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Purpose: To investigate changes in protein profiles of posterior sclera in guinea pigs during development of form
deprivation myopia and recovery.
Methods: Three groups of guinea pigs (developing form deprivation myopia, recovering from the myopia and normal
control) were evaluated for protein profiles of the posterior sclera using two-dimensional gel electrophoresis. Protein spots
with a different intensity of at least threefold among the 3 groups were further identified with mass spectrometry. Key
proteins associated with ocular growth (crystallins) were examined at mRNA levels using RT–PCR.
Results: Moderate myopia was induced at 7 weeks of monocular deprivation and then more gradually recovered toward
the previous refractive status 4 days after re-exposure of the eye to normal visual conditions. The profile of all protein
spots at the posterior sclera was similar for both the deprived and the recovery eyes but distinct between either of the 2
experimental eyes and the normal control eyes. Twenty-six and 33 protein spots were differentially expressed in the
deprived and the recovery eyes, respectively, compared to the normal control eyes. In contrast, the number of proteins
differentially expressed between the deprived and the recovery eyes was only 5. Among the different subtypes of
crystallins, βB2-crystallin was down-regulated and βA4-crystallin was upregulated in the deprived eyes at both protein
and mRNA levels compared to the normal control eyes. The trend of expression for βA3/A1-crystallin was also similar
at both mRNA and protein levels for the deprived eyes. However, αA-crystallin mRNA in the recovery eyes was
upregulated while αA-crystallin itself was down-regulated. A similar inconsistency in expression of βA3/A1-, βA4-, and
βB2-crystallins between the protein and mRNA levels also occurred in the recovery eyes.
Conclusions: Proteomic analysis provides a useful survey of the number of proteins whose levels change during form
deprivation myopia and the subsequent recovery. In particular, the crystallins changed during the development of form
deprivation myopia and recovery. The changes in crystallin protein levels were consistent with that in mRNA levels during
the development stage of form-deprivation myopia (FDM). However, the changes in most crystallin protein levels were
mismatched with mRNA levels during the recovery stage.

Myopia is one of the most prevalent ocular conditions
affecting visual acuity, in which images of distant objects are
brought to a focus in front of the retina resulting in blurred
vision. In most of cases the structural cause of myopia is an
excessive axial length of the eye, or more specifically the
excessive vitreous length [1-6]. The excessive axial
elongation of the eye, by necessity, must involve the outer coat
of the eye, the sclera. The sclera is a dense, fibrous,
viscoelastic connective tissue, which in addition to protecting
the retina and allowing the attachment of the extraocular
muscles, controls the size of the eye and the location of the
retina relative to the focal plane, and consists of irregularly
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arranged lamellae of collagen fibrils interspersed with
proteoglycans and non-collagenous glycoproteins.

The sclera is not a static container of the eye, but rather
is a dynamic tissue, capable of altering its extracellular matrix
composition and its biomechanical properties in response to
changes in the visual environment to regulate ocular size and
refraction [7]. High myopia is characterized by scleral
thinning and localized ectasia of the posterior sclera. Many
studies [8-11] have demonstrated scleral changes in both
experimental myopic and clinical conditions [1-6]. Some
genes have been found to be closely related to high myopia
such as matrix metalloproteinases [12], PAX-6 (paired box
gene 6) [13,14], myocilin [15], TGF-β1 (transforming growth
factor, beta 1) [16], Collagen type I alpha 1 [17], Rasgrf1 (Ras
protein-specific guanine nucleotide-releasing factor 1) [18],
and GJD2 (gap junction delta-2 protein) [19]. Morphological
changes result from physiologic changes and physiologic
activities in a tissue are basically performed by relevant
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functional proteins. Therefore, functional proteins in the eye
are directly responsible for ocular morphological changes in
response to any triggering factors. Thus, investigation of the
posterior sclera tissues is necessary to understand mechanisms
involved in the development of form deprivation myopia and
recovery.

During form deprivation in mammals (tree shrews and
primates), the sclera weakens due to increased degradation
and reduced synthesis of extracellular matrices (ECM) and
collagens, and an increased synthesis of matrix
metalloproteinase and gelatinase A in the sclera [20,21].
These biologic changes are more prominent at the posterior
sclera and are accompanied by axial elongation of the vitreous
chamber [10,20-22], indicating that axial elongation is due to
the weakening of the sclera in mechanical strength. However,
whether the biologic factors found in these studies represent
the entire profile of proteins involved in form deprivation
myopia is yet to be confirmed.

Two-dimensional gel electrophoresis (2-DE) may
provide a guide for selection of more targeted agents in the
treatment of functional or pathological disorders and therefore
increases the effectiveness of pharmacological manipulation.
Results from human 2-DE show that expression of proteins in
types and levels is very similar for both the anterior and
posterior sclera [23], indicating that functional activities are
similar at different locations of the sclera and this ensures a
symmetric/or similar morphology at different sites of the
sclera. It has been shown by 2-DE that collagen- regulated
proteins and 78 kDa glucose-regulated protein (GRP 78, a
member of the heat shock protein 70 family) are down-
regulated in the sclera of tree shrew eyes developing minus
lens-induced myopia [24]. Similar 2-DE results are also found
in the retina of mouse eyes developing form deprivation
myopia [25]. However, the functional role of these proteins
during development of the experimental myopia is still
unclear.

Guinea pigs have been increasingly used as an alternative
to other species in the study of myopic development and
recovery as biometric changes of the guinea pig eye is similar
to chickens, tree shrews and monkeys under similar
experimental conditions [26-28]. However, changes in protein
profiles of various ocular components during myopic
development and recovery have not been studied in guinea
pigs. This study used 2-DE to investigate protein profiles in
guinea pig eyes during form deprivation and recovery.
Differential expression levels and types of proteins in
posterior sclera of the experimental eye were analyzed
between the experimental and normal control eyes.

METHODS
Experimental design: Forty-eight pigmented guinea pigs (3
weeks old) were randomly assigned to 3 groups (n=16 each
group): MD (monocular deprivation for 7 weeks), recovery

(re-exposure to normal visual environment after 7-week
monocular deprivation) and normal control (free of form
deprivation). A facemask was used to induce form deprivation
myopia [29,30]. The form deprived eyes in the MD group
were used for 2-DE (n=10) and RT–PCR (n=6) after 7 weeks
of form deprivation. All right eyes in the normal control group
were assigned to 2-DE assessment (n=0) and RT–PCR (n=6)
at the time point matching that in the MD group. In the
recovery group, the deprived eyes were assessed with 2-DE
(n=10) and RT–PCR (n=6) at 4 days after the eyes were re-
exposed to normal visual environment. Animals underwent
measurements of refraction and vitreous length in all groups
before the experiment, at 7 weeks of the experiment in the
MD, normal control and recovery groups, and at 4 days after
removal of the facemask in the recovery group. All procedures
were approved by the institutional Animal Care and Ethics
Committee and all procedures complied with the ARVO
statement for the use of animals in ophthalmic research.
Establishment of axial myopia: A latex-made monocularly-
deprived facemask (MDF) covered one eye of the animals to
induce form deprivation myopia. The procedure of wearing
the MDF has been detailed previously [30]. All the animals
were raised on a cycle of 12 h illumination (500 Lux) and 12
h darkness daily during the experimental period.
Biometric measurements: Biometric measurements included
streak retinoscopy, keratometry, ultrasonography, and optical
coherence tomography in that order. These measurements
were performed by a research optometrist with help from an
animal care assistant during the cycle of illumination (day
time). The optometrist was masked with regard to the identity
of treatment in each group. No general anesthesia was
necessary for any of the measurement procedures since the
animals were very cooperative.
Retinoscopy: One drop of 1% cyclopentolate hydrochloride
(Alcon, Puurs, Belgium) was topically administered to the eye
every 5 min for 4 times to achieve a completely dilated pupil.
Retinoscopy for all animals was performed by the same
optometrist (accuracy: 0.25 D) in a dark room using a streak
retinoscope and trial lenses. The refraction was recorded as
the mean value of the horizontal and vertical meridians [5,
30,31] based on 3 repeated measurements.
Keratometry: Corneal curvature was measured with a
keratometer (OM-4; Topcon, Tokyo, Japan). An 8.00 D lens
was attached onto the anterior surface of the keratometer
during the measurement to magnify the cornea of the guinea
pigs. This allowed readings to be obtained from the steep
cornea of the guinea pigs. A group of stainless steel balls with
diameters from 5.5 to 11.0 mm were measured by the modified
keratometer. Three readings were recorded for each
measurement to provide a mean result. The corneal radius of
curvature in guinea pigs was then deduced from the readings
on the balls with known radii by linear extrapolation [30,32].
Ultrasonography: A-scan ultrasonagraph (Cinescan A/B;
Optikon 2000; S.P.A, Rome, Italy) was used to measure the

Molecular Vision 2010; 16:2163-2174 <http://www.molvis.org/molvis/v16/a232> © 2010 Molecular Vision

2164

http://www.molvis.org/molvis/v16/a232


lens thickness and the vitreous chamber length. The
ultrasound frequency was 11 MHz [30,33]. The conducting
velocity was assumed to be 1,723.3 m/s for measurement of
the lens and 1,540 m/s for measurement of vitreous chambers
[30,32,33]. Topical anesthesia was administered with 0.5%
proparacaine hydrochloride (Alcon) before the ultrasound
measurement. The ultrasound probe had direct contact with
the cornea during the axial measurement [34,35]. The tip of
the probe had a red light that facilitated the placement of the
probe to the corneal apex while the probe was perpendicular
to the corneal surface. This perpendicular axis was confirmed
by a series of consistent ultrasound traces when realigned on
the same eye for repeated measurements. A genuine
measurement was confirmed when clear traces of various
components of the eye with consistent waves and amplitudes
were detected [30,33]. Each of the presented ultrasound data
represented averages from 10 repeated measurements.
Two-dimensional gel electrophoresis and image analysis:
The animals were euthanized with an intramuscular injection
of an overdose of pentobarbitone sodium. The eyeballs were
enucleated with the sclera separated from the other tissues
immediately after removal of the cornea. The sclera was then
trimmed taking the posterior section which started 16 mm
from the limbus and then stored in liquid nitrogen at −196 °C.
Prior to 2-DE, the scleral tissue taken from the storage was
placed into 200 μl of solution containing 7 M urea, 2 M
sulfourea, 4% CHAPS and 1 mM PMSF. The solution was
stirred with a glass stirrer, set still for 5 min to achieve a
complete dissolution of the cells, followed by centrifugation
at 4 °C, 12,000× g for 20 min. The supernatant (soluble
proteins) of the solution was extracted and quantified by a
modified Bradford assay. The proteins extracted from the
posterior sclera of each group were run on three parallel gels
(triplicate gels). An equal amount of protein from each sample
was loaded onto each gel. Each sample was diluted to a total
volume of 350 μl with a buffer containing 8 M urea, 2%
CHAPS, 20 mM 1,6-dithiothreitol (DTT), 0.5% immobilized
pH gradient (IPG) buffer, and bromophenol blue. Each diluted
sample (125 μl) was loaded on the cathode of an IPG strip (13
cm long, pH 3–10, linear; Amersham Pharmacia Biotech,
Uppsala, Sweden). The rehydrated strip underwent isoelectric
focusing at 20 °C for 11 kVh with a gradually increasing
voltage.

After isoelectric focusing, the IPG strips were
equilibrated for 15 min twice with a solution of 50 mM Tris-
HCL (pH=6.8), 6M urea, 30% glycerol, 2% sodium
dodecylsulfate (SDS), and 10 mg/ml dithiothreitol (DDT)
with the DTT replaced by 25 mg/ml iodoacetamide (IAM) in
the second equilibration. The IPG strips were subsequently
transferred onto a vertical slab of 12% SDS-polyacrylamide
gels (8.3 cm×7.3 cm). The sample on each gel was run in the
other dimension (based on the molecular weight of the
proteins) for 0.5 h at 2.5 W and then at 15 W until the dye
front reached the gel bottom (Mini-PROTERN3 system; Bio-

Rad, Hercules, CA). Each gel was finally stained with
Commassie R-250. The image averaged from 3 gels for each
sample was analyzed by software (PD Quest 2-D Software;
Bio-Rad) to detect differences in expression levels and/or
distribution of the protein spots. A protein spot was confirmed
only when this spot was detected at the same position on at
least two of the triplicate gels, at the same time the image pixel
value was converted to the actual optical density, and the
average optical density of the protein spot was acted as the
synthetic spot. Spots were considered to have different
expression levels only when the spot had at least a threefold
difference in intensity on at least two of the triplicate gels run
by the same sample.
Trypsin digestion: The protein spots that differed in intensity
and location among the MD, recovery, and normal control
posterior sclera were excised from the gels, washed with
50 μl Milli-Q water twice (5 min each), and destained with
50 μl of acetonitrile (ACN)/50 mM NH4HCO3 (1:1, vol/vol)
twice for 30 min each. The samples were dehydrated with
50 μl ACN for 20 min, dried, and reduced with a solution of
25 mM NH4HCO3 containing 10 mM DTT at 56 °C for 1 h.
The samples were then alkylated by 25 mM NH4HCO3

containing 55 mM iodoacetamide in darkness at room
temperature for 45 min and washed with 25 mM NH4HCO3,
50% acetonitrile, and 100% acetonitrile for 10 min,
respectively. Enzymatic digestion was performed by adding
the samples to 0.1 mg/ml trypsin at a final ratio of substrate
to trypsin of 40:1 wt/wt and incubation at 37 °C for 12 h,
followed by termination with 2.5% trifluoroacetic acid (TFA).
Matrix-Assisted Laser Desorption Ionization-Time of Flight
Mass Spectrometry (MALDI-TOF): Samples digested by
trypsin (the differential protein spots in posterior sclera among
the MD, recovery and normal control eyes) were mixed with
a-cyano-4-hydroxycinnamic acid (2:1, vol/vol) in an
Eppendorf tube. Two microliters of the mixtures were added
to a goldplated sample holder, dried and transferred into the
MALDI-TOF mass spectrometer (Autoflex; Bruker
Daltonics, Billerica, MA). The monoisotopic peptide masses
were searched based on human cDNA and protein databases
in NCBI (Mascot; Matrix Science Ltd, London, UK) with a
mass accuracy at 50 ppm for the parent ion mass. The proteins
were identified functionally based on (1) the Molecular
Weight Search (MOWSE) score above the 5% significance
threshold from the database (Molecular Weight Search,
Human Genome Mapping Project Resource Centre, Sanger
Centre), (2) the theoretical pI and the molecular weight (MW)
of the search result matching the 2-DE position of the
corresponding spot, and (3) less than 20% uncleaved peptides
in the matching sequence.
Reverse Transcriptase Polymerase Chain Reaction (RT–
PCR): RT–PCR was run to detect whether changes in levels
of crystallins (Table 1) were regulated by changes in mRNA
expression of the associated genes. Total RNA was extracted
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from the posterior sclera with Trizol reagent (Invitrogen,
Grand Island, NY) and confirmed using spectrophotometry
and formaldehyde/agarose gel electrophoresis. To remove
contaminating genomic DNA, 1 μg of total RNA was treated
with 1 U RNase free DNase I (Promega, Madison, WI) at
37 °C for 30 min and then heated with 1 μl stop solution
(Promega) at 65 °C for 10 min. Subsequently, 0.5 μg of total
RNA in each sample was reversely transcribed (M-MLV
reverse transcriptase, Promega) using 0.04 μg random primers
(Promega) in a total volume of 20 μl according to
manufacturer’s instructions.

Due to the lack of information on crystallin gene
sequences for guinea pigs, primers were designed using
mouse αA-crystallin, αB-crystallin, βA3/A1-crystallin, βA4-
crystallin, and βB2-crystallin sequences in areas of high
interspecies identity (Table 1). Taq polymerase (Ex Taq;
Takara, Dalian, China) and 1 μM primers were used for PCR
amplification. The amplification process included: pre-
denaturation for 5 min at 95 °C, followed by 30–35 °C cycles
of denaturation at 95 °C for 30 s, annealing at 59–65 °C for
30 s, extension at 72 °C for 40 s, and a final extension at 72 °C
for 10 min. The exact number in cycles and annealing
temperature were optimized based on different genes tested
(Table 1). Equal volume (5µl) of all PCR products was
electrophorezed on 2% agarose gels containing 2 μl goldview
(SBS genetech, Beijing, China) and then photographed under
ultraviolet illumination. The sizes of the amplified products
were estimated using Marker DL2000 (Takara).
Statistical analysis: The refractive status and axial
components of the form-deprived eyes were statistically
compared to those of the fellow eyes within the same group
at each time point (paired sample t-test, SPSS Version 11.5;
SPSS Inc., 1989-1999, Chicago, IL). These biometric results
were also compared between different groups (one-way
ANOVA with Bonferroni correction, SPSS Version 11.5).
Both the intra-group and inter-group differences were
determined as significant at p<0.05 and highly significant at
p<0.01.

RESULTS
Confirmation of phenotypic changes induced by form
deprivation: Refraction of the guinea pig eyes in all groups
was hyperopic before the experiment (3 weeks of age) with

no significant differences between eyes of the same animals
in refraction and vitreous length (p values were 0.21 and 0.95,
respectively, paired sample t-test, Table 2). The MD eyes
developed myopia of −4.24 D with a greater vitreous length
(0.22 mm) when compared to the fellow eyes over the period
of 7 weeks. In the recovery group, the MD eyes (−3.69 relative
to the fellow eye) developed toward hyperopia after removal
of the facemask with a relative myopia of −2.85 at 4 days of
the recovery process. There was no significant difference in
changes of refraction and axial components between the
fellow eyes of either the MD group or the recovery group and
the normal control eyes.

Protein profiles of the posterior sclera on 2-DE: The 2-DE
profile of all protein spots from the posterior sclera was
distinct between the MD and recovery or the control eyes
(Figure 1 and Figure 2). Twenty-six spots were different
between the MD eyes and normal control eyes in either the
level or location of expression on 2-DE (Table 3). These
included 18 spots with a different level of expression between
the 2 groups where the MD eyes had 3 spots (2 identified: 36,
45) only detected in the MD eyes, 5 spots (4 identified: 3, 42,
181, 232) with a higher expression in the MD eyes, 13 spots
(8 identified: 22, 67, 89, 143, 159, 206, 208, 235) with a lower
expression in the MD eyes, and 5 spots (4 identified: 24, 41,
44, 99) detected only in the normal control eyes (Table 3).

A comparison between the recovery and normal control
eyes showed 3 spots (2 identified: 230, 232) with a higher
expression, 19 spots (7 identified: 10, 19, 30, 38, 43, 141, 166)
with a lower expression in the recovery eyes, 6 spots (5
identified: 44, 54, 55, 56, 115) only found in the normal
control eyes and 5 (2 identified: 8, 162) only found in the
recovery eyes (Table 4). The MD eyes (in the MD group) had
5 spots with 2 (all identified: 107, 227) having a lower
expression and 3 (all identified: 148, 175, 220) having a higher
expression compared to the recovery eyes (Table 5).

RT–PCR results: In the normal control eyes, the level of
crystallin mRNA expression was highest for αA-crystallin and
αB-crystallin, followed by βA3/A1-, βA4- and βB2-
crystallins (Figure 3). The expression of αA-crystallin mRNA
did not change in the MD eyes, but was higher in the recovery
eyes when compared to the normal control eyes. The
expression of αB-crystallin mRNA was lower in both the MD

TABLE 1. SEQUENCE OF PRIMER PAIRS AND LENGTH OF THE AMPLIFIED SEQUENCES BASED ON THE NCBI DATABASE

Gene Forward primer (5′-3′) Reverse primer (5′-3′) Annealing
temperature

(°C)

Cycles Length of
product

(bp)
αA-crystallin AGCCCTTGCCAGCCATCT GCTTGTGCCACCTGCTCTTTA 60 33 220
αB-crystallin AGTTCTTCGGAGAGCACCTGTT TCCTTGGTCCATTCACAGTGAG 64 34 321

βA3/A1-crystallin GCCTGGAGTGGAAGCAAT CTGGATACGGCGAATAGA 59 35 344
βA4-crystallin TGCTGAGTGGAGCGTGGGTAGG GTGGACGTGGAAGGAGCCCACT 65 35 300
βB2-crystallin CCAGAACCTTAACCCCAAGATC GCTGTCCACTTTGATGGGCCTC 65 35 277

GAPDH CGGAGTCAACGGATTTGGTCGTAT AGCCTTCTCCATGGTGGTGAAGAC 65 30 304
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and recovery eyes compared to the normal control eyes, and
such a decrease in the recovery eyes was more obvious than
in the MD eyes. The expression of βA3/A1-crystallin mRNA
decreased in the MD eyes but obviously increased in the
recovery eyes when compared to the normal control eyes. The
expression of βA4-crystallin mRNA in both the MD and
recovery eyes increased compared to the normal control eyes
and such an increase in the recovery eyes was more obvious
than in the MD eyes. The expression of βB2-crystallin mRNA
decreased in the MD eyes but increased in the recovery eyes
when compared to the normal control eyes.

DISCUSSION
In this study, guinea pig eyes treated with monocular
deprivation facemask (MDF) for a period of 7 weeks
developed myopia with a degree of at least −4.24 D and had
a greater increase in vitreous length by 0.22 mm (p<0.001)
when compared to the fellow eyes (Table 2). This axial
myopia shifted rapidly toward hyperopia with a slowing of the
growth in the vitreous length within 4 days of removal of the

MDF. These results are similar to those found in previous
studies on the same species [29,30] and confirm that the eyes
used were indeed myopic.

Most of the proteins found to have different levels of
expression have not been studied for their roles in the
development of various axial components of the eye.
Presumably, any proteins that were upregulated in the MD
eyes (compared to normal control eyes) were needed to
facilitate the remodeling of the sclera, and those that were
down-regulated needed to be dampened to allow scleral
remodeling. Both junctophilin 1 (JP1), a triadic protein that is
thought to be required for normal voltage-gated sarcoplasmic
reticulum Ca2+ release [36] and GST subunit gYc with
glutathione transferase activity were only detected in the MD
eyes and so were probably very highly upregulated during
MD. Four proteins that were also upregulated in the MD eyes
included adenylate kinase 1 (AK1) that catalyzes conversion
between ATP and AMP molecules and presumably indicates
a need for more energy during scleral remodelling, βA4-

Figure 1. Protein profiles of the
posterior sclera on 2-DE. The 2-DE
distributing profile of the differentially
expressed protein spots from the
posterior sclera distinct between the
normal control eyes and the MD eyes or
the recovery eyes (A). Synthetic gel
produced from triplicate gels of normal
control eyes (B), the differentially
expressed protein spots were framing
labeled.

Figure 2. Dynamic 2-DE profiles of the
differentially expressed proteins in the
posterior sclera of different groups. A:
normal control eyes (NC), B: monocular
deprivation eyes (MD), C: recovery
eyes.
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crystallin which seems to be essential for ocular growth, as
defects in the gene encoding this protein are a cause of
microphthalmia [37], Fe-S hydrolyase which is also involved
in energy production (possibly from NADH), and Ca2+-
dependent activator protein for secretion 2 isoform b
(CAPS2b) which is a secretory vesicle-associated protein
involved in the release of neurotrophin.

Of the four proteins that were undetected in the MD eyes
as compared to the normal control eyes, and thus heavily
down-regulated during formation of MD, adenine
phosphoribosyltransferase (APRT) is an intracellular enzyme
that contributes to formation of AMP by catalyzing the
phosphoribosylation of adenine, peroxiredoxin 1 acts to
protect cells from oxidation, βB2-crystallin is involved in
post-translational modification of proteins, and Gnb2l1
(guanine nucleotide binding protein [G protein], beta
polypeptide 2-like 1) mediates signal transduction. Another
eight proteins were down-regulated in the MD eyes: G12v
mutant of human placental Cdc42 GTPase in the GDP form
chain B which is a GTP-binding protein, which involves in
actin assembly, peroxiredoxin 4 which is an anti-oxidative
enzyme involved in gene transcription [38], eukaryotic

translation initiation factor 3 subunit 2β (eIF3–2β) which
promotes protein translation from tRNAi and mRNA,
macrophage capping protein which is an actin-regulatory
protein, aldehyde dehydrogenase 1 A2 isoform 1 (ALDH1A2)
that catalyzes the synthesis of retinoic acid in the retina,
tubulin α-2 (a cytoskeleton constituent protein) and ATPase
that catalyzes the decomposition of ATP (ATP) into
adenosine diphosphate (ADP) and free phosphate.

Two proteins were only expressed in the recovery eyes:
ADP-ribosylation factor 1 (ARF1), a small GTP-binding
protein of the Ras superfamily, which functions as a regulator
of vesicular traffic and actin remodeling and
phosphoglycerate kinase 1 (PGK1) which promotes reduction
of plasmin disulfide bonds leading to angiostatin formation
and inhibition of tumor angiogenesis. Five spot proteins that
were undetected in the recovery eyes and so presumably
heavily down-regulated during the recovery process included
the heat-shock protein which involves in cell survival under
hyperthermia and other environmental stresses, βB2-
crystallin, the putative DEAD/DEAH box helicase which is
needed to unwind nucleic acids, βA3/A1-crystallin, and
ANXA5 protein which is involved in apoptosis [39]. Seven

TABLE 3. PROTEIN EXPRESSION IN POSTERIOR SCLERA: MD EYES VERSUS NORMAL CONTROL EYES (NC).

Spot no.a Protein level Fold Accession
numberb

Protein description Protein
scorec

3 Up 3.2 gi|61365690 adenylate kinase 1 119
42 Up 8.8 gi|73995384 beta A4-crystallin 101

181 Up 3.5 gi|78195022 Fe-S type hydro-lyases tartrate/fumarate alpha
region

66

232 Up 10.5 gi|68417708 Ca2+-dependent activator protein for secretion 2
isoform b, partial

41

36 Up N/MDd gi|61822969 junctophilin 1, partial 42
45 Up N/MD gi|13936373 glutathione S-transferase subunit gYc 132
22 Down 3.5 gi|4557920 G12v mutant of human placental Cdc42 GTPase in

the GDP form chain B
123

67 Down 3.6 gi|12407849 peroxiredoxin 4 94
89 Down 3.4 gi|32400726 putative alpha-tubulin 97

143 Down 3.6 gi|60813640 eukaryotic translation initiation factor 3 subunit 2
beta

82

159 Down 3.0 gi|73980918 macrophage capping protein (Actin-regulatory
protein CAP-G)

103

206 Down 3.3 gi|25777724 aldehyde dehydrogenase 1A2 isoform 1 91
208 Down 3.2 gi|76618159 tubulin alpha-2 chain 126
235 Down 3.3 gi|78167676 ATPase 52
24 Down eD/NCm gi|1001946 adenine phosphoribosyltransferase 95
41 Down D/NCm gi|55824562 peroxiredoxin 1 179
44 Down D/NCm gi|6978713 beta B2-crystallin 148
99 Down D/NCm gi|52138659 guanine nucleotide binding protein (G protein),

beta polypeptide 2-like 1
221

         aSpot no. is the unique sample spot protein number assigned by the PDQuest software. bAccession number is the MASCOT
      result of MALDI-TOF searched from the NCBInr database. cProtein score was from MALDI-TOF identification. The proteins
      that had a statistically significant protein score of great than 76 (p<0.05) were considered successfully identified. dN/MD, the
      protein spots were newly induced in posterior sclera of the MD eyes. eD/NCm, the protein spots were only detected in posterior
      sclera of the normal control eyes.
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other proteins were down-regulated in the recovery eyes,
including αA-crystallin, αB-crystallin, βA4-crystallin, βA3/
A1-crystallin (in a different position on the gel than the spot
identified above), βB2-crystallin (in a different position on the
gel than the spot identified above), tubulin α-6 and actin
cytoskeletal 2 (LPC2). Down-regulation of tubulins (tubulin
α-2 and tubulin α-6) and CAP-G (macrophage capping
protein) may result in a decreased movement of cells and
internal organelles during scleral remodelling.

A comparison between the MD and the recovery eyes
showed that 2 proteins were upregulated in the recovery eyes:
CAPZA2 [capping protein (actin filament) muscle Z-line
alpha 2, which regulates the growth of the actin filaments at
the barbed end], and CCT6A3 (T-complex protein 1, zeta
subunit [TCP-1-zeta; CCT-zeta; CCT-zeta-1] isoform 3)
which is a member of the chaperonin containing TCP1

complex (CCT); whereas a putative amidase (an enzyme that
hydrolyzes amide), glucose-6-phosphate dehydrogenase
(G6PD, a cytosolic enzyme in the pentose phosphate pathway
that supplies reducing energy to cells by maintaining the level
of the co-enzyme nicotinamide adenine dinucleotide
phosphate [NADPH]), and a hypothetical protein with the spot
matched as beta and gamma cytoplasmic actin were down-
regulated. These differentially expressed proteins belong to
the following functional categories: cytoskeleton, metabolic,
redox, protein degradation, apoptosis and heat shock protein/
chaperones and these categories suggest that the altered
proteins appear to have multiple roles in scleral remodeling,
increase of extracellular matrix (ECM) and changes in scleral
collagen fibers during the development of and recovery from
form deprivation myopia.

TABLE 4. PROTEIN EXPRESSION IN POSTERIOR SCLERA: RECOVERY EYES VERSUS NORMAL CONTROL EYES (NC).

Spot no.a Protein level Fold Accession
numberb

Protein description Protein
scorec

220 Up 3.0 gi|21614520 glucose-6-phosphate dehydrogenase 90
232 Up 10.5 gi|68417708 Ca2+-dependent activator protein for secretion 2

isoform b, partial
41

8 Up dN/R gi|11968098 ADP-ribosylation factor 1 115
162 Up N/R gi|50513041 phosphoglycerate kinase 1 81
10 Down 4.7 gi|117360 alpha A-crystallin 147
19 Down 3.6 gi|265053 alpha B-crystallin 175
30 Down 3.9 gi|73995384 beta A4-crystallin 107
38 Down 3.5 gi|14285262 beta A3/A1-crystallin 154
43 Down 5.1 gi|299263 beta B2-crystallin 269

141 Down 3.2 gi|73996530 tubulin alpha-6 131
166 Down 3.2 gi|1703112 actin cytoskeletal 2 (LPC2) 81
44 Down eD/NCr gi|6978713 beta B2 crystallin 148
54 Down D/NCr gi|50979116 heat-shock protein 79
55 Down D/NCr gi|27311829 putative DEAD/DEAH box helicase 61
56 Down D/NCr gi|14285262 beta A3/A1-crystallin 103
115 Down D/NCr gi|1006831 ANXA5 protein 101

         aSpot no. is the unique sample spot protein number assigned by the PDQuest software. bAccession number is the MASCOT
      result of MALDI-TOF searched from the NCBInr database. cProtein score was from MALDI-TOF identification. The proteins
      that had a statistically significant protein score of great than 76 (p<0.05) were considered successfully identified. dN/R, the
      protein spots were newly induced in posterior sclera of the recovery eyes. eD/NCr,  the protein spots were only detected in posterior
      sclera of the normal control eyes.

TABLE 5. PROTEIN EXPRESSION IN POSTERIOR SCLERA: MD EYES VERSUS RECOVERY EYES.

Spot no.a Protein level Fold Accession
numberb

Protein description Protein
Scorec

107 Up 3 gi|68270947 capping protein (actin filament) muscle Z-line alpha 2 101
227 Up 3.7 gi|73957579 similar to T-complex protein 1, zeta subunit (TCP-1-zeta)

(CCT-zeta) (CCT-zeta-1) isoform 3
95

148 Down 3.5 gi|54016803 putative amidase [Nocardia farcinica IFM 10152] 72
175 Down 9.5 gi|73964667 hypothetical protein XP_533132 210
220 Down 3.5 gi|21614520 glucose-6-phosphate dehydrogenase 90

       aSpot no. is the unique sample spot protein number assigned by the PDQuest software. bAccession number is the MASCOT
     result of MALDI-TOF searched from the NCBInr database. cProtein score was from MALDI-TOF identification. The proteins
     that had a statistically significant protein score of great than 76 (p<0.05) were considered successfully identified.
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Crystallins are major structural proteins in the lens and
belong to the small heat-shock protein family which control
protein folding in the endoplasmic reticulum and subsequent
intracellular trafficking [40]. In spite of their diversity, many
crystallins play a role in essential developmental processes
such as cell elongation and inhibition of cell apoptosis [41].
In the retina, the expression of members of α-, β- and γ-
crystallin gene families are upregulated under stress, induced
by intense light exposure or retinal tearing [42-44]. However,
the precise organization and biologic functions of the
crystallins in the sclera are not known. In this study, crystallins
were located between pI 3–10 which is similar to those from
a previous 2-DE study of chickens [45]. Crystallins including
subtypes of αA-, αB-, βA3/A1-, βA4- and βB2-crystalin were
detected at both mRNA (RT–PCR) and functional levels (2-
DE) in the posterior sclera of the guinea pigs after form
deprivation and the recovery.

For the α-crystallins, two α-crystallin polypeptides (αA
and αB) are molecular chaperones that can protect proteins
(e.g., β-crystallins) from thermal aggregation [46-49], with
αB-crystallin being more efficient than αA-crystallin in
preventing the aggregation of proteins [48,49]. The αA and
αB subunits share approximately 60% amino acid sequence
identity and account for 20% to 30% of the lens total proteins

Figure 3. Expression of αA-, αB-, βA3/A1-, βA4- and βB2-
crystallins mRNA in posterior sclera of the guinea pigs in different
groups. normal control eyes (NC), monocular deprivation eyes
(MD), recovery eyes. GAPDH was used as a loading control.

[50]. They exist as heteromers that can undergo subunit
exchange [51]. The α-crystallins may be involved in the
regulation of cellular growth and genomic stability [52-54]. It
has been found that αA-, βA3/A1-, βB1-, and βB2-crystallin
mRNAs are upregulated in retina-RPE-choroid of form-
deprived chicken eyes [55]. Retinal expression of αB-
crystallin mRNA elevates in form-deprived eyes and remains
elevated with only a slight return to control levels after the re-
exposure of the eye to normal visual conditions in chickens
[56,57]. These results indicate that members of the crystallin
family do play a role in the development of form deprivation
myopia.

In this present study, the expression of αB-crystallin in
the posterior sclera was down-regulated in the myopic and
recovery eyes at both protein and mRNA levels compared to
the normal control eyes (Table 6). This is different to previous
studies [56,57] where αB-crystallin mRNA was upregulated
in retina of the myopic and recovery eyes in chickens. This
may be due to the use of different species or different tissues
for the recovery of the mRNA. The level of αA-crystallin
mRNA or protein expression did not obviously differ in the
myopic eyes compared to the normal control eyes.
Furthermore, αA-crystallin protein in the recovery eyes was
down-regulated although the αA-crystallin mRNA is
upregulated. A similar mismatch in expression of βA3/A1-,
βA4- and βB2-crystallins between 2-DE and PCR occurred in
the recovery eyes. It is possible that these mRNA changes are
a prelude to protein changes that only manifest, or at least can
be detected to change, after 4 days of recovery.

This present study focused on changes in protein profiles
of posterior sclera of guinea pigs, whereas Frost and Norton
[24] examined the entire sclera of tree shrews. An inherent
variability across the gels might have limited the detection of
biologic variations between groups, although Diz [58] has
found that pooled samples matched the mean expression of
the individuals making up the pool for the majority of proteins.
Hence, results in the present study are likely to provide a good
survey of the number of proteins whose levels change during
form deprivation myopia and the subsequent recovery.
Previous studies have demonstrated changes to other
extracellular matrix proteins including collagen I and
glucosaminoglycan [17,24]. However, the present study did
not identify changes to these proteins using 2-DE. This may
have been due to the cut-off of threefold in protein expression
before spots on the 2-DE were identified, and changes to these
proteins not reaching this cut off.

In summary, this study adopted a gel-based proteomic
approach to probe the serially changed proteins in posterior
sclera of guinea pigs during development of form deprivation
myopia and recovery. In general, changes in crystallin protein
levels were consistent with those in mRNA levels during the
development of FDM. However, changes in most crystallin
protein levels were mismatched with their mRNA levels
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during the recovery stage. Furthermore, the absolute
quantities of mRNA expression for the proteins isolated by 2-
DE may not be accurate without real time PCR. However, the
main interest for this study was to investigate the difference
in  levels of  protein  expression  between different experi-
mental groups rather than the absolute quantity for the in-
dividual  proteins.  Further proteomic  analyses will  be fo-
cused on the  functional  role of  the differentially expressed
proteins  during  development  of  the  experimental  myopia
and recovery.

ACKNOWLEDGMENTS
This study was sponsored by National Basic Research
Program of China (973 project) NO: 2011CB504603,
National Natural Science Foundation of China (30500549 and
30600227), Zhejiang Provincial Natural Science Foundation
of China (R205739 and Y207598), Zhejiang Science &
Technology Bureau (2003C23005; wkj2005–2-048–02), and
Zhejiang Provincial Program for the Cultivation of High-level
Innovative Health talents.

REFERENCES
1. Hung GK, Ciuffreda KJ. Quantitative analysis of the effect of

near lens addition on accommodation and myopigenesis. Curr
Eye Res 2000; 20:293-312. [PMID: 10806444]

2. Wallman J, McFadden S. Monkey eyes grow into focus. Nat
Med 1995; 1:737-9. [PMID: 7585168]

3. Siegwart JT, Norton TT. Refractive and ocular changes in tree
shrews raised with plus or minus lenses. Invest Ophthalmol
Vis Sci 1993; 34:1208.

4. Smith EL 3rd, Hung LF, Harwerth RS. Effects of optically
induced blur on the refractive status of young monkeys.
Vision Res 1994; 34:293-301. [PMID: 8160365]

5. McFadden SA, Howlett MH, Mertz JR. Retinoic acid signals
the direction of ocular elongation in the guinea pig eye. Vision
Res 2004; 44:643-53. [PMID: 14751549]

6. Zhou X, Lu F, Xie R, Jiang L, Wen J, Li Y, Shi J, He T, Qu J.
Recovery from axial myopia induced by a monocularly
deprived facemask in adolescent (7-week-old) guinea pigs.
Vision Res 2007; 47:1103-11. [PMID: 17350070]

7. Rada JA, Shelton S, Norton TT. The sclera and myopia. Exp
Eye Res 2006; 82:185-200. [PMID: 16202407]

8. Funata M, Tokoro T. Scleral change in experimentally myopic
monkeys. Graefes Arch Clin Exp Ophthalmol 1990;
228:174-9. [PMID: 2338255]

9. Rada JA, Wiechmann AF. Melatonin receptors in chick ocular
tissues: implications for a role of melatonin in ocular growth

regulation. Invest Ophthalmol Vis Sci 2006; 47:25-33.
[PMID: 16384940]

10. McBrien NA, Gentle A. Role of the sclera in the development
and pathological complications of myopia. Prog Retin Eye
Res 2003; 22:307-38. [PMID: 12852489]

11. Lin HJ, Wan L, Tsai Y, Liu SC, Chen WC, Tsai SW, Tsai FJ.
Sclera-related gene polymorphisms in high myopia. Mol Vis
2009; 15:1655-63. [PMID: 19710942]

12. Hall NF, Gale CR, Ye S, Martyn CN. Myopia and
polymorphisms in genes for matrix metalloproteinases. Invest
Ophthalmol Vis Sci 2009; 50:2632-6. [PMID: 19279308]

13. Han W, Leung KH, Fung WY, Mak JY, Li YM, Yap MK, Yip
SP. Association of PAX6 polymorphisms with high myopia
in Han Chinese nuclear families. Invest Ophthalmol Vis Sci
2009; 50:47-56. [PMID: 19124844]

14. Hewitt AW, Kearns LS, Jamieson RV, Williamson KA, van
Heyningen V, Mackey DA. PAX6 mutations may be
associated with high myopia. Ophthalmic Genet 2007;
28:179-82. [PMID: 17896318]

15. Tang WC, Yip SP, Lo KK, Ng PW, Choi PS, Lee SY, Yap MK.
Linkage and association of myocilin (MYOC)
polymorphisms with high myopia in a Chinese population.
Mol Vis 2007; 13:534-44. [PMID: 17438518]

16. Lin HJ, Wan L, Tsai Y, Tsai YY, Fan SS, Tsai CH, Tsai FJ. The
TGFbeta1 gene codon 10 polymorphism contributes to the
genetic predisposition to high myopia. Mol Vis 2006;
12:698-703. [PMID: 16807529]

17. Inamori Y, Ota M, Inoko H, Okada E, Nishizaki R, Shiota T,
Mok J, Oka A, Ohno S, Mizuki N. The COL1A1 gene and
high myopia susceptibility in Japanese. Hum Genet 2007;
122:151-7. [PMID: 17557158]

18. Hysi PG, Young TL, Mackey DA, Andrew T, Fernandez-
Medarde A, Solouki AM, Hewitt AW, Macgregor S,
Vingerling JR, Li YJ, Ikram MK, Fai LY, Sham PC, Manyes
L, Porteros A, Lopes MC, Carbonaro F, Fahy SJ, Martin NG,
van Duijn CM, Spector TD, Rahi JS, Santos E, Klaver CC,
Hammond CJ. A genome-wide association study for myopia
and refractive error identifies a susceptibility locus at 15q25.
Nat Genet 2010; 42:902-5. [PMID: 20835236]

19. Solouki AM, Verhoeven VJ, van Duijn CM, Verkerk AJ, Ikram
MK, Hysi PG, Despriet DD, van Koolwijk LM, Ho L, Ramdas
WD, Czudowska M, Kuijpers RW, Amin N, Struchalin M,
Aulchenko YS, van Rij G, Riemslag FC, Young TL, Mackey
DA, Spector TD, Gorgels TG, Willemse-Assink JJ, Isaacs A,
Kramer R, Swagemakers SM, Bergen AA, van Oosterhout
AA, Oostra BA, Rivadeneira F, Uitterlinden AG, Hofman A,
de Jong PT, Hammond CJ, Vingerling JR, Klaver CC. A

TABLE 6. EXPRESSION OF αA-, ΑB-, ΒA3/A1-, ΒA4- AND βB2-CRYSTALLINS IN POSTERIOR SCLERA OF THE GUINEA PIGS IN
MONOCULAR DEPRIVATION EYES (MD), RECOVERY EYES COMPARING TO NORMAL CONTROL EYES.

Groups αA αB βA3/A1 βA4 βB2
Protein levels MD - - - ↑ ↓

Recovery ↓ ↓ ↓ ↓ ↓
mRNA levels MD - ↓ ↓ ↑ ↓

Recovery ↑ ↓ ↑* ↑* ↑*

          “↑”: upregulation, “↓”: down-regulation, “-”: difference less than threefold, “*”: significant difference.

Molecular Vision 2010; 16:2163-2174 <http://www.molvis.org/molvis/v16/a232> © 2010 Molecular Vision

2172

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=10806444
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=7585168
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=8160365
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=14751549
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=17350070
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=16202407
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=2338255
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=16384940
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=16384940
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=12852489
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=19710942
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=19279308
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=19124844
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=17896318
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=17438518
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=16807529
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=17557158
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=20835236
http://www.molvis.org/molvis/v16/a232


genome-wide association study identifies a susceptibility
locus for refractive errors and myopia at 15q14. Nat Genet
2010; 42:897-901. [PMID: 20835239]

20. Siegwart JT Jr, Norton TT. The time course of changes in
mRNA levels in tree shrew sclera during induced myopia and
recovery. Invest Ophthalmol Vis Sci 2002; 43:2067-75.
[PMID: 12091398]

21. Siegwart JT Jr, Norton TT. Selective regulation of MMP and
TIMP mRNA levels in tree shrew sclera during minus lens
compensation and recovery. Invest Ophthalmol Vis Sci 2005;
46:3484-92. [PMID: 16186323]

22. McBrien NA, Adams DW. A longitudinal investigation of
adult-onset and adult-progression of myopia in an
occupational group. Refractive and biometric findings. Invest
Ophthalmol Vis Sci 1997; 38:321-33. [PMID: 9040464]

23. Lu F, Zhou X, Xie R, Wu Y, Hu Y, Zhang L, Li H, Mao X, Hu
D, Qu J. Feasibility of two-dimensional gel electrophoresis
used for proteomic analysis of human scleral fibroblasts. Curr
Eye Res 2007; 32:319-29. [PMID: 17453953]

24. Frost MR, Norton TT. Differential protein expression in tree
shrew sclera during development of lens-induced myopia and
recovery. Mol Vis 2007; 13:1580-8. [PMID: 17893659]

25. ZhongXLiSLiaoAGuoYHeHYangJGeJStroboscopic
Illumination Induces Differential Protein Expression in
Form-Deprived C57 Mice Retina.ARVO Annual Meeting;
2009 May 3-7; Fort Lauderdale (FL)

26. Lü F, Wang QM, Qu J. Focus on safety and efficiency of
refractive surgery. Zhonghua Yan Ke Za Zhi 2005;
41:482-5. [PMID: 16008904]

27. Sherman SM, Norton TT, Casagrande VA. Myopia in the lid-
sutured tree shrew (Tupaia glis). Brain Res 1977;
124:154-7. [PMID: 843938]

28. Wiesel TN, Raviola E. Myopia and eye enlargement after
neonatal lid fusion in monkeys. Nature 1977; 266:66-8.
[PMID: 402582]

29. Lu F, Zhou X, Jiang L, Fu Y, Lai X, Xie R, Qu J. Axial myopia
induced by hyperopic defocus in guinea pigs: A detailed
assessment on susceptibility and recovery. Exp Eye Res 2009;
89:101-8. [PMID: 19268468]

30. Lu F, Zhou X, Zhao H, Wang R, Jia D, Jiang L, Xie R, Qu J.
Axial myopia induced by a monocularly-deprived facemask
in guinea pigs: A non-invasive and effective model. Exp Eye
Res 2006; 82:628-36. [PMID: 16256987]

31. Howlett MH, McFadden SA. Form-deprivation myopia in the
guinea pig (Cavia porcellus). Vision Res 2006; 46:267-83.
[PMID: 16139323]

32. Norton TT, McBrien NA. Normal development of refractive
state and ocular component dimensions in the tree shrew
(Tupaia belangeri). Vision Res 1992; 32:833-42. [PMID:
1604852]

33. Zhou J, Rappaport EF, Tobias JW, Young TL. Differential gene
expression in mouse sclera during ocular development. Invest
Ophthalmol Vis Sci 2006; 47:1794-802. [PMID: 16638983]

34. Lu F, Simpson T, Fonn D, Sorbara L, Jones L. Validity of
pachymetric measurements by manipulating the acoustic
factor of Orbscan II. Eye Contact Lens 2006; 32:78-83.
[PMID: 16538128]

35. Zhong X, Ge J, Nie H, Smith EL 3rd. Compensation for
experimentally induced hyperopic anisometropia in

adolescent monkeys. Invest Ophthalmol Vis Sci 2004;
45:3373-9. [PMID: 15452038]

36. Corona B, Wilson AK, Rouviere C, Hamilton SL, Ingalls CP.
Changes in junctophilin 1 contribute to strength deficits after
eccentric contraction-induced muscle injury. FASEB J 2008;
22:962.35. [PMID: 15452038]

37. Billingsley G, Santhiya ST, Paterson AD, Ogata K, Wodak S,
Hosseini SM, Manisastry SM, Vijayalakshmi P, Gopinath
PM, Graw J, Heon E. CRYBA4, a novel human cataract gene,
is also involved in microphthalmia. Am J Hum Genet 2006;
79:702-9. [PMID: 16960806]

38. Wagner E, Luche S, Penna L, Chevallet M, Van Dorsselaer A,
Leize-Wagner E, Rabilloud T. A method for detection of
overoxidation of cysteines: peroxiredoxins are oxidized in
vivo at the active-site cysteine during oxidative stress.
Biochem J 2002; 366:777-85. [PMID: 12059788]

39. Boersma HH, Kietselaer BL, Stolk LM, Bennaghmouch A,
Hofstra L, Narula J, Heidendal GA, Reutelingsperger CP.
Past, present, and future of annexin A5: from protein
discovery to clinical applications. J Nucl Med 2005;
46:2035-50. [PMID: 16330568]

40. Young JC, Agashe VR, Siegers K, Hartl FU. Pathways of
chaperone-mediated protein folding in the cytosol. Nat Rev
Mol Cell Biol 2004; 5:781-91. [PMID: 15459659]

41. Morrison LE, Hoover HE, Thuerauf DJ, Glembotski CC.
Mimicking phosphorylation of alphaB-crystallin on serine-59
is necessary and sufficient to provide maximal protection of
cardiac myocytes from apoptosis. Circ Res 2003;
92:203-11. [PMID: 12574148]

42. Sakaguchi H, Miyagi M, Darrow RM, Crabb JS, Hollyfield JG,
Organisciak DT, Crabb JW. Intense light exposure changes
the crystallin content in retina. Exp Eye Res 2003;
76:131-3. [PMID: 12589783]

43. Schmeer C, Gamez A, Tausch S, Witte OW, Isenmann S. Statins
modulate heat shock protein expression and enhance retinal
ganglion cell survival after transient retinal ischemia/
reperfusion in vivo. Invest Ophthalmol Vis Sci 2008;
49:4971-81. [PMID: 18566458]

44. Vázquez-Chona F, Song BK, Geisert EE Jr. Temporal changes
in gene expression after injury in the rat retina. Invest
Ophthalmol Vis Sci 2004; 45:2737-46. [PMID: 15277499]

45. Inoue T, Miyazaki J, Hirabayashi T. Accumulation of crystallin
in developing chicken lens. Exp Eye Res 1992; 55:1-8.
[PMID: 1397119]

46. Horwitz J, Emmons T, Takemoto L. The ability of lens alpha
crystallin to protect against heat-induced aggregation is age-
dependent. Curr Eye Res 1992; 11:817-22. [PMID: 1424725]

47. Sun TX, Das BK, Liang JJ. Conformational and functional
differences between recombinant human lens alphaA- and
alphaB-crystallin. J Biol Chem 1997; 272:6220-5. [PMID:
9045637]

48. Raman B, Rao CM. Chaperone-like activity and quaternary
structure of alpha-crystallin. J Biol Chem 1994;
269:27264-8. [PMID: 7961635]

49. Datta SA, Rao CM. Differential temperature-dependent
chaperone-like activity of alphaA- and alphaB-crystallin
homoaggregates. J Biol Chem 1999; 274:34773-8. [PMID:
10574947]

50. Horwitz J. The function of alpha-crystallin in vision. Semin Cell
Dev Biol 2000; 11:53-60. [PMID: 10736264]

Molecular Vision 2010; 16:2163-2174 <http://www.molvis.org/molvis/v16/a232> © 2010 Molecular Vision

2173

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=20835239
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=12091398
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=12091398
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=16186323
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=9040464
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=17453953
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=17893659
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=16008904
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=843938
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=402582
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=402582
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=19268468
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=16256987
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=16139323
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=16139323
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=1604852
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=1604852
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=16638983
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=16538128
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=16538128
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=15452038
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=15452038
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=16960806
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=12059788
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=16330568
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=15459659
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=12574148
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=12589783
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=18566458
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=15277499
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=1397119
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=1397119
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=1424725
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=9045637
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=9045637
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=7961635
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=10574947
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=10574947
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=10736264
http://www.molvis.org/molvis/v16/a232


51. Horwitz J, Bova MP, Ding LL, Haley DA, Stewart PL. Lens
alpha-crystallin: function and structure. Eye (Lond) 1999;
13:403-8. [PMID: 10627817]

52. Andley UP, Song Z, Wawrousek EF, Bassnett S. The molecular
chaperone alphaA-crystallin enhances lens epithelial cell
growth and resistance to UVA stress. J Biol Chem 1998;
273:31252-61. [PMID: 9813033]

53. Andley UP, Song Z, Wawrousek EF, Brady JP, Bassnett S,
Fleming TP. Lens epithelial cells derived from alphaB-
crystallin knockout mice demonstrate hyperproliferation and
genomic instability. FASEB J 2001; 15:221-9. [PMID:
11149910]

54. Bai F, Xi JH, Wawrousek EF, Fleming TP, Andley UP.
Hyperproliferation and p53 status of lens epithelial cells
derived from alphaB-crystallin knockout mice. J Biol Chem
2003; 278:36876-86. [PMID: 12826669]

55. Ishibashi K, Fujii S, Escano MF, Sekiya Y, Yamamoto M. Up-
regulation of crystallin mRNAs in form-deprived chick eyes.
Exp Eye Res 2000; 70:153-8. [PMID: 10655140]

56. Morgan I, Kucharski R, Krongkaew N, Firth SI, Megaw P,
Maleszka R. Screening for differential gene expression during
the development of form-deprivation myopia in the chicken.
Optom Vis Sci 2004; 81:148-55. [PMID: 15127934]

57. Ashby RS, Megaw PL, Morgan IG. Changes in retinal alphaB-
crystallin (cryab) RNA transcript levels during periods of
altered ocular growth in chickens. Exp Eye Res 2010;
90:238-43. [PMID: 19878675]

58. Diz AP, Truebano M, Skibinski DO. The consequences of
sample pooling in proteomics: an empirical study.
Electrophoresis 2009; 30:2967-75. [PMID: 19676090]

Molecular Vision 2010; 16:2163-2174 <http://www.molvis.org/molvis/v16/a232> © 2010 Molecular Vision

The print version of this article was created on 22 October 2010. This reflects all typographical corrections and errata to the
article through that date. Details of any changes may be found in the online version of the article.

2174

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=10627817
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=9813033
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=11149910
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=11149910
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=12826669
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=10655140
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=15127934
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=19878675
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=19676090
http://www.molvis.org/molvis/v16/a232

