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Abstract
We consider a nonparametric additive model of a conditional mean function in which the number
of variables and additive components may be larger than the sample size but the number of
nonzero additive components is “small” relative to the sample size. The statistical problem is to
determine which additive components are nonzero. The additive components are approximated by
truncated series expansions with B-spline bases. With this approximation, the problem of
component selection becomes that of selecting the groups of coefficients in the expansion. We
apply the adaptive group Lasso to select nonzero components, using the group Lasso to obtain an
initial estimator and reduce the dimension of the problem. We give conditions under which the
group Lasso selects a model whose number of components is comparable with the underlying
model, and the adaptive group Lasso selects the nonzero components correctly with probability
approaching one as the sample size increases and achieves the optimal rate of convergence. The
results of Monte Carlo experiments show that the adaptive group Lasso procedure works well with
samples of moderate size. A data example is used to illustrate the application of the proposed
method.
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1. Introduction
Let (Yi, Xi), i = 1, …, n, be random vectors that are independently and identically distributed
as (Y, X), where Y is a response variable and X = (X1, …, Xp)′ is a p-dimensional covariate
vector. Consider the nonparametric additive model
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(1)

where µ is an intercept term, Xij is the jth component of Xi, the fj’s are unknown functions,
and εi is an unobserved random variable with mean zero and finite variance σ2. Suppose that
some of the additive components fj are zero. The problem addressed in this paper is to
distinguish the nonzero components from the zero components and estimate the nonzero
components. We allow the possibility that p is larger than the sample size n, which we
represent by letting p increase as n increases. We propose a penalized method for variable
selection in (1) and show that the proposed method can correctly select the nonzero
components with high probability.

There has been much work on penalized methods for variable selection and estimation with
high-dimensional data. Methods that have been proposed include the bridge estimator
[Frank and Friedman (1993), Huang, Horowitz and Ma (2008)]; least absolute shrinkage and
selection operator or Lasso [Tibshirani (1996)], the smoothly clipped absolute deviation
(SCAD) penalty [Fan and Li (2001), Fan and Peng (2004)], and the minimum concave
penalty [Zhang (2010)]. Much progress has been made in understanding the statistical
properties of these methods. In particular, many authors have studied the variable selection,
estimation and prediction properties of the Lasso in high-dimensional settings. See, for
example, Meinshausen and Bühlmann (2006), Zhao and Yu (2006), Zou (2006), Bunea,
Tsybakov and Wegkamp (2007), Meinshausen and Yu (2009), Huang, Ma and Zhang
(2008), van de Geer (2008) and Zhang and Huang (2008), among others. All these authors
assume a linear or other parametric model. In many applications, however, there is little a
priori justification for assuming that the effects of covariates take a linear form or belong to
any other known, finite-dimensional parametric family. For example, in studies of economic
development, the effects of covariates on the growth of gross domestic product can be
nonlinear. Similarly, there is evidence of nonlinearity in the gene expression data used in the
empirical example in Section 5.

There is a large body of literature on estimation in nonparametric additive models. For
example, Stone (1985, 1986) showed that additive spline estimators achieve the same
optimal rate of convergence for a general fixed p as for p = 1. Horowitz and Mammen
(2004) and Horowitz, Klemelä and Mammen (2006) showed that if p is fixed and mild
regularity conditions hold, then oracle-efficient estimates of the fj’s can be obtained by a
two-step procedure. Here, oracle efficiency means that the estimator of each fj has the same
asymptotic distribution that it would have if all the other fj’s were known. However, these
papers do not discuss variable selection in nonparametric additive models.

Antoniadis and Fan (2001) proposed a group SCAD approach for regularization in wavelets
approximation. Zhang et al. (2004) and Lin and Zhang (2006) have investigated the use of
penalization methods in smoothing spline ANOVA with a fixed number of covariates.
Zhang et al. (2004) used a Lasso-type penalty but did not investigate model-selection
consistency. Lin and Zhang (2006) proposed the component selection and smoothing
operator (COSSO) method for model selection and estimation in multivariate nonparametric
regression models. For fixed p, they showed that the COSSO estimator in the additive model
converges at the rate n−d/(2d+1), where d is the order of smoothness of the components. They
also showed that, in the special case of a tensor product design, the COSSO correctly selects
the nonzero additive components with high probability. Zhang and Lin (2006) considered
the COSSO for nonparametric regression in exponential families.
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Meier, van de Geer and Bühlmann (2009) treat variable selection in a nonparametric
additive model in which the numbers of zero and nonzero fj’s may both be larger than n.
They propose a penalized least-squares estimator for variable selection and estimation. They
give conditions under which, with probability approaching 1, their procedure selects a set of
fj’s containing all the additive components whose distance from zero in a certain metric
exceeds a specified threshold. However, they do not establish model-selection consistency
of their procedure. Even asymptotically, the selected set may be larger than the set of
nonzero fj’s. Moreover, they impose a compatibility condition that relates the levels and
smoothness of the fj’s. The compatibility condition does not have a straightforward, intuitive
interpretation and, as they point out, cannot be checked empirically. Ravikumar et al. (2009)
proposed a penalized approach for variable selection in nonparametric additive models. In
their approach, the penalty is imposed on the ℓ2 norm of the nonparametric components, as
well as the mean value of the components to ensure identifiability. In their theoretical
results, they require that the eigenvalues of a “design matrix” be bounded away from zero
and infinity, where the “design matrix” is formed from the basis functions for the nonzero
components. It is not clear whether this condition holds in general, especially when the
number of nonzero components diverges with n. Another critical condition required in the
results of Ravikumar et al. (2009) is similar to the irrepresentable condition of Zhao and Yu
(2006). It is not clear for what type of basis functions this condition is satisfied. We do not
require such a condition in our results on selection consistency of the adaptive group Lasso.

Several other recent papers have also considered variable selection in nonparametric models.
For example, Wang, Chen and Li (2007) and Wang and Xia (2008) considered the use of
group Lasso and SCAD methods for model selection and estimation in varying coefficient
models with a fixed number of coefficients and covariates. Bach (2007) applies what
amounts to the group Lasso to a nonparametric additive model with a fixed number of
covariates. He established model selection consistency under conditions that are
considerably more complicated than the ones we require for a possibly diverging number of
covariates.

In this paper, we propose to use the adaptive group Lasso for variable selection in (1) based
on a spline approximation to the nonparametric components. With this approximation, each
nonparametric component is represented by a linear combination of spline basis functions.
Consequently, the problem of component selection becomes that of selecting the groups of
coefficients in the linear combinations. It is natural to apply the group Lasso method, since it
is desirable to take into the grouping structure in the approximating model. To achieve
model selection consistency, we apply the group Lasso iteratively as follows. First, we use
the group Lasso to obtain an initial estimator and reduce the dimension of the problem. Then
we use the adaptive group Lasso to select the final set of nonparametric components. The
adaptive group Lasso is a simple generalization of the adaptive Lasso [Zou (2006)] to the
method of the group Lasso [Yuan and Lin (2006)]. However, here we apply this approach to
nonparametric additive modeling.

We assume that the number of nonzero fj’s is fixed. This enables us to achieve model
selection consistency under simple assumptions that are easy to interpret. We do not have to
impose compatibility or irrepresentable conditions, nor do we need to assume conditions on
the eigenvalues of certain matrices formed from the spline basis functions. We show that the
group Lasso selects a model whose number of components is bounded with probability
approaching one by a constant that is independent of the sample size. Then using the group
Lasso result as the initial estimator, the adaptive group Lasso selects the correct model with
probability approaching 1 and achieves the optimal rate of convergence for nonparametric
estimation of an additive model.
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The remainder of the paper is organized as follows. Section 2 describes the group Lasso and
the adaptive group Lasso for variable selection in nonparametric additive models. Section 3
presents the asymptotic properties of these methods in “large p, small n” settings. Section 4
presents the results of simulation studies to evaluate the finite-sample performance of these
methods. Section 5 provides an illustrative application, and Section 6 includes concluding
remarks. Proofs of the results stated in Section 3 are given in the Appendix.

2. Adaptive group Lasso in nonparametric additive models
We describe a two-step approach that uses the group Lasso for variable selection based on a
spline representation of each component in additive models. In the first step, we use the
standard group Lasso to achieve an initial reduction of the dimension in the model and
obtain an initial estimator of the nonparametric components. In the second step, we use the
adaptive group Lasso to achieve consistent selection.

Suppose that each Xj takes values in [a, b] where a < b are finite numbers. To ensure unique
identification of the fj’s, we assume that E fj(Xj) = 0, 1 ≤ j ≤ p. Let a = ξ0 < ξ1 < ⋯ < ξK <
ξK+1 = b be a partition of [a, b] into K subintervals IKt = [ξt, ξt+1), t = 0, …, K − 1, and IKK =
[ξK, ξK+1], where K ≡ Kn = nυ with 0 < υ < 0.5 is a positive integer such that max1≤k≤K+1 |ξk
− ξk−1| = O(n−υ). Let n be the space of polynomial splines of degree l ≥ 1 consisting of
functions s satisfying: (i) the restriction of s to IKt is a polynomial of degree l for 1 ≤ t ≤ K;
(ii) for l ≥ 2 and 0 ≤ l ′ ≤ l − 2, s is l′ times continuously differentiable on [a, b]. This
definition is phrased after Stone (1985), which is a descriptive version of Schumaker (1981),
page 108, Definition 4.1.

There exists a normalized B-spline basis {ϕk, 1 ≤ k ≤ mn} for n, where mn ≡ Kn + l
[Schumaker (1981)]. Thus, for any fnj ∈ n, we can write

(2)

Under suitable smoothness assumptions, the fj’s can be well approximated by functions in
n. Accordingly, the variable selection method described in this paper is based on the

representation (2).

Let  denote the ℓ2 norm of any vector a ∈ ℝm. Let βnj = (βj1, …, βjmn)′

and . Let wn = (wn1, …, wnp)′ be a given vector of weights, where 0 ≤ wnj
≤ ∞, 1 ≤ j ≤ p. Consider the penalized least squares criterion

(3)

where λn is a penalty parameter. We study the estimators that minimize Ln(µ, βn) subject to
the constraints

(4)
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These centering constraints are sample analogs of the identifying restriction E fj(Xj) = 0, 1 ≤
j ≤ p. We can convert (3) and (4) to an unconstrained optimization problem by centering the
response and the basis functions. Let

(5)

For simplicity and without causing confusion, we simply write ψk(x) = ψjk(x). Define

So, Zij consists of values of the (centered) basis functions at the ith observation of the jth
covariate. Let Zj = (Z1j, …, Znj)′ be the n × mn “design” matrix corresponding to the jth
covariate. The total “design” matrix is Z = (Z1, …, Zp). Let Y = (Y1 − Y ̅, …, Yn − Y ̅)′. With
this notation, we can write

(6)

Here, we have dropped µ in the argument of Ln. With the centering, µ̂ = Y ̅. Then minimizing
(3) subject to (4) is equivalent to minimizing (6) with respect to βn, but the centering
constraints are not needed for (6).

We now describe the two-step approach to component selection in the nonparametric
additive model (1).

Step 1. Compute the group Lasso estimator. Let

This objective function is the special case of (6) that is obtained by setting wnj = 1, 1 ≤ j ≤ p.
The group Lasso estimator is β̃n ≡ β̃n(λn1) = arg minβn Ln1(βn; λn1).

Step 2. Use the group Lasso estimator β̃n to obtain the weights by setting

The adaptive group Lasso objective function is
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Here, we define 0 · ∞ = 0. Thus, the components not selected by the group Lasso are not
included in Step 2. The adaptive group Lasso estimator is β̂n ≡ β̂n(λn2) = arg minβn Ln2(βn;
λn2). Finally, the adaptive group Lasso estimators of µ and fj are

3. Main results
This section presents our results on the asymptotic properties of the estimators defined in
Steps 1 and 2 of Section 2.

Let k be a nonnegative integer, and let α ∈ (0, 1] be such that d = k + α > 0.5. Let ℱ be the
class of functions f on [0, 1] whose kth derivative f(k) exists and satisfies a Lipschitz
condition of order α:

In (1), without loss of generality, suppose that the first q components are nonzero, that is,
fj(x) ≠ 0, 1 ≤ j ≤ q, but fj(x) ≡ 0, q + 1 ≤ j ≤ p. Let A1 = {1, …, q} and A0 = {q + 1, …, p}.

Define  for any function f, whenever the integral exists.

We make the following assumptions.

(A1) The number of nonzero components q is fixed and there is a constant cf > 0 such that
min1≤j≤q‖fj‖2 ≥ cf.

(A2) The random variables ε1, …, εn are independent and identically distributed with Eεi = 0
and Var(εi) = σ2. Furthermore, their tail probabilities satisfy P(|εi| > x) ≤ K exp(−Cx2), i = 1,
…, n, for all x ≥ 0 and for constants C and K.

(A3) E fj(Xj) = 0 and fj ∈ ℱ, j = 1, …, q.

(A4) The covariate vector X has a continuous density and there exist constants C1 and C2
such that the density function gj of Xj satisfies 0 < C1 ≤ gj (x) ≤ C2 < ∞ on [a, b] for every 1
≤ j ≤ p.

We note that (A1), (A3) and (A4) are standard conditions for nonparametric additive
models. They would be needed to estimate the nonzero additive components at the optimal
ℓ2 rate of convergence on [a, b], even if q were fixed and known. Only (A2) strengthens the
assumptions needed for nonparametric estimation of a nonparametric additive model. While
condition (A1) is reasonable in most applications, it would be interesting to relax this
condition and investigate the case when the number of nonzero components can also
increase with the sample size. The only technical reason that we assume this condition is
related to Lemma 3 given in the Appendix, which is concerned with the properties of the
smallest and largest eigenvalues of the “design matrix” formed from the spline basis
functions. If this lemma can be extended to the case of a divergent number of components,
then (A1) can be relaxed. However, it is clear that there needs to be restriction on the
number of nonzero components to ensure model identification.
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3.1. Estimation consistency of the group Lasso
In this section, we consider the selection and estimation properties of the group Lasso
estimator. Define Ã1 = {j : ‖β̃nj‖2 ≠ 0, 1 ≤ j ≤ p}. Let |A| denote the cardinality of any set A ⊆
{1, …, p}.

THEOREM 1. Suppose that (A1) to (A4) hold and  for a sufficiently
large constant C.

i. With probability converging to 1, |Ã1| ≤ M1|A1| = M1q for a finite constant M1 > 1.

ii. If , then all the nonzero βnj, 1 ≤ j
≤ q, are selected with probability converging to one.

iii.

Part (i) of Theorem 1 says that, with probability approaching 1, the group Lasso selects a
model whose dimension is a constant multiple of the number of nonzero additive
components fj, regardless of the number of additive components that are zero. Part (ii)
implies that every nonzero coefficient will be selected with high probability. Part (iii) shows
that the difference between the coefficients in the spline representation of the nonparametric
functions in (1) and their estimators converges to zero in probability. The rate of
convergence is determined by four terms: the stochastic error in estimating the
nonparametric components (the first term) and the intercept µ (the second term), the spline
approximation error (the third term) and the bias due to penalization (the fourth term).

Let , 1 ≤ j ≤ p. The following theorem is a consequence of Theorem 1.

THEOREM 2. Suppose that (A1) to (A4) hold and that  for a
sufficiently large constant C. Then:

i. Let Ãf = {j : ‖f̃nj‖2 > 0, 1 ≤ j ≤ p}. There is a constant M1 > 1 such that, with
probability converging to 1, |Ãf| ≤ M1q.

ii. If (mn log(pmn))/n → 0 and , then all the nonzero
additive components fj, 1 ≤ j ≤ q, are selected with probability converging to one.

iii.

where Ã2 = A1 ∪ Ã1.

Thus, under the conditions of Theorem 2, the group Lasso selects all the nonzero additive
components with high probability. Part (iii) of the theorem gives the rate of convergence of
the group Lasso estimator of the nonparametric components.

For any two sequences {an, bn, n = 1, 2,…}, we write an ≍ bn if there are constants 0 < c1 <
c2 < ∞ such that c1 ≤ an/bn ≤ c2 for all n sufficiently large.

We now state a useful corollary of Theorem 2.
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COROLLARY 1. Suppose that (A1) to (A4) hold. If  and mn ≍ n1/(2d+1),
then:

i. If n−2d/(2d+1) log(p) → 0 as n → ∞, then with probability converging to one, all the
nonzero components fj, 1 ≤ j ≤ q, are selected and the number of selected
components is no more than M1q.

ii.

For the λn1 and mn given in Corollary 1, the number of zero components can be as large as
exp(o(n2d/(2d+1))). For example, if each fj has continuous second derivative (d = 2), then it is
exp(o(n4/5)), which can be much larger than n.

3.2. Selection consistency of the adaptive group Lasso
We now consider the properties of the adaptive group Lasso. We first state a general result
concerning the selection consistency of the adaptive group Lasso, assuming an initial
consistent estimator is available. We then apply to the case when the group Lasso is used as
the initial estimator. We make the following assumptions.

(B1) The initial estimators β̃nj are rn-consistent at zero:

and there exists a constant cb > 0 such that

where bn1 = minj∈A1‖βnj‖2.

(B2) Let q be the number of nonzero components and sn = p − q be the number of zero
components. Suppose that:

a.

b.

We state condition (B1) for a general initial estimator, to highlight the point that the
availability of an rn-consistent estimator at zero is crucial for the adaptive group Lasso to be
selection consistent. In other words, any initial estimator satisfying (B1) will ensure that the
adaptive group Lasso (based on this initial estimator) is selection consistent, provided that
certain regularity conditions are satisfied. We note that it follows immediately from
Theorem 1 that the group Lasso estimator satisfies (B1). We will come back to this point
below.
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For , we say β̂n =0 βn if sgn0(‖β̂nj‖) = sgn0(‖βnj‖),
1 ≤ j ≤ p, where sgn0(|x|) = 1 if |x| > 0 and = 0 if |x| = 0.

THEOREM 3. Suppose that conditions (B1), (B2) and (A1)–(A4) hold. Then:

i.

ii.

This theorem is concerned with the selection and estimation properties of the adaptive group
Lasso in terms of β̂n. The following theorem states the results in terms of the estimators of
the nonparametric components.

THEOREM 4. Suppose that conditions (B1), (B2) and (A1)–(A4) hold. Then:

i.

ii.

Part (i) of this theorem states that the adaptive group Lasso can consistently distinguish
nonzero components from zero components. Part (ii) gives an upper bound on the rate of
convergence of the estimator.

We now apply the above results to our proposed procedure described in Section 2, in which
we first obtain the the group Lasso estimator and then use it as the initial estimator in the
adaptive group Lasso.

By Theorem 1, if  and mn ≍ n1/(2d+1) for d ≥ 1, then the group Lasso
estimator satisfies (B1) with . In this case, (B2) simplifies to

(7)

We summarize the above discussion in the following corollary.

COROLLARY 2. Let the group Lasso estimator β̃n ≡ β̃n(λn1) with  and
mn ≍ n1/(2d+1) be the initial estimator in the adaptive group Lasso. Suppose that the
conditions of Theorem 1 hold. If λn2 ≤ O(n1/2) and satisfies (7), then the adaptive group
Lasso consistently selects the nonzero components in (1), that is, part (i) of Theorem 4
holds. In addition,
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This corollary follows directly from Theorems 1 and 4. The largest λn2 allowed is λn2 =
O(n1/2). With this λn2, the first equation in (6) is satisfied. Substitute it into the second
equation in (6), we obtain p = exp(o(n2d/(2d+1))), which is the largest p permitted and can be
larger than n. Thus, under the conditions of this corollary, our proposed adaptive group
Lasso estimator using the group Lasso as the initial estimator is selection consistent and
achieves optimal rate of convergence even when p is larger than n. Following model
selection, oracle-efficient, asymptotically normal estimators of the nonzero components can
be obtained by using existing methods.

4. Simulation studies
We use simulation to evaluate the performance of the adaptive group Lasso with regard to
variable selection. The generating model is

(8)

Since p can be larger than n, we consider two ways to select the penalty parameter, the BIC
[Schwarz (1978)] and the EBIC [Chen and Chen (2008, 2009)]. The BIC is defined as

Here, RSSλ is the residual sum of squares for a given λ, and the degrees of freedom dfλ =
q̂λmn, where q̂λ is the number of nonzero estimated components for the given λ. The EBIC is
defined as

where 0 ≤ ν ≤ 1 is a constant. We use ν = 0.5.

We have also considered two other possible ways of defining df: (a) using the trace of a
linear smoother based on a quadratic approximation; (b) using the number of estimated
nonzero components. We have decided to use the definition given above based on the results
from our simulations. We note that the df for the group Lasso of Yuan and Lin (2006)
requires an initial (least squares) estimator, which is not available when p > n. Thus, their df
is not applicable to our problem.

In our simulation example, we compare the adaptive group Lasso with the group Lasso and
ordinary Lasso. Here, the ordinary Lasso estimator is defined as the value that minimizes
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This simple application of the Lasso does not take into account the grouping structure in the
spline expansions of the components. The group Lasso and the adaptive group Lasso
estimates are computed using the algorithm proposed by Yuan and Lin (2006). The ordinary
Lasso estimates are computed using the Lars algorithms [Efron et al. (2004)]. The group
Lasso is used as the initial estimate for the adaptive group Lasso.

We also compare the results from the nonparametric additive modeling with those from the
standard linear regression model with Lasso. We note that this is not a fair comparison
because the generating model is highly nonlinear. Our purpose is to illustrate that it is
necessary to use nonparametric models when the underlying model deviates substantially
from linear models in the context of variable selection with high-dimensional data and that
model misspecification can lead to bad selection results.

EXAMPLE 1. We generate data from the model

where f1(t) = 5t, f2(t) = 3(2t − 1)2, f3(t) = 4 sin(2πt)/(2 − sin(2πt)), f4(t) = 6(0.1 sin(2πt) + 0.2
cos(2πt) + 0.3 sin(2πt)2 + 0.4 cos(2πt)3 + 0.5 sin(2πt)3), and f5(t) = ⋯ = fp(t) = 0. Thus, the
number of nonzero functions is q = 4. This generating model is the same as Example 1 of
Lin and Zhang (2006). However, here we use this model in high-dimensional settings. We
consider the cases where p = 1000 and three different sample sizes: n = 50, 100 and 200. We
use the cubic B-spline with six evenly distributed knots for all the functions fk. The number
of replications in all the simulations is 400.

The covariates are simulated as follows. First, we generate 
independently from N(0, 1) truncated to the interval [0, 1], i = 1, …, n. Then we set xik =
(wik + tui)/(1 + t) for k = 1, …, 4 and xik = (wik + tυi)/(1 + t) for k = 5, …, p, where the
parameter t controls the amount of correlation among predictors. We have Corr(xik, xij) = t2/
(1 + t2), 1 ≤ j ≤ 4, 1 ≤ k ≤ 4, and Corr(xik, xij) = t2/(1 + t2), 4 ≤ j ≤ p, 4 ≤ k ≤ p, but the
covariates of the nonzero components and zero components are independent. We consider t
= 0, 1 in our simulation. The signal to noise ratio is defined to be sd(f)/sd(ε). The error term
is chosen to be εi ~ N(0, 1.272) to give a signal-to-noise ratio (SNR) 3.11 : 1. This value is
the same as the estimated SNR in the real data example below, which is the square root of
the ratio of the sum of estimated components squared divided by the sum of residual
squared.

The results of 400 Monte Carlo replications are summarized in Table 1. The columns are the
mean number of variables selected (NV), model error (ER), the percentage of replications in
which all the correct additive components are included in the selected model (IN), and the
percentage of replications in which precisely the correct components are selected (CS). The
corresponding standard errors are in parentheses. The model error is computed as the

average of  over the 400 Monte Carlo replications, where f is the
true conditional mean function.

Table 1 shows that the adaptive group Lasso selects all the nonzero components (IN) and
selects exactly the correct model (CS) more frequently than the other methods do. For
example, with the BIC and n = 200, the percentage of correct selections (CS) by the adaptive
group Lasso ranges from 65.25% to 81%, which is much higher than the ranges 30–57.75%
for the group Lasso and 12–15.75% for the ordinary Lasso. The adaptive group Lasso and
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group Lasso perform better than the ordinary Lasso in all of the experiments, which
illustrates the importance of taking account of the group structure of the coefficients of the
spline expansion. Correlation among covariates increases the difficulty of component
selection, so it is not surprising that all methods perform better with independent covariates
than with correlated ones. The percentage of correct selections increases as the sample size
increases. The linear model with Lasso never selects the correct model. This illustrates the
poor results that can be produced by a linear model when the true conditional mean function
is nonlinear.

Table 1 also shows that the model error (ME) of the group Lasso is only slightly larger than
that of the adaptive group Lasso. The models selected by the group Lasso nest and,
therefore, have more estimated coefficients than the models selected by the adaptive group
Lasso. Therefore, the group Lasso estimators of the conditional mean function have a larger
variance and larger ME. The differences between the MEs of the two methods are small,
however, because as can be seen from the NV column, the models selected by the group
Lasso in our experiments have only slightly more estimated coefficients than the models
selected by the adaptive group Lasso.

EXAMPLE 2. We now compare the adaptive group Lasso with the COSSO [Lin and Zhang
(2006)]. This comparison is suggested to us by the Associate Editor. Because the COSSO
algorithm only works for the case when p is smaller than n, we use the same set-up as in
Example 1 of Lin and Zhang (2006). In this example, the generating model is as in (8) with
4 nonzero components. Let Xj = (Wj + tU)/(1 + t), j = 1, …, p, where W1, …, Wp and U are
i.i.d. from N(0, 1), truncated to the interval [0, 1]. Therefore, corr(Xj, Xk) = t2/(1 + t2) for j ≠
k. The random error term ε ~ N(0, 1.322). The SNR is 3:1. We consider three different
sample sizes n = 50, 100 or 200 and three different number of predictors p = 10, 20 or 50.
The COSSO estimator is computed using the Matlab software which is publicly available at
http://www4.stat.ncsu.edu/~hzhang/cosso.html.

The COSSO procedure uses either generalized cross-validation or 5-fold cross-validation.
Based the simulation results of Lin and Zhang (2006) and our own simulations, the COSSO
with 5-fold cross-validation has better selection performance. Thus, we compare the
adaptive group Lasso with BIC or EBIC with the COSSO with 5-fold cross-validation. The
results are given in Table 2. For independent predictors, when n = 200 and p = 10, 20 or 50,
the adaptive group Lasso and COSSO have similar performance in terms of selection
accuracy and model error. However, for smaller n and larger p, the adaptive group Lasso
does significantly better. For example, for n = 100 and p = 50, the percentage of correct
selection for the adaptive group Lasso is 81–83%, but it is only 11% for the COSSO. The
model error of the adaptive group Lasso is similar to or smaller than that of the COSSO. In
several experiments, the model error of the COSSO is 2 to more than 7 times larger than that
of the adaptive group Lasso. It is interesting to note that when n = 50 and p = 20 or 50, the
adaptive group Lasso still does a descent job in selecting the correct model, but the COSSO
does poorly in these two cases. In particular, for n = 50 and p = 50, the COSSO did not
select the exact correct model in all the simulation runs. For dependent predictors, the
comparison is even mode favorable to the adaptive group Lasso, which performs
significantly better than COSSO in terms of both model error and selection accuracy in all
the cases.

5. Data example
We use the data set reported in Scheetz et al. (2006) to illustrate the application of the
proposed method in high-dimensional settings. For this data set, 120 twelve-week old male
rats were selected for tissue harvesting from the eyes and for microarray analysis. The
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microarrays used to analyze the RNA from the eyes of these animals contain over 31,042
different probe sets (Affymetric GeneChip Rat Genome 230 2.0 Array). The intensity values
were normalized using the robust multi-chip averaging method [Irizzary et al. (2003)]
method to obtain summary expression values for each probe set. Gene expression levels
were analyzed on a logarithmic scale.

We are interested in finding the genes that are related to the gene TRIM32. This gene was
recently found to cause Bardet–Biedl syndrome [Chiang et al. (2006)], which is a genetically
heterogeneous disease of multiple organ systems including the retina. Although over 30,000
probe sets are represented on the Rat Genome 230 2.0 Array, many of them are not
expressed in the eye tissue and initial screening using correlation shows that most probe sets
have very low correlation with TRIM32. In addition, we are expecting only a small number
of genes to be related to TRIM32. Therefore, we use 500 probe sets that are expressed in the
eye and have highest marginal correlation in the analysis. Thus, the sample size is n = 120
(i.e., there are 120 arrays from 120 rats) and p = 500. It is expected that only a few genes are
related to TRIM32. Therefore, this is a sparse, high-dimensional regression problem.

We use the nonparametric additive model to model the relation between the expression of
TRIM32 and those of the 500 genes. We estimate model (1) using the ordinary Lasso, group
Lasso, and adaptive group Lasso for the nonparametric additive model. To compare the
results of the nonparametric additive model with that of the linear regression model, we also
analyzed the data using the linear regression model with Lasso. We scale the covariates so
that their values are between 0 and 1 and use cubic splines with six evenly distributed knots
to estimate the additive components. The penalty parameters in all the methods are chosen
using the BIC or EBIC as in the simulation study. Table 3 lists the probes selected by the
group Lasso and the adaptive group Lasso, indicated by the check signs. Table 4 shows the
number of variables, the residual sums of squares obtained with each estimation method. For
the ordinary Lasso with the spline expansion, a variable is considered to be selected if any of
the estimated coefficients of the spline approximation to its additive component are nonzero.
Depending on whether BIC or EBIC is used, the group Lasso selects 16–17 variables, the
adaptive group Lasso selects 15 variables and the ordinary Lasso with the spline expansion
selects 94–97 variables, the linear model selects 8–14 variables. Table 4 shows that the
adaptive group Lasso does better than the other methods in terms of residual sum of squares
(RSS). We have also examined the plots (not shown) of the estimated additive components
obtained with the group Lasso and the adaptive group Lasso, respectively. Most are highly
nonlinear, confirming the need for taking into account nonlinearity.

In order to evaluate the performance of the methods, we use cross-validation and compare
the prediction mean square errors (PEs). We randomly partition the data into 6 subsets, each
set consisting of 20 observations. We then fit the model with 5 subsets as training set and
calculate the PE for the remaining set which we consider as test set. We repeat this process 6
times, considering one of the 6 subsets as test set every time. We compute the average of the
numbers of probes selected and the prediction errors of these 6 calculations. Then we
replicate this process 400 times (this is suggested to us by the Associate Editor). Table 5
gives the average values over 400 replications. The adaptive group Lasso has smaller
average prediction error than the group Lasso, the ordinary Lasso and the linear regression
with Lasso. The ordinary Lasso selects far more probe sets than the other approaches, but
this does not lead to better prediction performance. Therefore, in this example, the adaptive
group Lasso provides the investigator a more targeted list of probe sets, which can serve as a
starting point for further study.

It is of interest to compare the selection results from the adaptive group Lasso and the linear
regression model with Lasso. The adaptive group Lasso and the linear model with Lasso
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select different sets of genes. When the penalty parameter is chosen with the BIC, the
adaptive group Lasso selects 5 genes that are not selected by the linear model with Lasso. In
addition, the linear model with Lasso selects 5 genes that are not selected by the adaptive
group Lasso. When the penalty parameter is selected with the EBIC, the adaptive group
Lasso selects 10 genes that are not selected by the linear model with Lasso. The estimated
effects of many of the genes are nonlinear, and the Monte Carlo results of Section 4 show
that the performance of the linear model with Lasso can be very poor in the presence of
nonlinearity. Therefore, we interpret the differences between the gene selections of the
adaptive group Lasso and the linear model with Lasso as evidence that the selections
produced by the linear model are misleading.

6. Concluding remarks
In this paper, we propose to use the adaptive group Lasso for variable selection in
nonparametric additive models in sparse, high-dimensional settings. A key requirement for
the adaptive group Lasso to be selection consistent is that the initial estimator is estimation
consistent and selects all the important components with high probability. In low-
dimensional settings, finding an initial consistent estimator is relatively easy and can be
achieved by many well-established approaches such as the additive spline estimators.
However, in high-dimensional settings, finding an initial consistent estimator is difficult.
Under the conditions stated in Theorem 1, the group Lasso is shown to be consistent and
selects all the important components. Thus the group Lasso can be used as the initial
estimator in the adaptive Lasso to achieve selection consistency. Following model selection,
oracle-efficient, asymptotically normal estimators of the nonzero components can be
obtained by using existing methods. Our simulation results indicate that our procedure
works well for variable selection in the models considered. Therefore, the adaptive group
Lasso is a useful approach for variable selection and estimation in sparse, high-dimensional
nonparametric additive models.

Our theoretical results are concerned with a fixed sequence of penalty parameters, which are
not applicable to the case where the penalty parameters are selected based on data driven
procedures such as the BIC. This is an important and challenging problem that deserves
further investigation, but is beyond the scope of this paper. We have only considered linear
nonparametric additive models. The adaptive group Lasso can be applied to generalized
nonparametric additive models, such as the generalized logistic nonparametric additive
model and other nonparametric models with high-dimensional data. However, more work is
needed to understand the properties of this approach in those more complicated models.

APPENDIX: PROOFS
We first prove the following lemmas. Denote the centered versions of n by

where ψk’s are the centered spline bases defined in (5).

LEMMA 1. Suppose that f ∈ ℱ and E f(Xj) = 0. Then under (A3) and (A4), there exists an

 satisfying
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In particular, if we choose mn = O(n1/(2d+1)), then

PROOF. By (A4), for f ∈ ℱ, there is an  such that . Let

. Then , where Pn is the
empirical measure of i.i.d. random variables X1j, …, Xnj. Consider

Here, we use the linear functional notation, for example, Pf = ∫ fdP, where P is the

probability measure of X1j. For any ε > 0, the bracketing number 

satisfies  for some constant c1 > 0 [Shen and Wong
(1994), page 597]. Thus, by the maximal inequality; see, for example, van der Vaart (1998,

page 288), . By (A4),  for some
constant C2 > 0. The lemma follows from the triangle inequality.

LEMMA 2. Suppose that conditions (A2) and (A4) hold. Let

and Tn = max1≤j≤p,1≤k≤mn |Tjk|. Then

where C1 and C2 are two positive constants. In particular, when mn log(pmn)/n → 0,

PROOF. Let . Conditional on Xij’s, Tjk’s are sub-Gaussian. Let

. By (A2) and the maximal inequality for sub-Gaussian random
variables [van der Vaart and Wellner (1996), Lemmas 2.2.1 and 2.2.2],

Therefore,
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(9)

where C1 > 0 is a constant. By (A4) and the properties of B-splines,

(10)

for a constant C2 > 0, for every 1 ≤ j ≤ p and 1 ≤ k ≤ mn. By (10),

(11)

and

(12)

By Lemma A.1 of van de Geer (2008), (10) and (11) imply

Therefore, by (12) and the triangle inequality,

Now since , we have

(13)

The lemma follows from (9) and (13).

Denote

Here, βA is an |A|mn × 1 vector and ZA is an n × |A|mn matrix. Let . When A = {1,
…, p}, we simply write C = Z′Z/n. Let ρmin(CA) and ρmax(CA) be the minimum and
maximum eigenvalues of CA, respectively.
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LEMMA 3. Let mn = O(nγ) where 0 < γ < 0.5. Suppose that |A| is bounded by a fixed
constant independent of n and p. Let . Then under (A3) and (A4), with
probability converging to one,

where c1 and c2 are two positive constants.

PROOF. Without loss of generality, suppose A = {1, …, k}. Then ZA = (Z1, …, Zq). Let

, where bj ∈ Rmn. By Lemma 3 of Stone (1985),

for a certain constant c3 > 0. By the triangle inequality,

Since ZAb = Z1b1 + ⋯ + Zqbq, the above two inequalities imply that

Therefore,

(14)

Let . By Lemma 6.2 of Zhou, Shen and Wolf (1998),

(15)

Since , it follows from (14) that

Therefore, by (15),

Similarly,
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Thus, we have

The lemma follows.

PROOF OF THEOREM 1. The proof of parts (i) and (ii) essentially follows the proof of
Theorem 2.1 of Wei and Huang (2008). The only change that must be made here is that we
need to consider the approximation error of the regression functions by splines. Specifically,

let ξn = εn + δn, where δn = (δn1, …, δnn)′ with . Since

 for mn = n1/(2d+1), we have

for some constant C1 > 0. For any integer t, let

where  for N(A) = q1 = m ≥ 0,

 and ‖UAk‖2 = 1.

For a sufficiently large constant C2 > 0, define

and

where t0 ≥ 0.

As in the proof of Theorem 2.1 of Wei and Huang (2008),

for a constant M1 > 1. By the triangle and Cauchy–Schwarz inequalities,
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(16)

In the proof of Theorem 2.1 of Wei and Huang (2008), it is shown that

(17)

Since

and mn = O(n1/(2d+1)), we have for all t ≥ 0 and n sufficiently large,

(18)

It follows from (16), (17) and (18) that P(Ω0) → 1. This completes the proof of part (i) of
Theorem 1.

Before proving part (ii), we first prove part (iii) of Theorem 1. By the definition of

,

(19)

Let A2 = {j : ‖βnj‖2 ≠ 0 or ‖β̃nj‖2 ≠ 0} and dn2 = |A2|. By part (i), dn2 = Op(q). By (19) and the
definition of A2,

(20)

Let ηn = Y − Zβn. Write

We have

We can rewrite (20) as
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(21)

Now

(22)

Let νn = ZA2(β̃nA2 − βnA2). Combining (20), (21) and (22) to get

(23)

Let  be the projection of ηn to the span ZA2, that is, . By the
Cauchy–Schwarz inequality,

(24)

From (23) and (24), we have

Let cn* be the smallest eigenvalue of . By Lemma 3 and part (i), . Since

 and 2ab ≤ a2 + b2,

It follows that

(25)

Let  and f0A(Xi) = ∑j∈A f0j(Xij). Write

Since |µ − Y ̅|2 = Op(n−1) and , we have
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(26)

where  is the projection of εn = (ε1, …, εn)′ to the span of ZA2. We have

Now

where jk = (ψk(X1j), …, ψk(Xnj))′. By Lemma 2,

It follows that,

(27)

Combining (25), (26) and (27), we get

Since dn2 = Op(q), , we have

This completes the proof of part (iii).

We now prove part (ii). Since  and ‖fnj‖2 ≥ ‖fj‖2 −
‖fj − fnj‖2, we have ‖fnj‖2 ≥ 0.5cf for n sufficiently large. By a result of de Boor (2001), see
also (12) of Stone (1986), there are positive constants c6 and c7 such that

It follows that . Therefore, if ‖βnj‖2 ≠ 0 but ‖β̃nj‖2 = 0,
then
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(28)

However, since (mn log(pmn))/n → 0 and , (28) contradicts part (iii).

PROOF OF THEOREM 2. By the definition of f̃j, 1 ≤ j ≤ p, parts (i) and (ii) follow from
parts (i) and (ii) of Theorem 1 directly.

Now consider part (iii). By the properties of spline [de Boor (2001)],

Thus,

(29)

By (A3),

(30)

Part (iii) follows from (29) and (30).

In the proofs below, for any matrix H, denote its 2-norm by ‖H‖, which is equal to its largest
eigenvalue. This norm satisfies the inequality ‖Hx‖ ≤ ‖H‖‖x‖ for a column vector x whose
dimension is the same as the number of the columns of H.

Denote  and ZA1 = Zj, j ∈ A1). Define .
Let ρn1 and ρn2 be the smallest and largest eigenvalues of CA1, respectively.

PROOF OF THEOREM 3. By the KKT, a necessary and sufficient condition for β̂n is

(31)

Let νn = (wnjβ̂j/(2‖β̂nj‖), j ∈ A1)′. Define

(32)

If β̂nA1 =0 βnA1, then the equation in (31) holds for . Thus, since Zβ̂n = ZA1β̂nA1
for this β̂n and {Zj, j ∈ A1} are linearly independent,
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This is true if

Therefore,

Let f0j (Xj) = (f0j(X1j), …, f0j(Xnj))′ and δn = ∑j∈A1 f0j (Xj) − ZA1βnA1. By Lemma 1, we
have

(33)

Let . By (32),

(34)

and

(35)

Based on these two equations, Lemma 5 below shows that

and Lemma 6 below shows that

These two equations lead to part (i) of the theorem.

We now prove part (ii) of Theorem 3. As in (26), for ηn = Y − Zβn and

we have
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(36)

where  is the projection of εn = (ε1, …, εn)′ to the span of ZA1. We have

(37)

Now similarly to the proof of (25), we can show that

(38)

Combining (36), (37) and (38), we get

Since , the result follows.

The following lemmas are needed in the proof of Theorem 3.

LEMMA 4. For νn = (wnjβ̃j/(2‖β̃nj‖), j ∈ A1)′, under condition (B1),

PROOF. Write

Under (B2),

and . The claim follows.

Let ρn3 be the maximum of the largest eigenvalues of , that is,

. By Lemma 3,
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(39)

LEMMA 5. Under conditions (B1), (B2), (A3) and (A4),

(40)

PROOF. Let Tnj be an mn × qmn matrix with the form

where Omn is an mn × mn matrix of zeros and Imn is an mn × mn identity matrix, and Imn is at

the jth block. By (34), . By the triangle inequality,

(41)

Let C be a generic constant independent of n. The first term on the right-hand side

(42)

By (33), the second term

(43)

By Lemma 4, the third term

(44)

Thus, (40) follows from (39), (42)–(44) and condition (B2a).

LEMMA 6. Under conditions (B1), (B2), (A3) and (A4),

(45)

PROOF. By (35), we have

(46)
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Recall sn = p − q is the number of zero components in the model. By Lemma 2,

(47)

Since wnj = ‖β̂nj‖−1 = Op (rn) for j ∉ A1 and by (47), for the first term on the right-hand side
of (46), we have

(48)

By (33), the second term on the right-hand side of (46)

(49)

By Lemma 4, the third term on the right-hand side of (46)

(50)

Therefore, (45) follows from (39), (48), (49), (50) and condition (B2b).

PROOF OF THEOREM 4. The proof is similar to that of Theorem 2 and is omitted.
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TABLE 4

Analysis results for the data example. No. of probes, the number of probe sets selected; RSS, the residual sum
of squares of the fitted model

BIC EBIC

No. of probe sets RSS No. of probe sets RSS

Adaptive group Lasso 15 1.52e–03 15 1.52e–03

Group Lasso 17 3.24e–03 16 3.40e–03

Ordinary Lasso 97 2.96e–07 94 8.10e–08

Linear regression with Lasso 14 2.62e–03 8 3.75e–03
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