8 ( 2.4 0.26 ( 0.11 0.22

Kejimkujik 1996 23 1.16 ( 0.09a 5.2 ( 2.3 0.28 ( 0.10bc 0.30
2006 26 1.21 ( 0.14 5.3 ( 2.3 0.32 ( 0.14 0.29

Loon 1996 9 1.20 ( 0.05a 6.1 ( 2.0 0.26 ( 0.11abc 0.22
2006 9 1.16 ( 0.09 3.7 ( 1.8* 0.26 ( 0.11 0.30*

Mountain 1996 8 1.17 ( 0.07a 5.1 ( 2.5 0.22 ( 0.12abc 0.19
2006 9 1.09 ( 0.07* 2.7 ( 1.7* 0.21 ( 0.11 0.21* (0.20)d

North 1996 9 1.09 ( 0.06a 5.4 ( 2.2 0.37 ( 0.14c 0.30
Cranberry 2006 9 1.10 ( 0.10 5.6 ( 2.5 0.49 ( 0.24 0.36*
Pebbleloggitch 1996 9 1.16 ( 0.09a 5.2 ( 2.2 0.16 ( 0.04ab 0.19

2006 9 1.14 ( 0.04 4.3 ( 1.2 0.20 ( 0.05 0.22* (0.19)d

Peskawa 1996 20 1.18 ( 0.08a 4.4 ( 2.0 0.24 ( 0.13abc 0.28
2006 27 1.20 ( 0.13 5.2 ( 2.6 0.25 ( 0.11 0.24*

Peskowesk 1996 8 1.13 ( 0.06a 5.1 ( 2.1 0.28 ( 0.16abc 0.21
2006 10 1.16 ( 0.08 5.0 ( 2.4 0.36 ( 0.17 0.27*

Puzzle 1996 8 1.08 ( 0.06a 4.9 ( 2.4 0.23 ( 0.10abc 0.25
2006 9 1.08 ( 0.10 5.5 ( 2.6 0.33 ( 0.12 0.29**

Upper Silver 1996 7 1.08 ( 0.08a 3.7 ( 1.5 0.14 ( 0.06a 0.19
2006 10 1.08 ( 0.06 2.5 ( 1.7 0.13 ( 0.04 0.12*

a Asterisks represent statistical within-lake differences (* p < 0.05, ** p < 0.01, *** p < 0.001, t-tests, ANCOVA, or
polynomial regression) between years. b Letters represent statistical differences (ANOVA) among lakes within each period.
c 2006/07 data mathematically pooled except in Kejimkujik and Peskawa lakes; see Methods for details. d Values in brackets
had outliers removed.

FIGURE 1. Mean THg concentrations of three size classes (5-10, 10-15, and 15-20 cm) of yellow perch captured in 16 lakes in
Kejimkujik in 1996/97 and 2006/07. The 1:1 line is shown.
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conductivity, and Al (as measured in 2005-2007), and the
increases occurred primarily in smaller perch (5-15 cm).

The mean annual increase in perch THg concentrations
(2.9%) for the 10 lakes in KNPNHS was three times higher
than the annual increase (0.8%) for fish in southern Wis-
consin, one of the few other North American studies showing
recent Hg increases (24). The rate of increase at KNPNHS
was also similar to some lakes from another study in
northeastern North America, where yellow perch THg
increased 2.2% y-1 (in 6 of 25 lakes) in systems with large
watersheds and declining pH and fish condition (25). In some
lakes in KNPNHS, Hg in yellow perch decreased (2.1% y-1)
or did not change over the past decade, a trend that has also
been seen in other studies (e.g., ref 7). Mercury concentrations
decreased by 0.5-5.1% y-1 in walleye and yellow perch in
northern Wisconsin (7, 24) and by 0 - 4.1% y-1 in yellow
perch from the majority of lakes (12 of 25 lakes) in the
Adirondacks during the past 10 to 20 years (25).

External Influences on THg in Fish. Increases in fish Hg
concentrations in other regions were attributed to local
increases in wet deposition of Hg or to higher catchment
inputs of Hg and acidifying substances (24, 25); however,
these sources do not appear to have changed for KNPNHS
lakes. First, Hg concentrations in precipitation have declined
but its total aerial deposition in rainfall was similar over the
past decade at KNPNHS (15). The precipitation and TGM
data for KNPNHS are also comparable to other long-term
monitoring sites in the region (8, 15). It is possible, however,
that other unmeasured sources of Hg to the lakes have
increased, e.g., reactive gaseous Hg (RGM). Concentrations
of atmospheric TGM increased by ∼0.3% yr-1 between 1996
and 2004 at KNPNHS (8), and the highly water-soluble RGM
contributes a minor portion to this atmospheric Hg pool

(26). Though not measured at KNPNHS, fluxes of RGM to
these lakes may have increased at the same time as the
increase in TGM. Second, while the release of stored acids
and Hg from catchments (especially wetlands) can enhance
lake acidities and aqueous Hg and delay recovery of
freshwater ecosystems (1, 3), lake pH and TOC have not
changed significantly over time at KNPNHS (except for pH
increases in 3 of 16 lakes). Aqueous THg increased in some
lakes, but the data are limited (Table S2) and may not always
indicate increases in aqueous MeHg (25).

Influence of Chemical Characteristics of Lakes on THg
in Fish. Mercury concentrations in fish are typically higher
in lakes with lower pH, and more organic carbon and Hg in
the water (1); indeed, across lakes in KNPNHS in 1996/97,
size-standardized THg in perch was higher in lakes with
greater aqueous TOC or THg (as well as % wetlands in their
watersheds) and lower pH (Figure S4, Supporting Informa-
tion). However, THg in fish was not related to lake TOC in
2006/07 (Figure S4) and, between 1996/97 and 2006/07, the
greatest increases in perch THg concentrations occurred,
surprisingly, in lakes with the lowest aqueous concentrations
of TOC and highest pH (Figure 2). Although there were some
slight, but nonsignificant, increases in THg and TOC in the
lakes over time (Table S2), THg data were limited and these
changes did not consistently translate into higher Hg in fish.
These trends suggest that increased availability, rather than
just overall aqueous supply, of inorganic Hg to methylating
bacteria and higher concentrations of MeHg at the base of
the food web are contributing to the higher Hg in these fish
(1, 17).

Though not well understood, Hg complexes with organic
and inorganic ligands in surface waters and sediments, and
its partitioning is determined by the types and characteristics
of the ligands and other chemical factors such as conductivity
(27). The form of Hg determines, in part, its methylation
rates because small, neutral molecules are rapidly taken up
by methylating bacteria (28). Though speculative, the changes
in water chemistry seen here may have increased Hg
availability to methylating bacteria by changing binding to
ligands or the type of dominant complexes present (see for
example ref 29), or rates of methylation using substrates such
as sulfate (6, 28).

Lakes with high productivity typically have low biotic Hg
because of dilution of Hg at the base of the food web (30).
In KNPNHS, increases in perch THg concentrations were
observed in lakes with the lowest productivity, as indicated
by conductivity (2005-07). No temporal changes in con-
ductivity were found (other productivity measures not
available), but TN increased significantly (2-fold) in all lakes
that also had increases in fish Hg (Table S2). It is possible
that the higher TN in the most oligotrophic lakes increased
MeHg at the base of these food webs, but a recent study also
found that nitrate inhibits Hg methylation by bacteria (31).
Although MeHg data for primary consumers are available
for 2006/07 (17), neither water (either time period) nor
invertebrate (1996/97) MeHg data are available to evaluate
temporal trends at the base of these food webs.

Increases in temperature or decreases in oxygen through
time may have also caused the observed increases in THg in
yellow perch through enhanced Hg methylation and uptake
at the base of the food web (28, 32). Although mean annual
air temperatures at KNPNHS increased from 7.1 and 7.0 °C
in 1995 and 1996, respectively, to 7.9 and 8.5 °C in 2005 and
2006, respectively (33), recent studies of the 2 deepest lakes
in KNPNHS (Kejimkujik and Peskowesk) showed that summer
temperature profiles have not changed since the 1970s;
however, hypolimnetic oxygen concentrations were signifi-
cantly lower than previously reported (34). Lower oxygen
can enhance Hg methylation activities of anaerobic sulfate-

FIGURE 2. Percent change (2006/2007 compared to 1996/1997) of
standardized THg concentrations in yellow perch captured in 15
lakes in Kejimkujik versus (a) pH; (b) TOC of the lakes as
measured in 2005-2007 (open symbol indicates an outlier, Up-
per Silver Lake, excluded from the regressions).
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reducing bacteria and could explain the observed increases
in fish Hg concentrations (28).

Influence of Biological Characteristics on THg in Fish.
Decreased fish condition has been linked to increases in
their THg concentrations (25), and, indeed, condition was
reduced in eight KNPNHS lakes, six of which had increases
in yellow perch THg between 1996/97 and 2006/07. Increases
in size or age, or decreases in growth, could also have caused
increases in fish Hg through time (35); however, length and
weight did not change through time, significant reductions
in age were found in three lakes with THg increases, and
growth only declined in lakes where there were decreases or
no change in fish THg.

Temporal changes in THg occurred primarily in the small
(5-15 cm), young (<7 y; Figures 1 and Figure S3) yellow perch.
The smallest size class also showed declines in condition
between 1996/97 and 2006/07, and these changes were
greatest in lakes with the largest increase in THg concentra-
tions. At this time, we cannot explain the changes in
condition, but they may be related to declines in the quality
or quantity of available prey (35) or possibly to Hg toxicity
as perch concentrations approach or exceed those known to
cause effects in other fishes (36).

Implications. The observed increases in THg concentra-
tions in yellow perch in KNPNHS over the past decade suggest
that other species in the park are also at greater risk of Hg
toxicity. Yellow perch are the preferred prey of common loons
(12), and loons consuming yellow perch with mean Hg
concentrations g0.21 µg ·g-1 ww exhibit a 50% reduction in
maximum productivity (14). In 1996/97, nine lakes had yellow
perch with 12-cm mean THg at or above the threshold, but
in 2006/07, standardized mean THg concentrations g0.21
µg ·g-1 occurred in 12 lakes (14 including outliers; Table 1).
In both 1996/97 and 2006/07, yellow perch in Big Red Lake
also had a standardized THg concentration of 0.41 µg ·g-1

ww (Table 1), the level for complete reproductive failure in
loons (14). The increase in the number of lakes exceeding
the 0.21 µg ·g-1 threshold and nearing the 0.41 µg ·g-1

threshold suggests that loons in the park will experience more
reductions in reproductive success and could eventually
exhibit complete reproductive failure on certain lakes if these
trends continue (14). For example, THg concentrations in
yellow perch in North Cranberry Lake could exceed 0.41
µg ·g-1 ww in 2013.

Overall, between 1996/97 and 2006/07, yellow perch THg
concentrations increased in more than 60% of lakes examined
in KNPNHS at a time when wet deposition and catchment
inputs of THg or TOC have not changed; these increases
were greatest in the smallest fish and in populations in lakes
with the highest pH and lowest THg and TOC. Although the
cause is currently speculative, the following factors may have
played a role: (1) increased Hg fluxes to the lakes as a result
of higher atmospheric concentrations of RGM; (2) increased
MeHg production because of higher availability of the
inorganic Hg pool to methylating bacteria or of conditions
more favorable for methylation (e.g., warmer temperatures,
increased TN); and/or (3) reduced quality or quantity of prey
available to perch. This study complements only a few others
that have shown increases in THg concentrations in fish
despite some reductions in emissions of Hg and sulfate in
North America. As such, these increases suggest that further
reductions in Hg and acidifying emissions from major
sources, such as coal-fired generating stations (2), should be
considered to protect or restore ecosystem health in remote
regions such as this one, that were previously identified as
Hg hotspots (9).
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