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ABSTRACT: Molecular biology now dominates pharmacology so thoroughly that it is difficult to recall that only a
generation ago the field was very different. To understand drug action today, we characterize the targets
through which they act and new drug leads are discovered on the basis of target structure and function. Until
the mid-1980s the information often flowed in reverse: investigators began with organic molecules and sought
targets, relating receptors not by sequence or structure but by their ligands. Recently, investigators have
returned to this chemical view of biology, bringing to it systematic and quantitative methods of relating
targets by their ligands. This has allowed the discovery of new targets for established drugs, suggested
the bases for their side effects, and predicted the molecular targets underlying phenotypic screens. The bases
for these new methods, some of their successes and liabilities, and new opportunities for their use are

described.

So dominant has the molecular biology view of pharmacology
become that it is difficult to remember that even 25 years ago it
was little more than an aspiration. Today we understand the
activity of drugs and reagents first through the specific, clonable
receptor molecules with which they interact. To understand
biological mechanism we begin with a specific molecular recep-
tor, and to discover new leads for pharmacological intervention,
we screen a library of compounds against a particular isolated
target. Even when we screen for a phenotype against a cell or
organism we subsequently seek to isolate the receptor responsible
for that phenotype. Two targets are similar when their sequences
and structures are similar, and when we think about side effects
our first thoughts are of those proteins that are most related by
sequence and structure to the particular targets in which we are
interested.

A generation ago this view was inverted: investigators more
often began with small molecules and sought targets, and recep-
tors were related not by sequence or structure but by their ligands
(Figure 1). Except for some soluble enzymes, these receptors were
rarely used in isolation. Most were characterized by the patterns
of agonists and antagonists that modulated their activity, often in
experiments conducted on entire organs such as the guinea pig
ileum or atrium perfused in baths of reagent. Thus, Ahlquist first
divided the adrenergic responding receptors into o and f sub-
classes based on differing dose responses to norepinephrine,
epinephrine, and isoproterenol in organ systems such as the uterus,
the cat nictitating membrane, pupil dilation, and gut contraction,
in 1948 (I). Twenty years later, Lands further divided the
p-adrenergic family into S1 and 2 receptors based on differing
specificities for these same agonists on fatty acid mobilization,
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and bronchiodilation and vasodepression, also in whole organs (2).
The distinction between the a and 5 adrenergic receptors was
strengthened by the appearance of the first S-blockers, such as
propanolol. Subtype selective agonists, such as salbutamol for
(2, and antagonists, such as atenolol for 1, further solidified the
classification of the f-AR family. Meanwhile, the a-adrenergics
were subdivided into ol and a2 classes based on postsynaptic
and presynaptic sites of action and the differing specificities of
related antagonists. The histamine receptor family was subdi-
vided into the H1 and H2 classes based on the ability to dis-
tinguish receptors that responded to histamine but not to mepyr-
amine yet could be antagonized by Burimamide and molecules
related to it, initially based on organ level experiments on
guinea pig atrium and ilium (3). Gaddum first differen-
tiated receptors responding to serotonin into two subtypes
in the 1950s based on the contraction of smooth muscle or on
the depolarization of the cholinergic nerves. These targets were
subsequently classified in the 5-HTI1, 5-HT2, and 5-HT3
families using specific and distinguishing agonism and especially
antagonism by drugs like Bemestron and Tropisetron (for the
5-HT3 family).

Classifying targets by small molecules often led directly to new
therapeutics. Thus, the subdivision of the f-adrenergic family
into the S1 and 2 subtypes both allowed and was itself con-
firmed by the development of the f-blockers and 32 agonists.
Similarly, the specific antagonist Burimamide defined Black’s
elucidation of the histamine H2 family, and this led directly
to the first histamine-acting anti-ulcer drug, Cimetidine, cited
in Black’s receipt of the Nobel Prize in Physiology or Medicine
in 1988. ICS 205-930 not only was the molecule that defined
5-HT3 as a unique and specific receptor (4) but also became
the anti-nausea drug Tropisetron (Figure 2). The classification
of receptors by small molecules remains with us to this day,
and we still talk of the al, a2, 1, 52, H1, H2, and 5-HT1-3
receptors.

This antique chemical taxonomy leaves us with, from the molec-
ular biology perspective, some odd bestiaries. All of the serotonin
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F1GUrE 1: Information flow in molecular and classical pharmacology.
(a) Central dogma of molecular biology and its sequelae in protein
folding and protein function, illustrated through the structure of and
ligand recognition by the 2-adrenergic receptor (63). (b) Ligand-
to-target identification in classical pharmacology, illustrated by the
classification of receptor subtypes for the -adrenergic receptors.
The differential activity of epinephrine, norepinephrine, and iso-
proterenol (/) on organ systems disentangled the a-adrenergic from
the S-adrenergic receptors; the 5-blocker propranolol was specific
for f vs o receptors, and subsequently, atenolol and salbutamol
were specific for the 1 and 2 subtypes, respectively.
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FIGURE 2: Specific, receptor-classifying molecules could lead to drugs.
In addition to the f-adrenergic acting drugs illustrated in Figure 1,
othersinclude (a) Buramide, the compound used to distinguish the gut-
active H2 receptor from the H1 receptor, and Cimetidine, the anti-ulcer
drug to which it led. (b) Tropisetron and Bemesetron defined the
5-HT3 subtype because of their specificity for it over the previously
characterized 5-HT1 and 5-HT?2 receptors. Tropisetron is an anti-nausea
drug used after chemotherapy.

receptors are G-protein-coupled receptors (GPCRs)! except for
5-HT3, which is an ion channel. By sequence and structure, the
5-HT3 receptor has no similarity whatsoever to the GPCRs
whose name it shares. Conversely, 5-HT3 responds to serotonin
and its close analogues, as do all of the other members of the 5-HT
family, and drugs and reagents that classify this ion channel as
5-HT3 also bind to 5-HT2 at low micromolar concentrations (3)
and to the 5-HT4 receptors at midnanomolar concentrations (6);
however, these latter are GPCRs. Similarly, the metabotropic
glutamate receptors are GPCRs, while the ionotropic glutamate

' Abbreviations: 5-HT, serotonin receptor; ADR, adenosine receptor;
AR, adrenergic receptor; BZRP, benzodiazapine receptor; ChEMBL,
The EMBL Medicinal Chemistry Database; CMC, MDL Current
Medicinal Chemistry Database; DMT, dimethyltryptamine; ECFP4,
extended connectivity fingerprint 4, GPCR, G-protein-coupled recep-
tor; HCS, high-content screening; MAO, monoamineoxidase; MDDR,
MDL Drug Data Report; NMDA, N-methyl-p-aspartate; PDSP KiDB,
National Institutes of Mental Health Psychoactive Drug Screening
Program’s K; Database; SERM, selective estrogen receptor modulator;
Tc, Tanimoto coefficient; SEA, Similarity Ensemble Approach;
SMILES, simplified molecular input line entry specification; USAN,
United States Approved Name; VMAT2, vesicular monoamine trans-
porter 2; WOMBAT, World of Biomolecular Activity Database.
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receptors are ion channels; both respond to glutamate and related
molecules. The same is true for the nicotinic and muscarinic
acetylcholine receptors, both canonical drug targets. Many trans-
porters, which are dissimilar in structure and sequence to both
ion channels and GPCRs, are modulated by drugs and ligands
that are characteristic of these latter receptors. Serotonergic
receptor drugs modulate serotonin and norepinephrine transpor-
ters, and putatively “selective” serotonin reuptake inhibitors mod-
ulate adrenergic receptors (below). Conversely, at the molecular
biology level, many receptors that are closely related share no ligand
similarity. The u-opioid receptor is by sequence and structure
similar to the metabatropic serotonin receptors; both are seven-
transmembrane GPCRs. There is, however, little similarity
among the ligands that modulate them, and many GPCRs
sharing high sequence identity have no ligands in common. From
a small molecule perspective, saying that 5-HT3 is related to
5-HT4, or that a serotonin transporter is related to an adrenergic
receptor, sensibly organizes pharmacology (Figure 3), whereas
from a molecular biology view, this is, at least superficially, baffling.

The organization of pharmacology is thus bicameral. On one
hand, the molecular biology view can be quantified and reduced
to specific, clonable targets and reflects a deep understanding of
biology and evolution. On the other hand, the chemical view is
the basis of our everyday taxonomy of receptors. Over the past
five years, the formal basis of this classic, premolecular biology
view has been reinvestigated, leading to new maps of pharmacol-
ogy and the discovery of new drug activities. Some of these
methods are available online and may be used by nonspecialists
to frame chemistry-guided questions of biology (http://sea.
bkslab.org). These might include the following. To what targets
might my organic molecule(s) bind, and to what other receptors is
my target linked by chemistry? Here, we consider just how
common it is to find drugs and reagents that bind to apparently
unrelated receptors, the informatics and databases that have
allowed this investigation, and some of the new tools developed
to exploit them. We consider applications of the chemical view to
predict new activities for drugs, to understand their side effects,
and to identify the targets for molecules active in phenotypic screens.
We close by considering opportunities for a synthesis between the
two views, neither of which alone seems fully complete.

LIGAND—TARGET DATABASES

Over most of the history of pharmacology, investigators made
do with few characteristic ligands for any target and it is a testament
to the thought and care that went into target characterization that
so much was learned from so few molecules. Today, hundreds of
thousands of ligands are characterized for thousands of targets; one
of the challenges in pharmacology is organizing the weight of
information under which the field unsteadily groans. Databases of
target—ligand associations have begun to address this problem.

Two sources of target—ligand associations are patents and
scientific publications, particularly the medicinal chemistry lit-
erature. The drug patent literature has been curated into electronic
form by Prous Science (Barcelona, Spain) and formatted and
marketed by MDL (now Symyx/Accelrys) as the MDL Drug
Data Report (MDDR). Investigators often work with a subset of
the MDDR that Schuffenhauer and colleagues associated with a
specific biological target in their ontology, as opposed to, for
instance, a more general category such as “anti-cancer” (7) (Table 1).
The CMC database, also curated and sold by Symyx (&), contains
compounds identified in the United States Approved Names
(USAN) list. It describes chemical structures, biological activity,
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FiGURE 3: Receptors with high degrees of sequence similarity but little ligand similarity, and the converse. (a) Overall comparison of ligand
similarity with sequence similarity for drug targets. Approximately 250 drug targets from the MDDR were compared against each other in a full
matrix, first by a ligand similarity method [SEA (22)] and then by a protein sequence similarity method [PSI-BLAST (64)]. Where both methods
agree, the matrix is white. Thus, both find that any given target pair on the diagonal, such as 5-HT2A vs itself, resembles itself. Where ligand
similarity was stronger than sequence similarity the matrix is red; where the converse is true, it is dark gray. (b) Excerpt of the matrix in which the
degree of ligand similarity is high but the degree of sequence similarity is low. This region includes enzymes and nuclear hormone receptors.
(c) Except from the region with a high degree of sequence similarity (but a low degree of ligand similarity). These are often GPCRs. Reproduced

from ref 22. Copyright 2007 Nature Publishing Group.

Table 1: Some Widely Used Ligand—Target Databases

database version no. of ligands no. of targets no. of data points
MDDR (8) 2010.1 201761 631 391406
Schuffenhauer MDDR (7) 2006 65242 247 71197
WOMBAT (10) 2010.1 254679 2100 760605
ChEMBL-complete (/1) 05 (July 2010) 578715 7493 2787240
ChEMBL-protein targets 03 (May 2010) 222177 3153 600165
BindingDB.org (61) 2010 240203 3056 544641
PDSP KiDB (62) 2010 7315 722 48083

drug class, originating company, and literature references. It does
not contain immediately useful drug—target associations but
remains a valuable source of information for predicting drug—
target associations and complements the MDDR. Similarly,
Boyer and colleagues at IBM have created a fully automated
patent parsing engine to create a database of ligand—target—
disease associations; this database is available commercially (9).
Two databases of literature-based target—ligand associations
are widely used. Among the first of these was the World of
Biomolecular Activity database (WOMBAT) (10), which covers
most of the past 20 years of the Journal of Medicinal Chemistry
and nearly a decade of the next three most important medicinal
chemistry journals and has partial coverage of several others.
It annotates targets with SwissProt and Uniprot codes, where
available, and differentiates agonists from antagonists, a level
of detail helpful to target prediction and often not available in
other databases. WOMBAT is a commercial product but is also
accessible collaboratively from its authors at Sunset Molecular
(http://www.sunsetmolecular.com/). Recently, the ChREMBL
database has become freely available via the European Bioinfor-
matics Institute (EBI) (/7). This library is actively curated and
annotates more than half a million ligands with more than 3000
targets; it is freely accessible at http://www.ebi.ac.uk/chembl/.

REPRESENTING AND COMPARING LIGAND
STRUCTURES

Interrogating the relationships among the hundreds of thou-
sands of ligands and thousands of targets that are described in

ligand—target annotation databases demands ligand representa-
tions that support rapid comparisons. This is often accomplished
with molecular fingerprints, usually expressed as a bit string.
Widely used examples include Daylight (/2) (Figure 4a) and
Scitegic extended connectivity fingerprints (/3), which encode
topological [two-dimensional (2D)] information, e.g., atom types
and the bond connectivity among them, though there are many
others that are also popular. To those trained in biochemistry and
biophysics, the idea that a topological fingerprint of a small
molecule can be informative seems hard to credit, and indeed,
there has been considerable effort to develop more information-
rich three-dimensional (3D) methods (/4—17). Still, topological
fingerprints have proven themselves to be surprisingly robust for
many chemoinformatics approaches and are what we rely on for
our own work.

The most common way to compare molecular fingerprints for
similarity uses the Tanimoto coefficient (Tc) (18, 19), which
compares the number of “on” bits shared between two finger-
prints to all the on bits that could have been matched between
them (Figure 4b). Developed in 1957, this metric (20) extends the
Jaccard coefficient, used in 1901 to compare similarity and
diversity among alpine flowers (2/). The Tc measures the overall
level of similarity between two molecules and is symmetric, e.g.,
Te(fp..fpy) = Te(fpp,fpa). Like the 2D fingerprints that it is asked
to compare, the Tanimoto coefficient has substantial theoretical
and practical limitations; it is not a true distance measurement as
it violates the triangle inequality, nor is there any accepted
demarcation in Tc that identifies ligands that are functionally
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FIGURE 4: Representing molecules as topological fingerprints.
(a) Encoding a molecule using Daylight fingerprints. Each atom-
to-atom path across the molecule of increasing length is iteratively
encoded as a bit string, and all of the bit strings are combined together
into a final “fingerprint”. (b) Comparing fingerprints using a Tanimoto
coefficient (Tc). The Tc calculates the number of on bits in common
between the fingerprints divided by the total number of nonoverlap-
ping on bits between fingerprints.

related, notwithstanding much effort (/9). This has limited the
reliability of simple chemical similarity in predicting ligand-based
associations and has inspired the weighting of chemical similarity
using statistical models of significance. These models have improved
our ability to assign confidence to measurements of ligand simi-
larity and especially to the similarity of sets of ligands (13, 22).

REORGANIZING BIOLOGY ON THE BASIS OF
LIGAND RECOGNITION

An ambition of the chemical approach is to reorganize pharma-
cological maps, associations among proteins, on the basis of ligand
similarities rather than sequence, structural, or pathway similarities.
Several approaches have been explored, most mining the rich veins
of ligand—target associations available in the databases. Among
the first to illuminate the unexpected relationships that emerge
from such an analysis were Paolini, Hopkins, and colleagues (23),
who found that many bioactive small molecules possessed extensive
polypharmacology, often across target boundaries (Figure 5b). For
instance, ligands active on aminergic GPCRs were often observed to
have activity on protein kinases; protein kinase ligands in turn had
unexpected activities on ion channels and on phosphodiesterases.
Vidal and colleagues (24) analyzed graph connectivity of drug target
networks (Figure 5a), and Mestres (25) combined data sources
to build expanded target networks. The drug—target associations
studied by Vidal et al. suggested that most new drugs acted on
targets that had been previously drugged, not itself surprising, but
more encouragingly, there was an evolution toward more diverse
targets over time. Surprisingly, correlating the drug—target map
with a disease—protein map suggested that many drugs were not
acting on a protein most directly implicated in a disease but rather
were acting at one or two degrees of separation, at proteins that
themselves were linked to the disease genes.

Keiser et al.

Aminergic
GPCRs

Peptide
GPCRs ' 4 e,
GPCRs (others) . ot

Cysteine proteases

Aspartyl proteases

)
o tr—ae
3 . -
J

ot

. Miscellaneous
Enzymes ,* 3
(others) . -

h 4 * Kinases

.
7y Serine proteases

4

Blactamase,

ALY Na+/Ks PP
A

( . S W oz
X . DNA gyrase
Lean Ut sa

AMPA, KAIN, . V A2

s, mGRY- m AR, T GABA, BZR
e DR
e s DAY\ /

. ERA

i

i
S, AL2,P2¥

R ! @ B -

E & Folate )

Y maR i

. N Lo, HIVHSY,
\ SN ‘Q: » * 7 Hev
.15, MT X e

s1¢
1 s

< © AT1-2, PRP
1 PPARy PGP

Opioid
WK

NET, DAT, 5-HTT, 5-HT

Ca(2+) channel * 7 m
Network key

paso e = Known association (< 1 M)
——— Off-target predicted by SEA
e U7 © Protein target

Drug

FIGURE 5: Varied approaches to organizing drug protein targets by
their ligands. (a) Drug—target network linking FDA drugs (circles) to
targets (rectangles) based on the known associations. Drugs are
colored by their Anatomical Therapeutic Chemical Classification
and target proteins by their Gene Ontology cellular component (24).
(b) Target—target network, in which targets are linked if they bind
one or more compound in common, within a preset affinity threshold.
There are 486 targets, colored by gene family, linked by 3636 edges (23).
(c) Predicted drug—target network. Each drug (gold) is linked to its
known protein targets (cyan) by a gray edge. Red edges link drugs to
their additionally predicted targets (417).

Proteins may be associated on the basis of not only known but
also predicted polypharmacology (Figure 5c). In our own work,
we have linked receptors on the basis of similarities among the
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sets of ligands annotated to bind to them. For two proteins to be
related, no single ligand need be shared between them, but overall,
the patterns of chemistry among their ligand sets must be similar,
hence a “Similarity Ensemble Approach” (SEA) (22, 26). It is
here where we found that a statistical model for relating similar-
ities to those expected at random was critical. The model was
motivated by empirical BLAST theory (13, 27), where individual
ligands now replaced the unordered “words” used in heuristic
sequence alignment, with both scoring systems using extreme
value distributions.

Common to these chemocentric networks is the reorganization
of the target boundaries and associations to which we have
become accustomed from molecular biology. To those trained in
the molecular, reductionist paradigm, as we ourselves have been,
it may seem peculiar that an ion channel will be associated with a
transporter, a transporter with a GPCR, a human adrenergic
GPCR with a parasitic ribosome, and an aminergic GPCR with
peptide and chemokine GPCRs. From a chemical perspective,
however, the similarities among the ligand sets are striking. They
are also generative, predicting previously unknown associations
and crosses. Because they are based on specific, organic mole-
cules, these predictions may be directly tested by an experimental
assay on the same molecules that articulate them. It is to such
testing, and its relevance to drug biology and target identifica-
tion, that we now turn.

APPLICATIONS OF THE CHEMICAL VIEW

In the past 4 years, more than 30 drugs have been tested against
more than 40 novel off-targets based on chemocentric predictions
[summarized in Table 2; others have been proposed on the basis
of target structure-based approaches (28—39), but these fall out
of the remit of this paper]. Some of these new off-targets are
consistent with drug side effects, whereas others may bolster a
drug’s on-target action; we consider each case in turn. Such off-
target binding may cross target structure and fold categories,
such as when an ion channel inhibitor is found also to modulate
GPCRs, and we consider examples of such molecules at the close
of the section.

Off-Targets Mediating Side Effects. Unintended off tar-
gets are widely associated with adverse drug reactions and are
widely feared in drug discovery. An innovative idea pioneered by
Campillos, Bork, and colleagues was to exploit known side effects
to organize drugs into networks by similarities among the profiles
listed on their package inserts (40). From these networks, they
predicted and experimentally confirmed 13 cases of novel drug
off-target activity (selections in Table 2). In one example, they
identified a subnetwork in which the CNS drugs pergolide,
paroxetine, fluoxetine, and zolmitriptan were clustered around
the anti-ulcer drug rabeprazole, a proton pump inhibitor. This
led them to predict and show that rabeprazole would bind two
CNS targets known for these drugs, the dopamine D3 (1.6 uM)
and 5-HT1D (7.6 uM) receptors (Table 2). As rabeprazole plasma
concentrations reach these levels, this may suggest that it should
also be investigated for the side effects already associated with
these nervous system targets (40) (whether the fraction unbound,
FU, reaches these levels is not clear).

Side effect targets also emerge from approaches based strictly
on ligand chemistry [Table 2 (22, 41)]. The SEA method was used
to predict that the amebicide emetine would modulate the
o2-adrenergic receptor. Whereas these two targets have no
obvious structural similarity, inspection of emetine’s structure
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reveals its striking similarity to adrenergic ligands. This prediction
was subsequently tested experimentally and shown to occur at
1 uM (22). Consistent with adrenergic activity, the side effects of
emetine include hypotension, tachycardia, and congestive heart
failure. Similarly, the well-known u-opioid agonist methadone
was predicted to bind to the muscarinic M3 receptor (22); this is
consistent with, though of course far from establishes the basis of,
methadone’s unusual side effects for an opioid agonist, including
the heavy sweating that patients report with it. Using the same
approach, Motilium, used by nursing mothers to stimulate
lactation, was predicted and found to bind to the a1 A receptors,
here at 71 nM (41). This activity is consistent with the cardiac
effects observed with Motilium (though admittedly so is its
known hERG activity, at 5 uM). Finally, the widely used SSR1Is
Prozac and Paxil were predicted to bind f1-adrenergic receptors,
the blockade of which is consistent with changes in heart rate
observed in SSRI discontinuation syndrome and the sexual
dysfunction induced by these antidepressants (4/). Prozac and
Paxil’s p-binding was only at the threshold of their plasma
concentrations, without considering the fraction unbound, but
a pilot study has recently correlated a common f1-adrenergic
gene single-nucleotide polymorphism (SNP) known to increase
sensitivity to f-blockers with these Prozac- and Paxil-induced
changes in heart rate and diastolic blood pressure (42). Efforts to
predict adverse drug reactions (ADRs) are also well advanced in
several pharmaceutical companies, though most reports in the
open literature have been restricted to retrospective correlation.
The extent of these studies nevertheless suggests that this is an
active area of research (43—47).

Off-Targets as Primary Sites of Action. Predicted targets
can also illuminate the primary mechanism of action of drugs,
or opportunities for repurposing drugs to treat new diseases.
di Bernardo and colleagues have made a case for the use of Fasudil
in cancer and in certain neurodegenerative diseases (48). Using
their Mode of Action by Network Analysis (MANTRA) method,
the authors leveraged the Connectivity Map (49, 50) collection to
group drugs into “communities” by similarities in their patterns
of specific transcriptional responses. By asking which known
drugs if any were most similar to 2-deoxy-p-glucose, a known
inducer of autophagy, they predicted and demonstrated strong
activation of autophagic degradation by Fasudil in both human
fibroblasts and HeLa cells (48). In other examples of potentially
useful new targets, Bork and colleagues noted that the acetyl-
cholinesterase inhibitor donepezil may also find use in depres-
sion, consistent with its binding to the serotonin re-uptake
transporter, and Distefano’s group demonstrated miconazole’s
ability to disrupt H-ras oncogene localization in cells, consistent
with its predicted inhibition of protein farnesyltransferase (517).
While these two activities were found for weakly binding off
targets, this is not always the case; the antihypertensive Doralese
unexpectedly bound the dopamine D, receptor a log order more
tightly (18 nM) than it does its canonical o-adrenergic on target
(200—600 nM) (41).

Where a drug’s mode of action is unknown, chemocentric
approaches can narrow the field of inquiry. The hallucinogen
N,N-dimethyltryptamine (DMT) was observed to have a Ky of
14.8 uM for the oy receptor, implicating this target in its hallucino-
genic properties and potentially identifying an endogenous
ligand for gy (52, 53). This was surprising given the promiscuous
and sometimes potent activity on | of many non-hallucinogens,
and DMT binds targets already implicated in hallucination, the
serotonin receptors (54—56). In a blind computational panel,
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Table 2: Novel Off-Target Predictions for Known Drugs

Drug /
o Raloxifene
0.
s ¢ O \‘\'O
>

HO

N Rabeprazole
Q/)‘Sﬂ N
N 4 ive

Antiucler

= Disopyramide

\
-4
o nti-arrhythmic
NH, N—<
\ Claritin

cl N

\ Antihistamine

¥
o 0\\
Colchicine

Treatment for

Pseudolarix acid B

Donepezil

Noo

( ) Fasudil

Rho-kinase inhibitor

SEA predicted both known and novel serotonin receptor subtype
binding for DMT, and subsequent ligand displacement studies
suggested that it does so with affinities in the range of 100 nM, 2
log more potent than its ; binding. More compellingly, whereas
DMT shows strong activity in a mouse model for hallucination,
the 5-HT2A knockout mouse, one of the predicted and observed
targets, did not respond to DMT, consistent with its status as
DMT’s primary target (41). Other efforts to “deorphanize” drugs
and candidates more broadly are ongoing.

Targets from Phenotypes. A new direction in drug discov-
ery and chemical biology is phenotypic screening. Compound

Prediction
Predicted Target Ki (n\M)
Method
Side-effect 5-HTp 300
Side-effect  Dopamine D3 1600
Side-effect  Histamine Hq 2700
Side-effect BZRP 5000
HCS (60) a-tubulin Micrograph
HCS a-tubulin Micrograph
HCS a-tubulin Micrograph
Side-effect  5-HTT 9000
Cellular autophagy (via
MANTRA 10000,
LC3-Il levels in human
(48) Western blot

fibroblasts)

libraries are screened for phenotypic outcomes in a cell or whole
organism. This returns to an older pharmacological modality, in
which a “model system” might be a guinea pig ileum perfused in
an solution of compound (57), except that now tens of thousands
of compounds are screened. This can result in interesting whole
animal phenotypes for several chemical series, whose targets
nonetheless remain unclear. Identifying these targets is perhaps
the key challenge in such “forward chemical genetic” screens. Ina
recent study, Peterson and colleagues quantified the response
of zebrafish embryos to light and the modulation of this response
by preincubation of the fish with small molecules (58, 59).
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Table 2. Continued
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Similarities among the phenotypes organized compounds into
broad activity classes (59). Where a compound’s activity was
unknown, SEA was used to suggest specific molecular targets.
Consistent with SEA prediction, one such phenotypic hit, MAG-1,
was found to be a 1 nM inhibitor of MAO in direct kinetic inhi-
bition studies (58). Work in this area is ongoing.

Other approaches to uncovering mechanisms of action incor-
porate an even greater number of data sources. Using factor
analysis over phenotypic profiles, chemical similarity, and pre-
dicted protein binding, Feng and colleagues derived mechanism
of action inferences from a high-content cellular screen (HCS,
selections in Table 2) (60). Fluorescent cell cycle markers were
observed in microscopy to derive phenotypic profiles associated
with particular compounds. Clustering these phenotypic profiles
suggested structure—activity relationships among the small mole-
cules consistent with their structural patterns and known activities.
For instance, a subcluster associated with cell death contained
several known cytotoxics such as Diperamycin and Kendomycin,
whereas a subcluster associated with G1 arrest contained corti-
costeroids such as Dexamethasone and Triamcinolone (60). To
illustrate the value of phenotypic profiles in predicting targets for
small molecules, the authors then showed that from the pheno-
types a common target, o-tubulin, could be inferred for three groups
of phenotypically similar yet structurally distinct molecules (e.g.,
colchicine, quinoline, and pseudolarix acid B), a prediction that
they confirmed via micrographs of stained cells (60).

OPPORTUNITIES AND UNSOLVED PROBLEMS

It is almost perplexing that the chemical view of pharmacol-
ogy, which has little basis in physical or biological theory, works
as well as it does to relate targets and discover drugs. Conversely,
the molecular biology view, representing our best understanding
of biology, has curious gaps in pharmacological organization and
a checkered career in drug discovery. Pharmaceutical research is
by now dominated by the reductionist program, and even a new
direction like chemical biology models itself on molecular biology
and molecular genetics. Still, in the past 15 years, the pharma-
ceutical industry has struggled to produce enough new drugs to
keep up with the expectations raised for it by those introduced in
the late 1980s and 1990s, most discovered using the older, chemical
approach to pharmacology. How might this discrepancy, between
the successes of a theoretically impoverished chemical view and
the failures of a rich molecular biology one, be reconciled?

The dilemma is partly resolved by the domain of questions that
the two views are asked to address. As long as pharmacology
involves the actions of drugs and reagents on biology, then a view
that begins and ends with these will have an advantage. The
chemical view does not pretend to characterize all of biology or its
mechanisms, which is the molecular biology program, but
restricts itself to those targets with which bioactive molecules
interact. Thus, the observation that the u-opioid and 5-HT2A
receptors are related by sequence never occurs to the chemical
view. The relationship among these targets, which arguably for
drug action is often irrelevant and even confusing, is meaningful
in other contexts and reflects shared evolution and signaling.
Correspondingly, the NMDA ion channel is related to the x-opioid
receptor only through the similarity of the drugs that modulate it;
for many other biological questions, this similarity is as meaning-
less as the lack of sequence and structural similarity between them
suggests. When the carrier of information is itself a small molecule,
then that molecule may illuminate the bases of diseases in which
the target is involved and sometimes also treat them. The chemical
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view of biology had a feeling-around-in-the-dark aspect to it and
was often deeply frustrating to its practitioners, but it was necessar-
ily focused on reagents that might themselves become drugs.

We do not pretend that drug discovery should return to this
chemical approach to pharmacology or even that the chemical
approach, despite its age, is mature. We do not understand the
physical basis for the binding of related ligands to unrelated
targets; we have merely exploited that observation. We lack a
theoretical basis for information flow in the chemical view, and
often the most pragmatic representations of chemical informa-
tion, such as topological fingerprints, are deeply unsatisfying.
Developments in these areas will move the chemical view from
pattern recognition to a theoretically grounded science, helping
to reintegrate the bicameral house of pharmacology. This will be
crucial to meet the promise of both chambers. The chemical
approach will benefit from adopting the substantial statistical,
physical, and evolutionary theory that has gone into molecular
biology and protein structure. Correspondingly, the sharp focus
on small molecules that the chemical view brings will give the
molecular biology view ready access to reagents that can mod-
ulate the receptors that it has done so much to illuminate.

In 1941, the first edition of Goodman and Gilman’s The
Pharmacological Basis of Therapeutics appeared. Its title revealed
a program of research based on the specific modulation of
receptors by organic molecules, the behavior of which in the
body could be monitored, understood, and exploited. What was
then provocative is today so well accepted that the book’s title
seems antique. At the time, the chemical basis of pharmacology
needed no emphasis, so focused was the field on the actions of
molecules that were not only its goals but also its primary
classifiers and biological informants. Whereas Goodman and
Gilman continues to be a central text, the classical pharmacology
that it once represented has largely disappeared, as has the
chemical view of biology. As primitive as that view remains,
the opportunities for its exploitation are clear. The new methods
sketched here systematically and comprehensively compare those
targets for which ligand information is available. This remains a
blinkered perspective, requiring preexisting ligand information,
and so it retains some of the frustrations of classical pharmacol-
ogy that made that field so receptive to the molecular biology
wave that broke upon it in the mid-1980s. In its favor, the
chemical view retains the integrationist program implicit in
classical pharmacology. Classical pharmacologists often worked
on whole organs and were systems biologists avant la lettre. As
cipherlike as organic molecules can seem as information carriers,
they can report on the similarities of pathways and systems as
easily as individual receptors. What is new in the past few years
is the quantitative restatement of classical ideas, allowing
formal comparisons among targets and ligands at a scale not
previously attempted. This has suggested unexpected relation-
ships among receptors, identified targets active in phenotypic
screens (58), and predicted off-targets and new disease indica-
tions for drugs (40). The new techniques remain largely the
domain of specialists, but at least some of them are accessible to
general investigators interested in bringing new chemical tools to
targets and systems of vital interest to themselves (see, for
instance, http://sea.bkslab.org).
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