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Purpose: The S100A protein family is involved in various inflammatory processes. Two of its members, S100A4 and
A13, are thought to be pro-angiogenic in tumor development. This study examines whether S100A proteins are involved
in the pathogenesis of inflammation-associated corneal neovascularization (CorNV).
Methods: We used 10–0 nylon suture- (S) or chemical burn (CB) -induced CorNV models for a microarray analysis of
the genome-wide expression pattern. At different time points after suturing, we conducted histopathological examinations
to detect the infiltration of inflammatory cells into the corneal stroma. Representative members of the S100A family
(S100A4, S100A6, S100A8, S100A9, and S100A13), pro-inflammatory cytokines (IL-1β, IL-6, transforming growth
factor β1, and MIP-2), and pro-angiogenic factors (fibroblast growth factor and vascular endothelial growth factor) were
detected with reverse-transcription quantitative PCR (RT-QPCR). We used immunofluorescence to monitor neutrophil
or macrophage infiltration and S100A8 or S100A9 protein deposition in neovascularized corneas. Antibody-mediated
neutrophil depletion or S100A8 depletion in mice was performed to evaluate the role of neutrophils and S100A proteins
in suture-induced corneal neovascularization (S-CorNV).
Results: Microarray profiling revealed that S100A4, S100A6, S100A8, S100A9, and S100A13 were upregulated in both
CorNV models, with S100A8 and S100A9 manifesting the most significant changes compared to the normal animals. An
RT-QPCR assay of these S100A genes and cytokine genes in the S-CorNV corneas showed that the changes were time-
dependent, reaching the apex at day 5. Immunofluorescence analysis demonstrated that neutrophils and macrophages
produce S100A8 and S100A9. The depletion of neutrophils beginning one day before S-CorNV induction decreased
disease severity and S100A8/S100A9 deposition in the neovascularized corneas. The extent of upregulation of other
detected S100A genes and pro-inflammatory or pro-angiogenic genes was also decreased by neutrophil depletion.
Subconjunctival administration of S100A8 antibodies also significantly inhibited the growth of vessels and inflammation
in the S-CorNV model.
Conclusions: We determined that S100A proteins are involved in the inflammatory CorNV model and that S100A8 or
S100A9 in particular might be employed as targets in managing diseases involving this pathological process.

Corneal transparency is necessary for normal vision and
may be compromised by pathological factors such as
infection, trauma, degeneration, corneal graft rejection,
contact lens-related hypoxia, neurotrophic ulceration,
aniridia, and limbal stem cell deficiency [1]. One of the main
complications of such conditions is neovascularization, here
referring to the growth of vessels in the originally avascular
area of the cornea [2]. The process and mechanism of corneal
neovascularization (CorNV) can be complicated. Depending
on different pathogenic initiators, inflammation is often
present in neovascularized corneas and is thus called
inflammation-associated (or -induced) neovascularization. In
that context, macrophages, myelomonocytes, and neutrophils
are the most commonly seen cellular populations, all of which
are main sources of pro-angiogenic or anti-angiogenic factors
[3-5]. They also produce other cytokines, chemokines, or
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enzymes that modulate the functions of cells involved in
angiogenesis [6-9].

The action of vascular endothelium growth factor
(VEGF) on vascular endothelial cells has been characterized
as the last and most common step in various pro-angiogenic
pathways. Various strategies targeting vascular endothelium
growth factor A (VEGFA) have been extensively tested in
neovascularization-related diseases. The search for other
molecules that could be used as targets to manage CorNV is
ongoing. One strategy focuses on the inflammation process
that occurs before neovascularization. In searching for
potential targets in the case of inflammation-induced CorNV,
a group of proteins—the S100 family—attracted our attention.
Representing one of the largest subfamilies of the EF-hand
calcium-binding proteins with at least 19 different members
[10], S100 proteins interact with other proteins to modulate a
variety of biologic functions and are thus related to various
diseases, many of which involve inflammation, innate
immunity, tissue damage, and wound healing [11,12]. Apart
from the possible crosstalk between S100 proteins and pro- or
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anti-angiogenic factors, S100A4 and A13 have been reported
to participate directly in the angiogenic process in other
tissues, such as cancer tissues [13-17]. In the present study,
we first used microarray analysis to profile the genes that were
differentially regulated in experimental CorNV models. We
then focused on the possible role of S100A proteins in the
pathogenesis of CorNV.

METHODS
Corneal neovascularization models: Six- to eight-week-old
Balb/c mice were purchased from Beijing Pharmacology
Institute, Chinese Academy of Medical Sciences (Beijing,
China). We complied with the Association for Research in
Vision and Ophthalmology (ARVO) Statement for the Use of
Animals in Ophthalmic and Vision Research throughout the
study. The procedures were performed under anesthesia with
intraperitoneal chlorpromazine (Harvest Pharmaceutical,
Shanghai, China) and ketamine (Heng Rui Medicine, Jiangsu,
China). There was also a topical application of 0.5%
proparacaine hydrochloride (Alcon-Couvreur, Puurs,
Belgium) for topical anesthesia. For the suture-induced
CorNV (S-CorNV), three interrupted 10–0 polypropylene
sutures (MANI Inc., Togichi, Japan) were placed following
the protocol of other researchers [18], with some
modification. In detail, a 2 mm trephine was pressed slightly
against the central cornea to produce a circular mark. Three
stitches were evenly placed, with both points of each stitch
going in and out of the cornea along the mark. The sutures
went through the epithelial and stromal layers, but did not
penetrate the endothelial layer. For chemical burn-induced
CorNV (CB-CorNV), a piece of disk-shaped filter paper
2.0 mm in diameter was immersed in 1 mol/l NaOH solution
for 15 s and placed on the central corneal surface for 50 s to
produce a circular burn, followed by immediate washing with
30 ml of 0.9% saline. Only the right eye of each mouse was
used for CorNV induction. Photographs of the corneas were
taken with a camera mounted on a slit-lamp microscope and
the neovascularization score was calculated as previously
described [18]. Briefly, CorNV was graded between 0 and 3,
with increments of 0.5, using a grid system for each quadrant
based on the centripetal extent of the neovascular branches
from the limbus. Scores for each quadrant were summed to
obtain the CorNV score (range 0 to 12) for each eye. At
predetermined time points, the corneas were harvested for
microarray analysis, reverse transcription-quantitative PCR
(RT-QPCR), histology, or immunofluorescence assays, as
described below.
Isolation of total RNA: For the extraction of total RNA used
for either microarray analysis or RT-QPCR, the corneas were
excised using a 2 mm diameter trepan and placed in ice-cold
TRIzol reagent (Invitrogen, Gaithersburg, MD) at desired
time points after CorNV induction. Five model corneas from
each group of mice were pooled and the untreated corneas
from the same mice were used as controls. Total RNA was

extracted using isopropanol precipitation and was purified
using NucleoSpin® RNA clean-up columns (MACHEREY-
NAGEL, Düren, Germany). The quality and integrity of the
RNA was confirmed by denaturing aldehyde agarose
electrophoresis.
Microarray analysis: Dual cRNA labeling with Cy5 and Cy3
fluorescence and microarray hybridizations were performed
by Capital Bio Corporation using Capital Bio cRNA labeling
kits and the Capital Bio 36 K Mouse Genome Oligo Array
(Capital Bio, Beijing, China) [19]. In brief, the array
comprises 35,852 70-mer oligonucleotide probes representing
approximately 25,000 genes of Mouse Genome Version 4.0
(Operon Biotechnologies, Huntsville, AL). The Cy5 and Cy3
were used to label cRNA of the experimental and control
groups. Two or three replicate arrays were used for each time
point for each model. After hybridization, the arrays were
scanned using a LuxScan 10KA (Capital Bio) and signals
were processed using LuxScan 3.0 software (Capital Bio).
Intra-array normalization was done using the LOcally
WEighted Scatterplot Smoothing (LOWESS) normalization
method and inter-array normalization of the whole data set
was performed according to the global means of Cy5 and Cy3
signals [20]. Normalized signal intensities were compared
between the experimental and control samples, and the ratios
were used to reflect the change in the expression level of each
gene.
RT-QPCR analysis: One microgram total RNA from each
sample was reverse transcribed into cDNA using a
PrimeScript RT Reagent Kit (Takara, Shiga, Japan), following
the manufacturer’s instructions. Quantitative PCR was
performed with cDNA corresponding to 62.5 ng RNA using
the Taqman method with proper primers and probes (Table
1). Apart from the S100A proteins, representative pro-
inflammatory cytokines (IL-1β, IL-6, macrophage-
inflammatory protein-2 (MIP-2), and transforming growth
factor β1 (TGF)), and pro-angiogenic factors (VEGFA and
fibroblast growth factor (FGF)) were also studied. The
reactions were run in an ABI 7500 Detection System (Applied
Biosystems, Foster City, CA) for 10 min at 95 °C followed by
40 cycles of amplification for 15 s at 95 °C and 1 min at 60 °C.
The raw data was analyzed using SDS 7500 software (Applied
Biosystems) and Ct values for each gene in each sample were
obtained for further analysis. The RPL5 gene was used as the
reference gene for quantification in this assay. Each sample
was run in duplicate. The relative level of the gene of interest
was obtained using the Equation 1/2(Ct for gene - Ct for RPL5), and the
final relative expression ratio of each gene in each group was
obtained by the geometric mean of five samples in each group.

Histological and immunohistochemical analysis: Corneas
removed from various groups of mice were subjected to
fixation in 10% paraformaldehyde followed by regular
Hematoxylin-Eosin (HE) staining, or to cryosection and
immunostaining. In brief, paraffin-embedded corneal tissues
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were continually cut into 4 μm thick slices and stained with
HE. Cryopreserved corneas in Optimum Cutting Temperature
formulation (Sakura Finetek, Tokyo, Japan) were sectioned
and labeled with goat anti-mouse S100A8 or goat anti-mouse
S100A9 in combination with rabbit anti-mouse Gr-1 or rabbit
anti-mouse F4/80 at 4 °C overnight. After three washes with
PBS-Tween buffer, a mixture of PE conjugated bovine anti-
goat IgG and FITC conjugated bovine anti-rabbit IgG was
applied for 30 min. All antibodies were products of Santa Cruz
Biotechnology Inc. (Santa Cruz, CA) and the concentrations
of antibodies were chosen based on the manufacturer’s
instructions. The sections were observed using an E800
fluorescence microscope (Nikon, Tokyo, Japan) with proper
filters.
Neutrophil depletion study: To deplete neutrophils in vivo and
study the effect on CorNV pathogenesis, purified anti-mouse

Gr-1 antibody (RB6–8C5; eBioscience, San Diego, CA) was
injected intraperitoneally (0.5 mg in 0.2 ml per mouse) [21]
every other day starting one day before S-CorNV induction.
Control animals received an equivalent volume of PBS.
Suture CorNV induction and molecular studies of the
neutrophil-depleted mice were performed as described above
to study the potential effect of neutrophil depletion on the
development of S-CorNV.
Subconjunctival injection of anti-S100A8 mAb: To block the
activity of S100A8 during CorNV development, 20 μg of anti-
S100A8 monoclonal antibody (clone 8H150; LifeSpan
BioSciences, Seattle, WA) in 5 μl of PBS was injected into
the subconjunctival space three times—immediately after
suture placement and then on days 2 and 4 after suture
placement. Equivalent PBS was injected into the control eyes.

TABLE 1. SEQUENCES OF PRIMERS AND PROBES USED FOR RT-QPCR ASSAY.

Gene symbol (accession number) Primer sequence (5′-3′) Amplicon (bp)
S100A4 (NM_011311) F- GGACAGCAACAGGGACAATGA 101 bp
 R- TATCTGGGCAGCCCTCAAAG  
 P- AGTACTGTGTCTTCCTGTCCTGCATTGCCA  
S100A6 (NM_011313) F- GTACTCTGGCAAGGAAGGTGACA 101 bp
 R- CAGCATCCTGCAGCTTGGA  
 P- AAGGAGCTGAAGGAGTTGATCCAGAAG  
S100A8 (NM_013650) F- CGAAAACTTGTTCAGAGAATTGGA 81 bp
 R- ACTTTTATCACCATCGCAAGGAA  
 P- ATCAATAGTGACAATGCAATTAACTTCGA  
S100A9 (NM_009114) F- GAGCGCAGCATAACCACCAT 101 bp
 R- TCCACCATTTGTCTGAATTCCTT  
 P- ATCGACACCTTCCATCAATACTCTAGGA  
S100A13 (NM_009113) F- CTCAAGGACGTGGGCTCTCT 101 bp
 R- AGCTCTCCAATCAGTCTCCAGTATTC  
 P- ATGAAAAGATGAAGACCTTGGATGTGA  
IL-1β (NM_008361) F- AGATGAAGGGCTGCTTCCAA 81 bp
 R- TGATGTGCTGCTGCGAGATT  
 P- TGACCTGGGCTGTCCTGATGA  
IL-6 (NM_031168) F- GTTGCCTTCTTGGGACTGATG 91 bp
 R- TGGGAGTGGTATCCTCTGTGAA  
 P- TGACAACCACGGCCTTCCCTACTTCA  
MIP-2 (NM_009140) F- GAACATCCAGAGCTTGAGTGTGA 86 bp
 R- CTTTTTGACCGCCCTTGAGA  
 P- CCCCAGGACCCCACTGCGC  
VEGFA (NM_009505) F- GCTACTGCCGTCCGATTGAG 86 bp
 R- CACACAGGACGGCTTGAAGA  
 P- CCTGGTGGACATCTTCCAGGAGTACCC  
FGF2 (NM_008006) F- AGAGCGACCCACACGTCAA 86 bp
 R- AAGGTACCGGTTGGCACACA  
 P- TCCAAGCAGAAGAGAGAGGAGTTGTGT  
TGFβ1 (NM_011577) F- ACGGAATACAGGGCTTTCGA 86 bp
 R- GCTGATCCCGTTGATTTCCA  
 P- TCAGCGCTCACTGCTCTTGTG  
RPL5 (NM_016980) F- GGAAGCACATCATGGGTCAGA 70 bp
 R- TACGCATCTTCATCTTCCTCCATT  
 P- TGTGGCAGACTACATGCGCTACC  

          In the “Primer” column, “F” indicates forward primer, “R” indicates reverse primer, and “P” indicates probe sequence.
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The eyes were monitored every other day and enucleated on
day 7 for histological analysis.
Statistical analysis: Statistical analysis was performed where
applicable using Student’s two-tailed t tests. P values >0.05
indicated a significant difference between the groups.

RESULTS AND DISCUSSION
Upregulation of S100A gene expression in corneas upon
CorNV induction: In our pilot studies, we found that S-CorNV
developed rapidly around day 5 and peaked around day 10,
while CB-induced CorNV reached similar levels at days 6 and
14, respectively. By comparing the gene expression profiles
of both models at these stages, we found that some members
of the S100A protein family showed significant changes
compared to the normal animals. The changes for all genes as
a set was comparable in the two models (Table 2). In
particular, S100A8, also known as myloid-related protein 8
(MRP8), and S100A9 (MRP14) increased abundantly at both
time points in both CorNV models, as detected by the
microarray assay. The S100A4 was also upregulated, but to a
lesser extent, while S100A3 and S100A13 only slighted
increased. The remaining S100A members did not show
significant changes. The RT-QPCR assay of S100A gene
expression in the S-CorNV model revealed that the changes

of all S100A genes manifested in a similar time-dependent
manner, peaking around day 5 for all genes (Table 3). It is
noteworthy that, as reported in other situations [22,23], the
fold changes of regulated genes obtained using RT-QPCR
were much higher than those obtained using the microarray.
While both S100A4 [13-15] and S100A13 [16,17] are thought
to participate in the angiogenic process in other tissues, neither
S100A8 or S100A9 have been found to be involved in such
processes in any situation. We therefore focused our attention
on S100A8 and S100A9.

We also measured two classical pro-angiogenic factors
(VEGFA and FGF) and several factors known to be produced
by macrophages or neutrophils, including IL-1β, IL-6,
MIP-2, and TGFβ1. Microarrays and RT-QPCR have
revealed that most other factors manifested change patterns
similar to that of S100A8 or S100A9 in terms of the time
course, namely reaching maximum upregulation at day 5 after
S-CorNV induction (Table 2 and Table 3). Specifically,
S100A8 and S100A9 gave much higher upregulation folds
than all other S100A genes, inflammatory genes, or pro-
angiogenic genes. Thus, the significance of the S100A8 and
S100A9 expression changes, as well as the interactions
between S100A8 or S100A9 and those traditional angiogenic
factors, deserve further study.

TABLE 2. EXPRESSION LEVEL CHANGES OF S100A AND INFLAMMATORY OR PRO-ANGIOGENIC GENES DETECTED BY MICROARRAY.

Gene S-CorNV-Day 5 S-CorNV-Day 10 CB-CoNV-Day 6 CB-CorNV-Day 14
S100A1 1.72±1.25a 2.00±1.11 0.90±0.45 1.41±1.20
S100A3 1.63±1.21 1.47±1.06 2.15±1.15 3.10±1.01
S100A4 5.13±1.17 3.44±1.15 3.41±1.35 3.09±1.16
S100A6 0.79±1.12 1.25±1.13 0.64±1.12 0.74±1.01
S100A8 11.50±1.12 7.76±1.29 9.08±1.07 7.31±1.43
S100A9 45.35±1.36 19.55±1.35 15.97±1.19 18.51±1.93

S100A10 1.20±1.12 1.26±1.70 1.07±1.06 1.22 b

S100A11 1.02±1.17 1.04±1.20 1.51±1.00 1.45±1.14
S100A13 2.77±1.10 2.13±1.05 1.56±1.12 1.73
S100A14 1.15±1.26 1.00±1.22 0.88±1.18 0.81±1.02
S100A15 0.96±1.31 0.72±1.16 0.44±1.02 0.45±1.14
S100A16 1.06±1.18 1.01±1.03 0.74±1.04 0.82±1.01
IL1β 22.61±1.45 12.37±1.35 9.87±1.20 11.46±1.06
IL6 259.50±5.99 NAc NA NA

MIP2 35.48±1.68 NA 9.30±1.48 NA
VEGFA 3.63±1.63 2.22±1.81 2.01±1.95 1.40±1.43
FGF2 NA NA NA NA
TGFβ1 0.62±1.41 0.83±1.34 1.53±1.55 0.56±1.47

          aThere were three replicate arrays for S-CorNV-Day 5 and CB-CorNV-Day 6 groups, and two replicate arrays for S-CorNV-
       Day 10 and CB-CorNV-Day 14 groups. Shown are geometric means (±standard deviations) of fold changes of gene expression
       in each group. bOnly one array produced a valid fold change for this gene in this group. To get a valid fold change for each array,
       both the experimental sample and the control sample were required to give valid signals after normalization of the raw signals.
       Failing to obtain an effective signal for a specific gene in any sample lead to the absence of a fold change in that array. cNA,
       not available. In the dual fluorescence microarray format, an actual ratio will not be available when the signal for either the
       control or experimental sample is classified as undetectable, even if the signal for its component was apparently much higher
       or lower. Without exception, all NAs in this table were derived because control samples in all arrays in a group gave values
       below the threshold of detection after standardization.
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Accumulation of S100A8 and S100A9 proteins in
neovascularized corneas: S100A proteins are reportedly
produced mainly by macrophages and neutrophils, the two
main cell types that infiltrated the corneas in CorNV models
[3-5]. In our S-CorNV model, infiltration of these cells was
detectable one day after suture placement and reached a
maximum during days 3 and 7, after which it started to
diminish, even when the suture was still present (Figure 1).
The destruction of the corneal structure was mainly due to
either the infiltration of inflammatory cells or
neovascularization, or both. For example, the thickness of the
cornea at day 10 returned to the normal range with the
disappearance of previously infiltrated cells, even though
substantial CorNV was still present. The growth and atrophy
of the new vessels lagged behind the change of infiltration and
retraction, suggesting that infiltrated cells might be the cause
of CorNV. Immunohistochemistry analysis of the S-CorNV
corneas showed that S100A8 and S100A9 were deposited in
the neovascularized corneas (Figure 2). With both proteins,
some of them co-located with neutrophils markers (i.e., Gr-1)
while others with macrophage marker (i.e., F4/80), implying
that these two proteins were produced in both neutrophils and
macrophages. It should also be noted that not all neutrophils
or macrophages stained positive for S100A8 or S100A9,
demonstrating the heterogeneity of the infiltrated neutrophils

or macrophages. This might also reflect the different
activation status of these two classes of cells.

Depletion of neutrophils abrogated S-CorNV and S100A8 and
S100A9 production: In the CB-induced CorNV model,
neutrophils were thought to be the main source of various
inflammatory angiogenic factors [24], although macrophages
are also a source of VEGF [25]. Gong et al. [24] reported that
the depletion of neutrophils significantly inhibits corneal
angiogenesis and that the inhibition was at least partially
mediated by abrogating the VEGF and MIP pathways. We
further showed that depletion of neutrophils decreased
S100A8 and S100A9 expression in S-CorNV corneas
compared to control S-CorNV corneas (Figure 3). The RT-
QPCR analysis confirmed that neutrophil depletion in the
mice significantly decreased, but did not completely abrogate
the upregulation of the aforementioned genes (including
S100A8, S100A9, IL-1β, IL-6, MIP-2, FGF, and VEGFA) in
S-CorNV corneas (Figure 4). This implies that neutrophils are
the main sources of S100A and other inflammatory molecules
in S-CorNV.

Depletion of S100A8 inhibited S-CorNV and inflammation:
A further step was taken to check whether S100A8 was
responsible for the neutrophil effect in the S-CorNV model.
We found that subconjunctival application of a neutralizing
antibody against S100A8 following suture placement

Figure 1. Suture-induced neovascularization and infiltration in murine corneas. The disease scores provided correspond to each time point.
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significantly inhibited S-CorNV compared to the control
group (Figure 5A,B). Surprisingly, S100A8 neutralization
also decreased neutrophil infiltration (Figure 5C,D), implying
that S100A8 might be at least partially responsible for
neutrophil infiltration and CorNV development in the context
of S-CorNV. Considering the above observation that S100A8
and S100A9 proteins are located in both neutrophils and
macrophages (Figure 2), we suggest that S100A8 (and

S100A9) produced by neutrophils attracted more neutrophils
in turn, thus forming a positive feedback in certain stages of
inflammatory CorNV. Thus, more in-depth studies about the
relationship among macrophages, neutrophils, and these
S100A proteins are necessary.

In summary, the above data shows that the changes of
expression of the S100A8 and S100A9 genes, as well as several
other cytokines, changed in concert with the growth and

Figure 2. Immunostaining for S100A8,
A9, and cellular markers in murine
corneas. Neutrophils and macrophages
were stained green via primary rabbit
anti-Gr-1 (A) or anti-F4/80 (B) and
FITC-conjugated secondary antibodies,
while S100A8 or A9 were stained red
via PE conjugated primary antibodies.
Please note that the autofluorescence for
corneal epithelium should not be
misinterpreted as positive staining.

Figure 3. Effects of neutrophil depletion
on various indexes associated with the
pathogenesis of murine CorNV. A and
B show the comparison of CorNV in
normal and neutrophil-depleted mice at
different times after suture placement
(n=9 for B). C shows the infiltration
under HE staining and D shows
costaining of S100A8 or A9 with
neutrophil marker Gr-1 at day 7. The
examples shown are representative of
nine (A, B) or three animals (C, D) in
each group; the asterisk indicates a
p<0.05 versus control.
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atrophy of new vessels in the S-CorNV model. These results
suggest that S100A8 and S100A9 play a promoting role in the
pathogenesis of inflammatory CorNV, just as S100A4 and
S100A13 do in other neovascularization models [16,17,26,
27]. More extensive studies are needed to define the suggested
intrinsic relationship between S100A8,S100A9, and
angiogenesis (or neovascularization). For example, it has been
noted that S100A8, S100A9 and their heterodimer or tetramer
manifested differential efficacy in terms of certain
bioprocesses [28-30]. Thus comparative studies of mice that
are deficient in S100A8 or S100A9 (e.g., gene knockout mice
of such genes) will help to determine how these two genes
take their effects in the development of CorNV under various
conditions. This will also shed light on the physiologic
significance of S100A8 and S100A9 proteins in corneas. A
comprehensive in vitro and in vivo pro-angiogenic bioactivity
assay of purified or recombinant S100A8 or S100A9 might
help determine whether they are pro-angiogenic factors or are
pro-angiogenic factor inducers. In fact, S100A8 and S100A9,
either as is or in form of heterodimers [30-33], have been
shown to promote death or permeability of vascular

endothelial cells by binding to specific molecules on them
[34,35]. Thus, the suggested promoting effect of S100A8 or
S100A9 on S-CorNV must rely on other mechanisms that
overcome the “negative” effect of these proteins on vascular
endothelial cells. That said, the interactions of S100A8 or
S100A9 with other angiogenic factors (e.g., IL-1, IL-6,
VEGFA, FGF, and S100A4 or S100A13) need to be clarified.

To conclude, we found that S100A8 and S100A9 were
involved in the inflammatory CorNV model. However, we do
not know whether these genes work via pro-inflammatory or
pro-angiogenic pathways under these conditions. Their net
effect seems to be facilitating the growth of new vessels. Since
both the anti-inflammation [18,36,37] and anti-angiogenic
strategies [38,39] have been successful in controlling CorNV,
we propose that these molecules might serve as novel targets
for managing inflammatory CorNV. It is noteworthy that
some S100A members have been reported to be involved in
other pathological processes or diseases concerning the
cornea, for example, S100A4 in keratonocus [40]. Recently,
S100A6, S100A8, and S100A9 were found to be extensively
expressed in pterygium tissue removed from patients [41,42].

Figure 4. Effects of neutrophil depletion
on the expression of S100A proteins and
cytokines in neovascularized corneas at
day 5 after suture placement. The
relative level of each gene obtained by
comparing with RPL5 in the normal
group was set arbitrarily at 1.0 and the
level in other groups was calculated
accordingly. Five corneas were included
in each group and the measures shown
were for mean±standard deviation
(n=5); the asterisk indicates a p<0.05
versus control.
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We believe that with the expansion of our knowledge of
S100A proteins, the list of involved S100A members and
corneal diseases will grow. This will no doubt increase
demand for investigation into the possible application of
strategies targeting S100A genes in disease management.
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