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Abstract

The organization of protein structures in protein genotype space is well studied. The same does not hold for protein
functions, whose organization is important to understand how novel protein functions can arise through blind evolutionary
searches of sequence space. In systems other than proteins, two organizational features of genotype space facilitate
phenotypic innovation. The first is that genotypes with the same phenotype form vast and connected genotype networks.
The second is that different neighborhoods in this space contain different novel phenotypes. We here characterize the
organization of enzymatic functions in protein genotype space, using a data set of more than 30,000 proteins with known
structure and function. We show that different neighborhoods of genotype space contain proteins with very different
functions. This property both facilitates evolutionary innovation through exploration of a genotype network, and it
constrains the evolution of novel phenotypes. The phenotypic diversity of different neighborhoods is caused by the fact
that some functions can be carried out by multiple structures. We show that the space of protein functions is not
homogeneous, and different genotype neighborhoods tend to contain a different spectrum of functions, whose diversity
increases with increasing distance of these neighborhoods in sequence space. Whether a protein with a given function can
evolve specific new functions is thus determined by the protein’s location in sequence space.
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Introduction

During more than half a century of protein research, an

enormous amount of data about protein sequences, their

structures, and their functions has accumulated. To organize the

vast number of known protein sequences, the concept of a

sequence space is useful [1]. Two sequences in this space have a

distance, which can be measured in various ways [2,3]. The

simplest such measure is the sequence distance, the number or

percentage of amino acid changes needed to transform one protein

onto another. Two sequences in this space can have either the

same or a different fold. This fold is the three-dimensional

arrangement of their amino acids, and typically involves a specific

arrangement of a-helices and/or b-sheets, the secondary structure

elements of proteins. The organization of protein structures in

sequence space has several general features.

First, only a small fraction of protein sequences, perhaps no

larger than 1024, may adopt a stable, well-defined structure [4].

Considering the astronomical size of sequence space, however, this

still leaves many proteins that fold. For example, for proteins of

length 100 amino acids, sequence space has 20100 members. Even

if only one in 104 of them adopts a stable structure, approximately

10126 foldable sequences exist in this space.

Second, the existing repertoire of protein folds is small [5,6],

and the number of sequences greatly surpasses its size.

Third, many of a protein’s immediate neighbors – sequences

differing from it in a single amino acid – typically have the same

fold as the protein itself [7–9].

Fourth, even very distant sequences can have the same fold

[10,11]. If two such sequences have the same common ancestor,

they are often referred to as members of the same protein family [6].

Such unambiguous common ancestry can usually be identified for

sequences that differ in up to 60 to 70 percent of their amino acids

[12]. Two sequences in the same family can be connected through

a series of amino acid changes that traverse a fraction of sequence

space while leaving the structure unchanged. When common

ancestry can be claimed based on criteria such as common aspects

of structure or function, families of proteins are grouped into

superfamilies. Superfamilies share a common fold and diverge on

average around 70 to 80 percent in sequence space. Sets of

superfamilies that share the same three-dimensional arrangement

of secondary structure are grouped into the same fold. Amino acid

sequences with the same fold can be very different. Based on a

systematic comparison of many divergent sequences with shared

folds, Rost [11] observed that such sequences can have more than

95 percent divergence.

Fifth, the number of sequences per fold may vary widely. For

example, mutagenesis experiments suggest that the amino acid

sequences forming an enzyme with the same structure and

function as chorismate mutase may occupy a fraction 10223 of

PLoS ONE | www.plosone.org 1 November 2010 | Volume 5 | Issue 11 | e14172



sequence space [13], whereas sequences forming a functional b-

lactamase domain occupy merely one 10264th of sequence space

[14]. Structures adopted by many sequences are commonly called

highly designable [15,16]. There has been increasing interest in

highly designable proteins due to their use as ‘scaffolds’ in the

design of new protein functions [17]. One remarkable example is

the zinc finger domain, which is robust to point mutations in

alanine scanning experiments [18], and has proven useful in

designing new DNA binding proteins [19].

Taken together, these observations suggest that the protein

sequences adopting the same structure form connected networks of

sequences that can reach far through sequences space and that

have varying size. These properties are not only observed for real

proteins, but also for lattice proteins, and other generic models of

protein folding [15,20–23]. They emerge from generic physico-

chemical properties of the protein folding process. In other words,

they are characteristic of the mapping between genotypes

(sequences) and phenotypes (structures) that exists for proteins.

We will call a connected network of sequences with the same

structure a genotype network.

Similar to information about protein structures, which is

abundant, thousands of proteins have known and well-character-

ized functions. However, while several authors studied the

distribution of structures in sequence space [22,24–25], we know

much less about how functions are distributed through sequence

space. This question is the main focus of our work.

The need to assign a function to newly identified protein

sequences has driven research into the conservation of protein

functions as sequences diverge. Several studies using methods of

sequence comparison agree that functional conservation is

common if two proteins possess more than 50% sequence identity

[26–30]. For gene ontology functional annotations, more than 90

percent of protein pairs over 50% sequence identity have the same

function [31]. However, a study dissenting from the conclusion of

earlier work found that fewer than 30 percent of proteins with

more than 50 percent sequence identity have identical enzymatic

functions [32].

Information like this makes it clear that we cannot simply

extrapolate from structure to function. To be sure, some proteins,

such as oxygen-binding globins have the same structure and

function, despite great sequence divergence [10]. However, other

proteins have the same structure but different functions. Examples

include proteins with the TIM-barrel fold, which is associated with

many enzymatic functions [33]. In addition, many functions can

be carried out by proteins with different structures. Examples

include DNA polymerases, which use similar catalytic mecha-

nisms, but diverse structures, to replicate DNA [34].

Taken together, these observations show that the relationship

between sequence, structure, and function is complex. Thus, any

analysis aiming to understand the organization of protein functions

in sequence space must not tie itself too closely to protein structure,

while respecting that structure constrains function. The biggest

obstacle to such an analysis is to describe and categorize protein

functions for many proteins. We circumvent this obstacle by

focusing on enzymes, proteins for which a well-established, albeit

imperfect, functional classification exists.

To understand how protein functions are organized in sequence

space is important for at least three reasons. First, it may help guide

the development of methods for protein function annotation (which

is not our focus here). Second, it may help identify functions that can

be performed by a large number of sequences. Experimental

evidence suggests that different functions may differ by orders of

magnitude in the numbers of proteins that perform them [13,14,35],

hinting that protein functions may differ in their designability just like

structures do. Being able to distinguish functions that are adopted by

many proteins from those adopted by few proteins would help

identify functions that are easily created or modified through

directed evolution experiments and rational protein engineering.

Third, and most important, it may shed light on one of the key

unsolved problems in evolutionary biology, namely how new

functions arise in evolution. Proteins are ideal systems for systematic

studies of biological systems’ ability to innovate. The reason is that

we already have so much information about them.

In a variety of biological systems, the existence of extended

genotype networks facilitates the evolution of novel phenotypes

[36–38]. The reason is that different regions of genotype space

contain different kinds of new phenotypes. Such phenotypes can

be encountered through (neutral) exploration of a genotype

network and its neighborhood in sequence space. We do not

know whether the same holds for proteins, that is, whether

different regions of protein genotype space contain proteins with

different novel functions.

To address the issues we just discussed, we use a large dataset of

protein sequences with known function and structure. Our analysis

uses the concept of a protein’s neighborhood in sequence space, a

region comprising all sequences up to some maximal distance from

the protein. We show that different neighborhoods in protein

sequence space contain different functions. We discuss the

implications of this observation, the limitations of our procedure,

and propose a general perspective on the organization of protein

functions in sequence space.

Methods

Protein sequences. Structural and functional annotation
We obtained protein sequences from Uniprot [39]. Specifically,

we used the dataset compiled in UniProtKB/Swiss-Prot that

corresponds to manually curated protein sequences. By September

2009, this dataset was composed of 495,880 sequences for which

experimental details and computed features were available. To

facilitate protein comparison, we restricted our study to single

domain proteins longer than 50 amino acids. The structural

information we used is based on the CATH classification of

protein structure domains (v.3.2.0) [40]. Throughout, we use the

concepts of structure and domain interchangeably and define it at

the level of homologous superfamily.

We mapped domains to Uniprot sequences using HMM

libraries from CATH and the software HMMER [41], assigning

domains to sequences at an e-value of 0.001. Using this procedure,

we found a total of 174,853 single domain sequences. Because we

aimed at a broad characterization of sequence space, we did not

filter our dataset for redundant sequences, but simply restricted the

allowed sequence identity between pairs of sequences to at most 99

percent, thus obtaining a dataset of 136,677 sequences. We

discarded sequences tagged with any of the keywords: ‘‘putative’’,

‘‘probable’’, ‘‘by homology’’. As a source of functional annotation,

we used the Enzyme Nomenclature Database (EC) [42]. Since the

EC classification distinguishes four different hierarchical levels of

enzyme function, we used only EC assignations that possess

numerical descriptors for all of the 4 levels of the hierarchy. Using

information in this database, we arrived at our final data set, which

comprises 39,529 protein sequences. These sequences correspond

to 1,343 enzyme types classified under the EC system. They adopt

457 different structures, as indicated by their CATH domains.

Our next goal was to align sequences in our data set, in order to

estimate their pairwise distance in sequence space. To do so, we

grouped our sequences according to the CATH domains they had.

For each sequence, we kept only the regions for which HMM

Innovation in Protein Space
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profiles had detected significant sequence similarity between

sequences. This procedure discards uninformative regions of

proteins and improves the quality of the subsequent alignments,

which we carried out with ClustalW [43]. We also tested the

performance of structural alignments using T-coffee [44] and

found that in the case of our dataset, Clustalw and T-coffee

produced similar results. The number of sequences per multiple

sequence alignment varied according to domains, with a median

of 12 sequences per alignment. For further analyses we included

only proteins where, after multiple sequence alignment, at most 10

percent of positions were gaps, and no more than 10 percent of

any one amino acids sequence contained gaps.

We carried out two different analyses of our data. First, we

characterized, for proteins with a given structure, how their

functions were distributed across sequence space. To this end, we

focused on 36 different structures for which at least 10 sequences

are known. Specifically, these structures have between 10 and

4,132 associated sequences. Except for the TIM barrel, we carried

these analyses out exhaustively, that is, considering all possible

pairwise comparisons between sequences that share a structure

domain (see figure legends for details). Second, we examined the

distribution of functions regardless of the structures performing

them. In this analysis, a complication is that proteins with different

structures can have different lengths. To facilitate their embedding

in the same genotype space, we focused only on alignments with

sequences no shorter than 100 amino acids. The resulting

(reduced) data set had 28,862 sequences, 337 different structures,

and 1,036 enzyme functions. We then selected random sections of

100 residues from each multiple sequence alignment, calculated

the desired statistic from the resulting resampled data, and

repeated this resampling and calculation procedure a total of 10

times. (Since proteins with more than 10 percent of gaps are

discarded, each one of the 10 samples comprises on average

28,862 sequences, 337 different structures, and 1,036 enzyme

functions.) We performed the neighborhood analysis described

below on each of these 10 samples, and report results as means

and standard deviations over these 10 samples.

Results

To characterize the distribution of protein functions in sequence

space, we used a comprehensive protein dataset of 39,529

sequences that adopt 457 single-domain structures. In the

following, we refer to them simply as structures. The functions

we consider are based on the enzyme commission (EC) [42]

classification, which distinguishes four different hierarchical levels

of enzyme function. The top level comprises six enzyme classes,

namely oxidoreductases, transferases, hydrolases, lyases, isomer-

ases and ligases. Each class is subdivided into three further

hierarchical levels whose interpretation differs among classes. In

this classification system, individual enzymes are assigned a four-

digit number where each digit reveals increasing details about

enzyme function. For example, the enzyme tryptophan synthase

with EC number 4.2.1.20 is a lyase that catalyzes the conversion of

indole and serine to tryptophan. Although the EC classification

has well-known limitations (eg. see [30]), it is the best-established

and most widely used system for classifying enzymes, which are the

most prominent protein class. (By March 2010, 57 percent of

proteins in the Protein Data Bank [45], a repository of protein

structure information, have at least one enzymatic function). For

our data set, the bottom, finest-grained level of this classification

comprises 1,343 different enzymes. For this data set, Figure S1a

shows the distribution of the number of sequences per structure,

and Figure S1b shows the number of sequences per function.

Although our data set may seem enormous, we note that it still

represents a very sparse sampling of sequence space. For example,

approximately 60 percent of functions are represented by fewer

than 10 sequences per function. Also, two proteins with the same

structure and/or function in our data are typically highly

divergent, with a median amino acid divergence of no less than

55 percent (Figure S2a and S2b).

Most enzymatic functions are associated with few
structures

Any given function in our data set may be carried out by

proteins with only one structure, or by multiple different

structures. We call the latter kind of function structurally promiscuous,

because it is not tied to any one structure. Figure 1a shows a

histogram of the number of structures associated with a function

Figure 1. Distribution of structures over functions. (a) Distribu-
tion of the number of structures associated with a particular function. The
total number of different structures (457) in our dataset composed of
39.529 sequences are classified according to the enzyme function that
they perform and counted (min = 1 ; max = 14 ; mean = 1.2). The inset
shows the same distribution, but with a log10-transformed vertical axis.
(b) Distribution of structural promiscuity. Structural promiscuity (RF) is an
entropy-like measure (see main text) calculated from the distribution of
enzyme functions over different protein domains. The data shown is
based on the finest-grained, fourth level of the EC hierarchy. (min = 0.0;
max = 0.35; mean = 0.01).
doi:10.1371/journal.pone.0014172.g001
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for the 1,343 lowest level enzymatic functions we discuss here.

This distribution is highly skewed, with 86 percent of the functions

carried out only by one structure and three maximally promiscu-

ous functions carried out by 9, 11 and 14 structures, respectively.

These functions are RNA polymerase (EC = 2.7.7.6); cytochrome

oxidase (EC = 1.9.3.1) and DNA polymerase (EC = 2.7.7.7). Figure

S3 shows that the distribution remains skewed if we control for the

number of sequences known per structure.

We next extended previous work [30] by defining a measure RF

of the promiscuity of any given function. We focus on only those

sequences that perform a given function F. For any given protein

structure i (out of N total structures), we denote as f(i) the fraction

of sequences among all proteins that perform the function F and

fold into structure i. The sum of the f(i)’s over all structures will

add to one. The Shannon entropy of the distribution of the non-

zero f(i)’s is given by {
Pi~N

i~1,f (i)=0

f (i) ln f (i)), where ln denotes the

natural logarithm. The maximal value of this entropy is ln N,

which is attained if every structure is equally likely to perform the

function F. Its minimal value of zero is reached if the function is

carried out by only one domain k, such that f(k) = 1 and all other

f(i) = 0. These observations motivate the definition of structural

promiscuity as RF ~½{
Pi~N

i~1,f (i)=0

f (i) ln f (i)�= ln N, which is an

entropy normalized to the interval zero (low promiscuity) and 1

(highest promiscuity). RF adopts its minimum for functions

associated only with a single structure. It would attain a maximum

for a function that is equally likely to be performed by any

structure. (Such a function may not exist.) Figure 1b shows the

distribution of RF. This distribution is again highly skewed, with a

minimum of 0 for 1,161 (86 percent) of functions that are executed

only by single domains. The maximal value observed is 0.35. This

highest value is attained by DNA-polymerases (EC.2.7.7.7), which

are well known to be structurally diverse [46]. It is followed by

type II restriction enzymes (rank 2) and ubiquitin carboxyl-

terminal hydrolases (rank 3). Table 1 shows the ten most

structurally promiscuous enzyme functions. We note that this

measure of promiscuity RF weights different structures according

to the fraction of known sequences adopting them. It can thus give

different results from simpler measures based on counting the

number of sequences or structures per function.

The distributions we just presented may reflect underlying

properties of sequence space, but also results of biases in existing

knowledge about different structures or functions. The most

obvious such bias comes from the extent to which different

structures and functions have been characterized. It is reflected in

the different numbers of sequences that are known for them.

Figure S4a and S4b shows that this amount of information can

affect estimates of the structural promiscuity of a given function.

The figure demonstrates that both the number of structures known

to carry out a given function, and the structural promiscuity of a

function increase with the number of sequences that are associated

with the function. These observations suggest that low structural

promiscuity of a function may be more apparent than real, and

that promiscuity will increase as more proteins with a given

function become characterized.

To summarize our analysis so far, relatively few functions are

carried out by multiple structures, but this number would increase

as more protein sequences will become characterized. In the

supplementary material (File S1), we extend this analysis to the

highest level of the EC hierarchy (Figures S5, S6, S7, S8, S9),

where we observe similar patterns. In addition, extending previous

work [30], we also analyze the distribution of the number of

functions per structure (Figures S7). This distribution is similarly

skewed, with most structures having single functions, and a

minority of structures adopting multiple functions.

Phenotype neighborhoods
Thus far, we have examined global aspects of the organization

of enzymatic functions, disregarding where the proteins carrying

out these functions occur in sequence space. We next turn to a

more local analysis that focuses on different neighborhoods of

sequence space. We define a neighborhood NG(r) of a protein

sequence (genotype) G, as the set of sequences that differ in no

more than a number or percentage r of its amino acids from G

itself. Put differently, a neighborhood NG(r) is a ball of radius r

around G. With this notion in hand, we ask whether different

neighborhoods differ in the kinds of functions they contain. That

is, consider two protein sequences G1 and G2 with sequence

distance d, and the neighborhoods NG1(r) and NG2(r) around them

(with some given radius r) (Figure 2). The neighborhood of G1,

NG1(r) contains sequences that carry out some set S1 of enzymatic
Table 1. The ten most structurally promiscuous functions.

EC number
N struc-
tures *RF Catalytic activity

1 EC = 2.7.7.7 14 0.35 DNA-directed DNA polymerase.

2 EC = 3.1.21.4 7 0.29 Type II site-specific deoxyribonuclease

3 EC = 3.1.2.15 6 0.26 Ubiquitin thiolesterase.

4 EC = 1.6.5.3 6 0.26 NADH dehydrogenase (ubiquinone).

5 EC = 2.7.7.48 6 0.25 RNA-directed RNA polymerase.

6 EC = 2.7.7.49 5 0.22 RNA-directed DNA polymerase.

7 EC = 1.14.13.39 4 0.22 4-hydroxyphenylacetate 3-
monooxygenase.

8 EC = 3.1.3.2 6 0.21 Acid phosphatase.

9 EC = 2.5.1.18 4 0.20 Glutathione transferase.

10 EC = 2.7.7.6 9 0.20 DNA-directed RNA polymerase.

*(RF). Structural promiscuity. (See main text).
doi:10.1371/journal.pone.0014172.t001

Figure 2. Genotype neighborhoods. Illustration of genotype
neighborhoods by a schematic two-dimensional projection of protein
sequence space. The neighborhood of a genotype (NG1(r) ) is defined as
the set of all the genotypes found at a sequence distance equal or
shorter than a radius (r) from the genotype of interest. Two such
neighborhoods may contain different sets of functions, S1 and S2,
respectively. We define the fraction of functions unique to a
neighborhood as Fu : = (|S1|+|S2|22|S1> S2|)/ |S1 < S2|.
doi:10.1371/journal.pone.0014172.g002
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functions. Similarly, NG2(r) contains sequences that carry out some

set S2 of enzymatic functions. The number of functions that occur

in both neighborhoods equals |S1 > S2|, where |X| denotes the

number of elements in a set X. The set of all functions that are

found in at least one of the two neighborhoods is (S1 < S2). We

define the fraction of functions that occur in the neighborhoods of

one but not the other sequence as Fu : = (|S1|+|S2|22|S1> S2|)/

|S1 < S2|. For brevity, we will refer to it as the fraction of

functions unique to a neighborhood. This does not mean that

these functions occur nowhere else in sequence space. They just do

not occur in the other neighborhood examined. Fu depends on the

distance d between G1 and G2 and on the neighborhood radius r.

We explore this dependency below.

Different genotypic neighborhoods contain highly
diverse functions

Figure 3a shows a heat-map of the fraction Fu of functions

unique to a sequence neighborhood, for our entire data set, and

for sequences G1 and G2 whose distances d vary, as well as for

sequence neighborhoods of various sizes r (smaller than d). The

region where the two neighborhoods do not overlap, that is, where

r,d/2, is indicated in the figure by a dashed line. For the data in

this figure, we chose the neighborhood centers G1 and G2

regardless of the structure and function of G1 and G2. Perhaps of

the greatest interest are neighborhoods with small radius r. They

contain functions that can be reached via a small number of

changes from its center Gi.

Two general observations emerge from the figure. First, at any

neighborhood size r, the fraction of unique functions increases

rapidly with the distance between the neighborhood centers G1

and G2. For a select number of sizes r, this relationship is shown

also in Figure 3b, which displays Fu as a fraction of the sequence

distance between G1 and G2. (The large standard deviations of the

data at low values of d reflect the very sparse sampling of sequence

space at low d.) For example, if two different sequences G1 and G2

of length 100 amino acids differ at only 20 percent of their amino

acids, their respective neighborhoods of radius five (which

correspond to sequences differing from them in no more than

five percent of their amino acids) have merely 50 percent of their

functions in common (Figure 3b). In other words, fifty percent of

these functions are reachable from one sequence (by no more than

five amino acid changes), but not from the other. More generally,

small neighborhoods of two distant proteins will generally contain

very different functions.

The second general feature occurs at distances between G1 and

G2 that exceed d = 80. Here, the fraction of unique functions Fu

rapidly increases to a value close to one, regardless of the

neighborhood radius. This means that neighborhoods that are

very far apart in sequence space contain mostly different functions.

We explain below that this feature arises from the fact that highly

dissimilar proteins with the same structure, proteins that are not

from the same family (d larger than 80 percent) generally have

different functions.

Different genotypic neighborhoods of proteins with a
given structure contain highly diverse functions

The previous analysis focused on the distribution of functions in

different sequence space neighborhoods, regardless of the structure

or function of the proteins G1 and G2 in the neighborhood centers

(Figure 2). We next asked whether similar distributions also exist if

G1 and G2 (Figure 2) have the same structure. This is of course

only possible for structures for which many sequences are

available. The structure with most associated sequences in our

dataset is the TIM barrel. It is represented by 4,132 sequences.

These 4,132 sequences carry out 53 different enzymatic functions

that cover 5 out of the 6 EC major classes and are widely spread

through sequences space (Figure S10). Figure 4a shows, analogous

to our analysis above, the fraction of unique enzyme functions (Fu)

found in pairwise comparisons of different neighborhoods in

sequence space, when considering only sequences known to fold

into the TIM barrel domain. The qualitative features we observed

above are also present for the TIM barrel domain. First, the

fraction of unique functions increases with increasing sequence

Figure 3. Different genotypic neighborhoods contain highly
diverse functions. (a) The figure shows a heatmap of the fraction of
unique functions (Fu) at different combinations of neighborhood radii
(r) and sequences distances (d). The dataset analyzed here is based on
10 random subsets of 28,862 sequences from our original data, where
we required that each sequence in each subset is longer than 100
amino acids. (The sequences in each subset adopted, on average 337
structures and perform 1,036 different enzyme functions.) From each of
these 10 subsets, we then chose 105 pairs of sequences at random, and
computed their values of r, d, and Fu. We repeated this random
selection of 105 sequence pairs n times, until the results no longer
changed. For the dataset of the figure, this convergence occurred
around n = 10, but data are shown for n = 100. The heatmap shows the
average values across the 10 samples observed for each combination of
distance and radius. (b) Fraction of unique functions Fu versus sequence
distance (expressed in percent) at constant neighborhood radii, as
shown in the legend. Due to the sparsity of data, we grouped values
into 20 different distance bins, each spanning d = 5. Error bars represent
standard errors calculated for each of these 20 bins.
doi:10.1371/journal.pone.0014172.g003
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distance of the neighborhood centers G1 and G2 (Figure 4b).

Second, at large distances of G1 and G2, most functions are

unique, regardless of the neighborhood radius r.

To exclude the possibility that these observations are peculiar-

ities of the TIM barrel domain, we carried out independent

analyses for those 36 structures for which the most sequences were

available. Together, they comprise a total of 18,117 sequences

with lengths ranging from 100 to 400 amino acids, and span 434

enzymatic functions covering all 6 EC classes. In lieu of presenting

36 plots, figure S11 shows data averaged over all 36 structures. Its

panels show the fraction Fu of unique functions and how it

depends on sequence distance d and neighborhood radius r,

exactly as for Figures 3a and 3b. Distances and radii are shown as

percentages of total protein length. The figure shows that these 36

structures have properties qualitatively similar to that of the TIM

barrel, except that the dramatic increase in Fu occurs over a

broader range of sequence distances d (between ca. 70 and 90

percent, Figure 3a). This observation can be explained if different

structures differ in the divergence that two sequences encoding

them typically have. Figure S3b shows that this is indeed the case.

It is based on the 337 structures that have more than one sequence

in our data, and shows that the divergence of these sequences

varies broadly around a large median of 92 percent. (For the TIM

barrel domain, the maximal distance among sequences is 100%.)

Neighborhood diversity in functions depends on
functionally versatile protein families

Thus far, we saw that the fraction of unique phenotypes

increases with increasing distance of two genotypic neighborhoods,

regardless of whether these neighborhoods center on proteins with

the same structure (Figures 3 and 4) or on proteins with different

structure (Figure S11). Our next analysis shows that this high

neighborhood diversity comes from the fact that proteins in a

given protein family can have multiple functions. Recall that a

protein family, as used here, is a set of proteins with the same

structure, and a sequence distance lower than 70 percent. Figure

S12 shows that the sequences adopting any one structure often fall

into multiple families.

If neighborhood diversity depends on functional diversity of

proteins in the same family, then an analysis of this diversity, but

for a subset of protein families with only one function per family

should lead to a fundamentally different result from that observed

in Figures 3, 4, and S11. We thus repeated our analysis of

functional diversity for the TIM barrel structure, but for a subset

of its protein families that carry out only single functions (Figure

S13). The analysis shows that different neighborhoods now

contain identical functions for all neighborhood centers with less

than d = 80 percent divergence, which is the divergence of these

TIM barrel families. Functional diversity of different small

neighborhoods thus disappears, if we consider mono-functional

protein families. At d.80 percent, however, neighborhood

divergence becomes close to maximal, as in our earlier analysis.

This is because protein pairs at this distance fall into different

families, and typically have different functions. For example, a

comparison of all pairs of monofunctional protein families within

the TIM barrel domain shows that only 1.6 percent of these pairs

have the same function. This pattern also holds for our whole data

set, where 75 percent (1,162) of the protein families perform single

functions and only 0.1 percent of the family pairs (with the same or

different structure) have the same function.

In sum, if protein structure equaled function, then all but the

most distant genotypic neighborhoods would be functionally

homogeneous. Functional neighborhood diversity emerges from

the multifunctionality of structures.

Discussion

In sum, our large data set of more than 30,000 protein

sequences with known structures and enzymatic functions gives

rise to three general observations. First, as shown previously [30],

different functions are carried out by different numbers of

sequences and structures. Second, most functions are restricted

to single structures, but some can be carried out by many

structures. Relatedly, most protein families are associated with

only one function, as was also shown previously based on fewer

data [30]. Third, and most important, different genotype

neighborhoods tend to contain a different spectrum of functions,

whose diversity increases with increasing distance of these

neighborhoods in sequence space.

Figure 4. Genotypic neighborhoods of the TIM barrel domain.
The figure shows the dependency between the radius and distance of
genotype neighborhoods, and the fraction Fu of functions unique to
one neighborhood, for sequences adopting the TIM barrel domain (see
Methods). (a) Heatmap of the fraction of unique functions (Fu) at
different combinations of neighborhood radii (r) and sequences
distances (d). We analysed these 4,132 sequences exhaustively. That
is, for all possible pairwise sequence comparisons we computed their
values of r, d and Fu. The heatmap shows values of Fu at each
combination of d and r. (b) Fraction of unique functions versus
sequence distance (expressed in percent) at constant neighborhood
radii, as shown in the legend. Due to the sparsity of data, we grouped
values into 20 different distance bins, each spanning d = 5. Error bars
represent standard errors calculated for each of these 20 bins.
doi:10.1371/journal.pone.0014172.g004
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One would be more likely to find functions that can be executed

by many structures in sequence space than those carried out by

only one structure, because, with possible exceptions, such

functions would also be carried out by more sequences. While it

is tempting to interpret the first and second observation above as

firm evidence that different functions differ in the proportion of

sequences that can perform them, this evidence has to be taken

with a grain of salt. First, some functions may be needed by few

organisms or in few environments. Fewer proteins carrying out

these functions may exist than for other, more generally important

functions. Second, the data we analyze is not a random sample of

sequence space. Some enzymes may be better studied than others,

for reasons of their medical importance, or merely by historical

accident. Fundamentally, every existing sample of proteins is

subject to these problems. However, we can get hints about

intrinsic differences among functions in the number of associated

sequences if we study the number of functions per structure, in

particular if we control for the different number of sequences per

structure. Our analysis above showed that the number of

structures per function has a nonuniform distribution, even after

controlling for the number of known sequences for each structure

(Figure S3). This observation hints that some functions may indeed

be more frequent in sequence space than others.

In support of this notion, in vitro selection experiments on

random polymers and mutagenesis experiments indeed suggest

that proteins with different functions may occupy different

proportions of sequence space [13,14,35]. For example, Taylor

et al (2001) explored random libraries of a helical bundle

chorismate mutase. They found previously unidentified residues

involved in the formation of the enzyme active site. The authors

estimate a probability of the order of 10223 of finding this

functional enzyme using the same fold in sequence space [13]. Axe

[14] examined the probability to find an enzyme in sequence

space. His results based on non-biased random libraries of beta-

lactamase suggest that this catalyst is rare, with an occurrence

probability of 10264. He suggests that the overall probability of

finding any functional protein in the sequence space is as low as

10277. Yet another study used phage display to examine the

probability to find ATP binding proteins from a random sample of

sequence space regardless the fold [47]. Its authors estimated a

probability of 10211 to find an ATP binding protein, suggesting

that a protein with this function could be found easily in a random

search of the sequence space. Although estimates like these depend

on various factors, including the length of the proteins considered,

they suggest that the probability to find a functional protein in

sequence space can vary broadly.

Our most important, third observation, the high phenotypic

diversity of different neighborhoods in sequence space, has obvious

implications for the evolution of novel protein functions. If a

protein performs an essential function, then this function needs to

be preserved over time. This typically means that the protein’s

structure will also be preserved, because changes in protein

structure typically require changes in many amino acid sequences

and would thus not preserve function [48,49]. Populations of

organisms are subject to mutations that change individual amino

acids. They may also be subject to recombination between

homologous proteins of the closely related individuals within a

population. This means that proteins that preserve their function

change their genotype gradually over time. In other words, they

drift through the function’s genotype network, which can extend

very far through genotype space [50,51]. In doing so, they explore

different regions of genotype space, all the while preserving their

function [52]. Consider now two proteins with the same function

but in different parts of this space. If their neighborhoods typically

contained the same spectrum of functions, the exploration of a

genotype network would not aid in their exploration of novel

functions. If conversely, these neighborhoods differ in the function

they contain, the exploration of a genotype network may be

crucial to explore new functions, some of which may become

evolutionary innovations. This is exactly the property we found

here. That is, by exploring a genotype network, proteins can

explore ever-changing sequence neighborhoods, and an ever-

changing spectrum of novel enzymatic functions.

The functional diversity of different neighborhoods we observe

is caused by differences in the apparent structural promiscuity of a

particular function. That is, if any one function could only be

carried out by one structure, then different neighborhoods of two

proteins with the same structure or function would not contain

diverse novel functions. This observation underscores the

importance of studying the organization of protein functions in

sequence space independently from the organization of structures.

The phenotypic diversity of different neighborhoods in

sequence space also has a flip side: It means that not all protein

functions occur in every neighborhood of sequence space. In other

words, the evolution of novel protein functions is constrained by an

individual or a population’s location in sequence space. A

consequence of such constraints is evolutionary stasis, where

genotypes but not phenotypes in a population change while the

population explores a genotype network. Such stasis is interrupted

by the discovery of novel phenotypes when a population arrives at

a neighborhood where such novel phenotypes are found. In other

words, evolutionary constraints can lead to patterns of episodic

evolution, where periods of stasis are interrupted by discoveries of

novel phenotypes. Such episodic evolution has been documented

in systems ranging from evolving RNA molecules to macroscopic

traits in the fossil record [53–57]. Although to our knowledge no

demonstration of episodic evolution is known for protein functions,

our observations suggest that it will also be widespread for

proteins.

The causes of evolutionary constraints on the acquisition of new

phenotypes are the subject of a broad literature and wide debate,

particularly among students of organismal development and its

evolution [58–62]. In this literature, the causes of constrained

evolution are often unclear, because the relationship between

genotype and phenotype is very complex for the macroscopic traits

that development creates. This relationship involves many genes,

and is thus incompletely understood. Protein functions are simpler,

molecular phenotypes, which allow us to circumvent these

complexities. For them, constrained evolution emerges from the

organization of phenotypes in a genotype space. These observa-

tions, if generalizable to more complex traits, imply that we need

to understand the organization of such complex traits in their

genotype space, before we can hope to understand constrained

evolution well.

Our study also reveals similarities and differences between the

space of protein structure and functions when mapped onto

sequence space (Figure 3, S2 and S13). As previous studies also

showed, structures are highly conserved in sequence space [63,64].

For example, pairs of sequences may diverge by more than 95

percent and still fold into the same structure [11].

Early bioinformatic analyses suggested that the organization of

protein functions was similar to that of protein structures [26–28],

but later work showed that functions and structures have different

organization in sequence space and functional annotation can not

only rely on sequence similarity [32].

Here we observed that new functions are encountered at

varying sequence distances as proteins diverge in sequence space,

and that this property can be attributed to the fact that some
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protein families perform multiple functions. While for short

distances in sequences space this diversity is moderate, it increases

at larger distances and once the structure conservation threshold

(i.e. 70 to 80 percent sequence identity) is crossed, we observed an

explosion in the accessibility of new structures [11,63], and

consequently an enormous increase in functional diversity

(Figure 3,4 and S13).

The characterization of protein sequence spaces with large but

heterogeneous biological data like ours has several caveats. First,

different proteins have different lengths, and thus exist in genotype

spaces of different dimensions. To compare neighborhoods,

however, we need to embed proteins within a genotype space of

a given dimension. For our analysis, we solved this problem by

restricting some analyses to proteins of similar length, and by

focusing others on subsets of multiple sequence alignments that

have the same lengths. This amounts to projecting genotype spaces

of higher dimensions onto lower-dimensional spaces. It reduces the

size of our data set, an unavoidable consequence of this procedure.

A second problem is posed by the vast size of genotype space.

Our data set is very large, but even data sets many orders of

magnitudes larger than ours would sample such a space only very

sparsely. The limited functional diversity of the smallest sequence

neighborhoods we examine likely results from this sparsity.

Third, our data set is a non-random sample of sequence space,

with many biases whose extent is unknown. Some of the properties

we study, such as the structural promiscuity of a function, are not

easy to infer from such a data set, nor can they be inferred from

models of protein folding such as lattice proteins, because such

models are ill-suited to study protein function. We will not be able

to characterize these properties rigorously until we are able to

generate random samples in sequence space of proteins with a

given function, which requires computational tools that are not yet

within reach.

We note in closing that the property central to our study - the

phenotypic diversity of different neighborhoods - is not likely to be

strongly affected by biases in our data. Specifically, we showed that

different phenotypic neighborhoods contain different phenotypes,

largely because multifunctional protein structures exist. In our

data, such multifunctional structures comprise a minority of

structures. This observation may well be an artifact of a biased

sampling of sequence space. If we had the same, large amount of

sequence information for all structures, we might find most

structures to be functionally versatile; and we might find most

functions to be executable by multiple structures. If anything, the

functional diversity of different neighborhoods in sequence space

would thus increase. Thus, the very feature that both facilitates

evolutionary exploration of novel functions and causes their

constrained evolution is probably a generic property of protein

sequence space.

Supporting Information

File S1 We extend earlier work on statistics of protein functions,

specifically: 1) the number of structures per function for the six

top-level EC functions; and 2) the numbers of sequences per

function against the number of structures per function and the

promiscuity of a function for the six major enzyme classes EC1

through EC6.

Found at: doi:10.1371/journal.pone.0014172.s001 (0.06 MB

DOC)

Figure S1 Distribution of the number of sequences per

structures and per functions. (a) Distribution of the number of

sequences per structure. Histogram of the total number of

sequences per structure (min = 1; max = 4.134; mean = 84). (b)

Distribution of the number of sequences per function. Histogram

of the total number of sequences per function, according to the EC

classification finest-grained level (min = 1; max = 578; mean = 29).

Distributions are based on our data set composed of 39,529

sequences, 457 structures and 1,343 enzymes types.

Found at: doi:10.1371/journal.pone.0014172.s002 (1.05 MB EPS)

Figure S2 Distribution of distances between sequences. (a)

Distribution of distances between all sequence pairs with the

same structure and function. (min = 0; max = 100; median = 55;

mean = 54). The distribution shows values of all against all

pairwise distances between sequences that fold into the same

structure and are classified under the same enzyme function. (b)

Distribution of distances between all sequence pairs with the same

function. (min = 0; max = 100; median = 56; mean = 57). The

functional annotation is based on the finest-grained level of the

EC hierarchy. (c) Distribution of distances between all sequence

pairs with the same structure. (min = 0; max = 100; median = 92;

mean = 86). The data for these distributions was generated as

follows. From our original data composed of 39,529 sequences,

457 structures and 1,343 enzyme functions, we extracted 10

independent samples of random sections from those multiple

sequence alignments that comprised at least 100 amino acids. We

required each random section to comprise 100 amino acids. These

10 samples were on average composed of 28,862 sequences, 337

structures and 1,036 enzyme functions. We then chose, from each

of the 10 random samples, 107 sequence pairs with identical

structure and/or function at random, and calculated their pairwise

distances. Error bars indicate standard errors of the mean over the

10 independent samples.

Found at: doi:10.1371/journal.pone.0014172.s003 (0.99 MB EPS)

Figure S3 Distribution of the number of structures per function,

corrected for the number of sequences. For this figure we used the

original dataset of 39,529 sequences, 457 structures and 1,343

enzyme functions. We determined, for each structure i, the

fraction fi of sequences adopting this structure. For each function,

we then determined all structures that are associated with this

function, and averaged the corresponding values of fi. The panel

shows a histogram of these averages, for all 1,343 enzymatic

functions.

Found at: doi:10.1371/journal.pone.0014172.s004 (0.01 MB EPS)

Figure S4 Structures per function versus sequences per function.

Associations between number of sequences and structures per

protein function at the fourth, finest-grained (a,b) and the first,

coarsest level (c,d) of the EC hierarchy. For the first analysis (panel

a and b), we classified the 39,529 sequences of our original data set

according to their enzyme functions and compared the number of

sequences per function with the number of structures per function.

There are a total of 457 structure and 1,343 functions at this level.

For the second analysis of the top-level EC functions, the 39,529

sequences fall into only 6 different enzyme types. While it is

difficult to make statistically rigorous statements based on so few

functions, we nonetheless wanted to understand how sensitive our

observations in panel c) and d) were to the structure of our data.

To this end, we extracted random samples of 104 sequences from

our data set and classified them according to the 6 top EC-levels.

We repeated this procedure 105 times and compare the statistics of

the averaged values obtained from the sampling with the statistics

observed for the whole data set (without sampling). Plots show the

means over the sampling and error bars the standard deviations.

(a) Scatterplot of the number of sequences per function against the

number of structures per function. Spearman rank’s correlation

r = 0.29 (P,E-50). (b) Scatterplot of the number of sequences per

function versus structural promiscuity. Spearman rank’s correla-
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tion r = 0.27 (P,E-50). (c) Scatterplot of the number of sequences

per function against the number of structures per function at the

top level of the EC hierarchy. Spearman rank’s correlation

r = 0.92 (P,0.01). Spearman rank’s correlation of the complete

data set (without sampling) is r = 0.94 (P,0.01). (d) Scatterplots of

the number of sequences per function at the coarsest level of the

EC hierarchy versus structural promiscuity. Spearman rank’s

correlation r = 0.92 (P,0.01). Note the decadic logarithms on the

vertical axes of all plots. Spearman rank’s correlation of the

complete data set (without sampling) is r = 0.77 (P,0.1).

Found at: doi:10.1371/journal.pone.0014172.s005 (1.70 MB

DOC)

Figure S5 Distribution of structures over functions at the top

level of the EC hierarchy. (a) Number of structures per enzyme

class at the first (top) level of the EC hierarchy. For this figure, we

grouped the total number of different structures (457) in our

dataset composed of 39,529 sequences are classified according to

the enzyme function that they perform (min = 28; max = 188;

mean = 100). (b) Structural promiscuity at the first level of the EC

hierarchy. Structural promiscuity (RF) is an entropy-like measure

(see main text of the Supplementary Material) calculated from the

distribution of the EC top-level types of enzyme functions over

different protein structures (min = 0.32; max = 0.57; mean = 0.49).

Found at: doi:10.1371/journal.pone.0014172.s006 (0.88 MB

EPS)

Figure S6 Distribution of functions over structures.(a) Distribu-

tion of the number of functions per structure at the fourth (finest

grained) level of the EC hierarchy. (min = 1, max = 103). (b)

Distribution of functional versatility (VS) at the fourth level of the

EC hierarchy. Functional versatility (VS) is an entropy-like

measure (see main text) calculated from the distribution of

structure domains over different enzyme functions at the bottom

level of the EC hierarchy. (min = 0, max = 0.53). For the data in

these panels, we classified the total number of different enzyme

functions (1,343) according to the structures that carry them out

(457).

Found at: doi:10.1371/journal.pone.0014172.s007 (1.04 MB EPS)

Figure S7 Distribution of functions over structures at the

coarsest level of the EC hierarchy.(a) Distribution of the number

of functions per structure at the coarsest level of the EC hierarchy.

The data is based on the total number of 6 different enzyme types

at the first, coarsest level of the EC hierarchy in our dataset of

39,529 sequences and 457 strcutures. For the plot, we classified

each sequence according to its structure and function. (min = 1,

max = 5;). (b) Distribution of functional versatility (VS) at the

coarsest level of the EC hierarchy. Functional versatility (VS) is an

entropy-like measure (see text) calculated here from the distribu-

tion of structure domains over different enzyme functions at the

first, coarsest level of the EC hierarchy (min = 0, max = 0.76). The

inset show the same data, but with a log10-transformed vertical

axis.

Found at: doi:10.1371/journal.pone.0014172.s008 (0.86 MB EPS)

Figure S8 Sequences per structure versus the distribution of

functions. (a) Scatterplot of the number of sequences per structure

against the number of functions per structure. The association

between number of sequences and enzyme functions per structure

domain is shown for the fourth (finest grained) level of the EC

hierarchy. Spearman rank’s correlation r = 0.57 (P,E-50). (b)

Scatterplot of the number of sequences per structure versus

functional versatility. The same dataset described in panel (a) is

used to examine the association between number of sequences

(39,529) and the functional versatility (VS) per structure domain.

Spearman rank’s correlation r = 0.51 (P,E-50). For the data in

this figure, we classified the number of sequences (39,529) and

enzyme functions (1,343) according to their structure (457). Note

the log10-transformed horizontal axes.

Found at: doi:10.1371/journal.pone.0014172.s009 (1.33 MB

EPS)

Figure S9 Scatterplot of the number of sequences per structure.

Associations between numbers of sequences and functions per

structure are shown at the first, coarsest level of the EC hierarchy.

We classified the 39,529 sequences according to their 457

structures and compared the number of sequences per structure

with (a) the number of functions per structure and (b) functional

versatility (VS). For the first analysis (panel a), we classified the

number of functions (at the coarsest level of the EC hierarchy) per

structure in our dataset and the corresponding number of

sequences folding into those structures (Spearman rank’s correla-

tion r = 0.43; P,E-50), Error bars represent the standard error

over the number of sequences per structure. The second panel (b)

shows a scatterplot comparing the number of sequences per

structure (log10-transformed) and VS per structure (Spearman

rank’s correlation r = 0.42; P,E-50).

Found at: doi:10.1371/journal.pone.0014172.s010 (0.98 MB

EPS)

Figure S10 Principal Component Analysis (PCA) of the TIM

barrel main homologous superfamily (the aldolase I superfamily).

For this analysis, we first constructed a multiple sequence

alignment of the aldolase I superfamily (CATH code:

3.20.20.70), using the program clustalw, and allowing no more

than 10 percent gaps in the alignment. The resulting multiple

sequence alignment is composed of 4,132 sequences of length 188

amino acids, and comprises 53 different enzyme functions at the

finest-grained level of the EC hierarchy. For subsequent PCA [4],

we encoded the sequences in the alignment as numeric strings (21

possible values per amino acid position, including gaps). The

panels show the first two principal components (a) and the first and

third components (b). The 53 different enzyme functions are color-

coded according to the color bar to the right. Note the clear

separation of some functions.

Found at: doi:10.1371/journal.pone.0014172.s011 (3.82 MB EPS)

Figure S11 Genotypic neighborhoods of proteins with a given

structure. The figure shows the dependency between the radius and

distance of sequence neighborhoods, and the fraction Fu of

functions unique to one neighborhood, for sequences folding into

36 different structures. The total set of multiple alignments we used

in this analysis comprises a total of 18,117 sequences with lengths

ranging from 100 to 400 amino acids, and spans 434 enzymatic

functions covering all 6 EC classes. We analysed these sequences

exhaustively. That is, for all possible pairwise sequence comparisons

we computed their values of r, d and Fu. The heatmap shows Fu

values at each combination of d and r, for the 26 structures (a)

Heatmap of the fraction of unique functions (Fu) at different

combinations of neighborhood radii (r) and sequences distances (d).

(b) Fraction of unique functional Fu of unique functions versus

sequence distance (expressed in percent) at a given neighborhood

radius, as shown in the legend. Due to the sparsity of data, we

grouped values into 20 different distance bins, each spanning d = 5.

Error bars represent standard errors calculated for these 20 bins.

The CATH identifiers of the 36 superfamilies we used in this

analysis are listed here: 3.30.70.141; 3.30.420.10; 3.40.50.960;

2.70.40.10; 3.90.45.10; 3.40.50.2020; 3.20.19.10; 3.40.50.1470;

3.40.50.1360; 2.40.10.10; 3.90.1550.10; 3.90.226.10; 3.90.180.10;

3.40.50.880; 3.60.20.10; 3.40.50.620; 3.40.1210.10; 3.40.1160.10;

3.40.50.1240; 3.40.640.10; 3.60.15.10; 3.20.20.60; 3.20.20.70;
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3.30.572.10; 3.90.550.10; 1.20.200.10; 3.40.1190.20; 3.30.930.10;

1.10.1040.10; 3.20.20.140; 3.40.50.1820; 3.20.20.210; 3.20.20.150;

3.40.718.10; 3.20.20.80; 1.10.630.10.

Found at: doi:10.1371/journal.pone.0014172.s012 (2.31 MB EPS)

Figure S12 Distribution of the number of protein families per

structures. (a) Distribution of the number of protein families per

structure domain in the whole CATH database. This data is

composed of 114,215 protein families grouped into 2,178

structures. (b) Distribution of the number of protein families per

structure in our dataset composed of 39,529 sequences and 457

structures. More precisely, the notion of a protein family here

corresponds to that of a CATH homologous superfamily (Greene

et al, 2007). The insets show the same data, but with a log10-

transformed vertical axis.

Found at: doi:10.1371/journal.pone.0014172.s013 (0.92 MB EPS)

Figure S13 Neighborhood diversity in functions depends on

functionally versatile protein families and structures. The figure

shows the dependency between the radius and distance of two

genotype neighborhoods, and the fraction Fu of functions unique

to one neighborhood. (a) Heatmap of the fraction of unique

functions (Fu) at different combinations of neighborhood radii (r)

and sequences distances (d). The data is based on the major

superfamily of the TIM barrel domain, aldolase I (CATH code:

3.20.20.70), which is composed of 4,132 sequences that carry out

53 different enzyme functions (see methods). These sequences can

be grouped into 62 protein families. From this data set we selected

the 30 protein families that carry out single enzyme functions.

These families comprise 2,444 protein sequences and 27 enzyme

functions. For all possible sequence pairs in this data set we

computed values of d and Fu for different values of r. The heatmap

shows Fu values over all distance-radius combinations. (b) Fraction

of unique functional variations versus sequence distance (expressed

in percent) at constant neighborhood radii, as shown in the legend.

Due to the sparsity of the data, we grouped values into 20 different

distance bins, each spanning d = 5. Error bars represent standard

errors calculated for these 20 bins.

Found at: doi:10.1371/journal.pone.0014172.s014 (2.09 MB EPS)
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