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A Chinese family with progressive childhood cataracts and
IVS3+1G>A CRYBA3/A1 mutations
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Purpose: To characterize the disease-causing mutations in a Chinese family with progressive childhood cataracts.
Methods: Family history and clinical data were recorded. Direct gene sequencing together with multi-point linkage
analysis using microsatellite markers flanking the gene was applied to identify the disease-causing mutation.

Results: Lens examination in the affected members revealed childhood cataracts along with progressive developing fetal
nuclear lactescent cataracts with ‘Y’ sutural opacities, and also progressive developing peripheral cortical opacities. Direct
gene sequencing showed a G>A transition at the donor splice site of intron 3 (IVS3+1 G>A) of the fA1/A3-crystallin
gene (CRYBA3/A1) in this Chinese autosomal dominant childhood cataract family, and the maximum heterogeneity
logarithm of odds (HLOD) score obtained by multi-point analysis was detected at marker locus D17S1800 (HLOD=3.005;
a=1.000).

Conclusions: To our knowledge, this is the first report of a phenotype of progressive nuclear and cortical cataracts related
tothe CRYBA3/A 1 mutation IVS3+1 G>A. This finding expands the spectrum of cataract phenotypes caused by the [VS3+1
G>A mutation of CRYBA3/A1, confirms the phenotypic heterogeneity of this mutation and suggests the mechanism that

influences the cataractogenesis in different ethnic backgrounds.

Childhood cataracts are a cause of childhood blindness
worldwide. This disease accounts for more than 1 million
blind children in Asia and about 10% of the childhood
blindness worldwide [1]. Childhood cataracts are also a
clinically and genetically heterogeneous disorder in which the
phenotype varies considerably between and within families
[2]. From an etiological point of view, genetic mutation might
be the most common cause, especially for bilateral cataracts.
All three forms of Mendelian inheritance have been observed,
and the most frequently seen in non-consanguineous
populations is autosomal dominant (AD) transmission. At
present, over 26 out of the 39 mapped loci for isolated
congenital or childhood cataracts have been associated with
mutations in specific genes [3]. Of the cataract families in
which the mutant gene is known, approximately half have
crystallin mutations, including the aA-crystallin gene
(CRYA4), oB-crystallin (CRYAB), CRYBA3/Al, BA4-
crystallin  (CRYBA4), PBl-crystallin (CRYBBI), BB2-
crystallin (CRYBB?2), yC-crystallin (CRYGC), yD-crystallin
(CRYGD) and yS-crystallin (CRYGS) [3-10], approximately
one quarter have connexin mutations in Connexin 46 (GJA3)
and Connexin 50 (GJAS) [11,12], with the remainder being
divided among the genes for heat shock transcription factor-4
(HSF4) [13], aquaporin-0 (4QP0, MIP) [14,15], beaded
filament structural protein-2 (BFSP2) [16], paired-like
homeodomain 3 (PITX3) [17], chromatin modifying protein
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4B (CHMP4B) [18], and EPH receptor A2 (EPHA2) [19].
Most of the mutations detected in these genes are missense
and nonsense mutations [3]. Among them, CRYAA [20],
CRYBA3/A1 [21], CRYBB2 [22], CRYGC [23], CRYGD [24],
GJA3 [25,26], GJAS [26], BFSP2 [27], MIP [28], and HSF4
[29] have been reported to be related to nuclear cataracts.

The CRYBA3/A1 mutation was first identified as a cause
of cataracts in a pedigree with autosomal dominant zonular
cataracts [8]. To date, three mutations have been reported in
CRYBA3/A1,1VS3+1 G>C [30], IVS3+1 G>A [8,21,31], and
279delGAG [32,33]. IVS3+1 G>A has been observed only in
the Indian, Australian, and Chinese populations. In the
Chinese population, this mutation is related to posterior polar
cataracts [34].

In this study, we identified a Chinese family with
CRYBA3/A1 1VS3+1 G>A by genetic analysis. To our
knowledge, this is the first report to relate this mutation site
with progressive childhood cataracts characterized by
opacities in the fetal nucleus and peripheral cortex.

METHODS

Family data and genomic DNA preparation: A four-
generation family with autosomal dominant childhood
cataracts was ascertained through the Eye Center of the 2nd
Affiliated Hospital, Medical College of Zhejiang University,
Hangzhou, China, and this study was approved by the
Zhejiang University Institutional Review Board. Appropriate
informed consent was obtained from all participants and the
study protocol followed the principles of the Declaration of
Helsinki. Seventeen individuals (9 affected and 8 unaffected)
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Figure 1. Pedigree of the proband. The black symbols indicate individuals with a diagnosis of congenital cataract performed by genetic analysis.
The arrow indicates the proband. All of the members shown in this figure except I:1 and I:2 took part in this project. The haplotype markers
are shown at the left of each generation. The black and white bars depict the disease and non-disease associated haplotype, respectively.
Haplotype analysis identified the causative gene as being between D175921 and D17S800 on 17p12-21.2.

from the family took part in the study (Figure 1). The affected
status was determined by a history of cataract extraction or
ophthalmologic examination, including visual acuity, slit
lamp, and fundus examination. The phenotypes were
documented by slit lamp photography.

Genomic DNA preparation: We collected blood specimens
(5 ml) in EDTA and extracted the genomic DNA from the
peripheral blood leukocytes of the available family members
using the Simgen Blood DNA mini kit (Simgen, Hangzhou,
China).

Mutation screening: We used the functional candidate gene
analysis approach. Gene specific PCR primers for CRYAA,
CRYBA3/A1, CRYBBI, CRYBB2, CRYGC, CRYGD, GJA3,
GJAS, and MIP were designed flanking each exon and intron-
exon junction. The cycling conditions for PCR were as
follows: 95 °C preactivation for 5 min, 10 cycles of
touchdown PCR with 1 °C down per cycle from 60 °C to
50 °C, followed by 25 cycles with denaturation at 95 °C for

25 s, annealing at 55 °C for 25 s and extension at 72 °C for 40
s, then finally extension at 72 °C for 10 min. Each reaction
mix (25 pl) contained 50 ng of genomic DNA, 10x PCR
buffer,1.5 mM MgCl,, 0.2 mM dNTPs, 5 umol each of sense
and antisense primers (Table 1) and 2.5U of Taq DNA
polymerase (Sangon Biotech, Shanghai, China). Thermal
cycling was performed under suitable conditions using a
C1000™ 48 well thermal cycler (Bio-Rad, Hercules, CA).
PCR products were isolated by electrophoresis on 1.5%
agarose gels and sequenced using the BigDye Terminator
Cycle sequencing kit V 3.1(Applied Biosystems, Foster City,
CA) on an Applied Biosystems PRISM 3730 Sequence
Analyzer, according to the manufacturer’s directions.

Genotyping: We performed a partial genome scan in the
vicinity of the CRYBA3/A 1 locus, and chose the 10 fluorescent
short tandem repeat polymorphic markers for this locus which
are shown in Figure 1. Multiplex PCR was performed in a
20 pl reaction mixture containing 10 ng of genomic DNA,
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TABLE 1. PRIMERS USED IN POLYMERASE CHAIN REACTION OF CRYBA3/Al.

Name Prime Sequence(5'-3") Product length (bp)
ExonlF AGCAAGCTGAGCCACCAAAG 308
ExonlR GCTGTCTTCCGCCAGAGTTC
Exon2F TCGTGTGTGCTCTGTCTTCC 205
Exon2R CCCCTACAAACTGGGGTTTT
Exon3F CATCAGGCATCCCAGGCTACA 333
Exon3R TCCTTCTTCCCCTATCCCCAC
Exon4F CGTCAACTCATTCCTCAACTCT 464
Exon4R CAGGCTTAGAGAAGAAAGTGATGT
ExonSF TTTCTCACAAATCTGTTGCCTTA 340
Exon5R CAAAGTAACTCCTGAGGTTGCA
Exon6F AGGCTCAGGTTTTGGGGTAT 471
Exon6R ACTCCAGCCTGAGCAACAAG

0.3 mM of each dNTP, 0.1 uM each of forward and reverse
primers, 1 U HotStarTaq polymerase (Qiagen, Hilden,
Germany), 3.0 mM MgCl,, and 1x HotStarTaq buffer.
Samples were incubated in a thermocycler for 15 min at 95 °C
and 20 s at 94 °C; the annealing temperature was programmed
to initiate at 65 °C for 40 s and decrease 0.5 °C every cycle;
then 68 °C for 2 min, for 11 cycles; followed by 94 °C for 20
s, 59 °C for 40 s, 68 °C for 2 min, for 24 cycles; a final
extension at 60 °C for 1 h was performed. The PCR products
were appropriately pooled and an aliquot was loaded onto a
5% standard denaturing polyacrylamide gel and run in an
Applied Biosystems 3130x]1 Genetic Analyzer. The size of
each allele was determined on the basis of an internal size
standard (GeneScanTM —500 Liz Size Standard, Applied
Biosystems) in each lane, and results were analyzed using the
Applied Biosystems GeneMapper 4.0.

Linkage analysis and haplotyping: Multi-point linkage
analysis was calculated using Merlin. A gene frequency of
0.0001 and penetrance of 100% were assumed. Microsatellite
markers, allele frequencies, and recombination distances
between the marker loci were based on the Marshfield
database and the UCSC database. Family and haplotype data
were processed using Cyrillic software (version 2.1; Cyrillic,
Oxfordshire, UK).

RESULTS

Clinical evaluation: We identified a four-generation Chinese
family with a clear diagnosis of autosomal dominant
childhood cataracts. Most affected individuals noticed their
visual impairments before the age of twenty, and then their
visual acuity decreased gradually until surgery was required
to restore their visual function before the age of 40 (Figure 1).
Opacity of the lens was bilateral in all of the affected
individuals. The proband, who was a 28 year-old, had nuclear
lactescent cataracts, ‘Y’ sutural opacities, and dot-like
peripheral cortical opacities. His clinical features were almost
the same as his brother (I11:3). The affected member I1:2, who
was the mother of the proband, had more severe, curd-like

cortical opacities, but her nuclear opacities were not much
different from those of her sons. In the childhood stage before
the age of ten, like IV:1, who was a 9 year-old, there was no
opacity in the peripheral cortex, but there were mild opacities
in the nucleus which had been first identified when he was
three years old (Figure 2). After the age of 10, like the case of
IV:2, who was a 12 year-old, certain fine, sand like opacities
developed. The clinical evaluation of the affected individuals
is provided in Table 2. Before surgery, the affected members
had a visual acuity which ranged from finger counting to
20/100. After surgery, all the patients achieved a distance
visual acuity of 20/25 to 20/20. There was no family history
of other ocular or systemic abnormalities.

Genetic analysis: Through gene sequencing we identified a
single base substitution in the donor splice site of intron 3 in
CRYBA3/A1 (IVS3+1 G>A) which cosegregated with all
affected individuals, whereas this heterozygous mutation was
not present in the unaffected family members, and also 100
unrelated Chinese without cataracts serving as a control
(Figure 3).

Linkage and haplotype analysis: Genescan and linkage
analysis were carried out by using 10 microsatellite markers
flanking the CRYBA3/A1 gene, and positive results were
obtained, including the maximum HLOD score 3.005 at
D17S1800 (0=1.000; Table 3). Haplotype analysis showed
that the affected individuals in the family shared a common
haplotype, with a region flanked by the markers D17S921 and
D17S800 at 17p12-21.2 containing CRYBA3/AI.

DISCUSSION

The genes which are reported to cause cataract-specific
mutations include those of the crystallins, cytoskeletal
proteins, membrane proteins, transcription factors, and
chromatin modifying protein-4B [35]. Among the reported
genes, the crystallins are of special interest because they
encode the major proportion of water soluble structural
proteins of the lens fiber cells. The human lens contains -,
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Figure 2. Photographs of the eyes of the family members with congenital cataracts. A: The left eye of proband III:5. Diffuse illumination
shows a fetal nuclear lactescent cataract with “Y’ sutural opacities and mild peripheral cortical opacities. B: Retroillumination showing the
left eye of proband III:5. C: The right eye of II:2. Diffuse illumination shows denser peripheral cortical opacities, but the opacity of nucleus
is almost the same as III:5. D: Retroillumination showing the right eye of proband II:2. E: The left eye of IV:1. Diffuse illumination shows
only mild nuclear and sutural opacities. F: Retroillumination showing the left eye of proband IV:1.

TABLE 2. CLINICAL EVALUATION OF AFFECTED INDIVIDUALS.

Phenotype

Nuclear lactescent cataract, ‘Y’ sutural opacities, severe curd-like peripheral

cortical opacities

Had cataract surgery 12 years ago

Had cataract surgery 10 years ago

Had cataract surgery 5 years ago

Nuclear lactescent cataract, ‘Y’ sutural opacities, fine sand-like peripheral

cortical opacities

Nuclear lactescent cataract, ‘Y’ sutural opacities, fine sand-like peripheral

cortical opacities

Affected Age at Age at cataract surgery
individual presentation
11:2 55 55
11:4 48 36
11:6 45 35
1I:1 35 30
I1I:3 33 28
III:5 28 28
11:6 25 22
Iv:1 9 No surgery
1v:2 12 No surgery

Had cataract surgery 3 years ago
Mild nuclear opacities with sutural opacities
Nuclear opacities with sutural opacities, a few dot-like cortical opacities

-, and y-crystallins, of which the B-crystallins comprise the
greatest part.

Thus far, three identified mutations in CRYBA3/A1 gene
have been associated with autosomal dominant cataract
phenotypes of either a congenital or childhood nature. One is
the IVS3+1 G>A mutation (position 474, GenBank
M14303) which we reported [8,21,31], another is IVS3+1
G>C [30], and a third is a 3-bp deletion at positions 279-281
in exon 4 (279delGAG) [32,33]. Furthermore, the mutation
IVS3+1 G>A has been found in 5 additional families.
Kannabiran et al. [8] reported an Indian pedigree in which the
phenotype was zonular cataracts with sutural opacities,

Another two Indian pedigrees were reported by Devi et al.
[31] with the phenotype of zonular lamellar opacities. An
Australian family was reported by Burdon et al. [21] having
the clinical features of Y-sutural opacities, mild opacification
throughout the region of the fetal nucleus, and peripheral
cortical dot opacities, and Gu et al. [34] identified a Chinese
family with posterior polar cataracts, which was the first time
this mutation was found in the Chinese population. Although
the nuclear, sutural, and cortical cataracts were also found in
the Australian family, the clinical features we observed were
still distinctly different. First, in the family we studied, the
nuclear cataracts in the affected individuals are progressive.
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Figure 3. Partial DNA sequence of
CRYBA3/A1 from one normal and one
affected  individual, showing a
heterozygous mutation (IVS3+1 G>A)
in the third canonical GT site of
CRYBA3/AI (black triangles). The black
vertical line denotes the normal exon 3-
intron 3 donor splice site.

TABLE 3. MULTI-POINT LINKAGE ANALYSIS BETWEEN CHROMOSOME 17 DNA MARKERS.

Locus Position (CM)
D17S799 31.960
D175900/921 36.140
D17S805 47.000
D17S1800 51.630
D17S1293 56.480
D17S1836 60.400
D17S800 62.010
D17S1861 63.620
D17S1817 103.530

LOD o HLOD
1.485 1.000 1.485
—6.484 0.000 0.000
3.003 1.000 3.003
3.005 1.000 3.005
3.003 1.000 3.003
2.459 1.000 2.459
—6.780 0.000 0.000
—6.603 0.000 0.000
—17.703 0.000 0.000

Mild nuclear opacities with sutural opacities first appear at
approximately 3 years of age, and progress thereafter. After
20 years of age, the nuclear opacities deteriorate so as to
become lactescent, and thus become the main factor
influencing the visual acuity. Second, the cortical cataracts in
our case are also progressive. The fine, sand-like peripheral
cortical opacities are observed just after 10 years of age, and
progress with a trend of increasing and aggregating. After the
age of 50 years they are almost curd-like. Fortunately, these
cataracts in childhood are so mild that they exert little negative
effect on visual development. After surgery, all of the patients
achieved good visual acuity.

The related gene CRYBA3/AI is located in 17ql1.2
(GenelD: 1411), which is a member of crystallin family,

2351

encoding two proteins (BA3-crystallin and BAl-crystallin)
from a single mRNA. The latter protein is 17 amino acids
shorter than BA3-crystallin and is generated by use of an
alternate translation initiation site. Seven protein regions exist
in BA1/A3-crystallin: four homologous motifs, a connecting
peptide, and NH»- and COOH-terminal extensions. Each
motif is a Greek key of four B-strands and consists of
approximately 40 amino acid residues. The CRYBA3/A1 gene
consists of six exons [36]. In the CRYBA3/A1 gene, the four
Greek key motifs are approximately encoded by exons 3 to 6
[37]. Splice-site mutations were reported to result in exon
skipping, activation of cryptic splice sites, creation of a
pseudo-exon within an intron, or intron retention, among
which exon skipping is the most frequent outcome [38]. The
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donor splice site of intron 3 of CRYBA3/A1 (position 474) is
the first nucleotide in the invariant GT dinucleotide of the 59
splice junction consensus sequence [30]. Due to the mutation
IVS3+1 G>A, as we previously reported, the very next codon
within the retained intron 3 would be a UGA stop site, which
mimics a missense mutation at the protein level. Although the
surveillance of mRNAs for transcripts that cannot be
completely translated leads to their rapid degradation by
nonsense-mediated decay (NMD) [39], transcripts of the
IVS3+1 G>A of CRYBA3/AI probably escape the NMD
pathway, and the premature termination codon (PTC) would
cause truncation of the BA1/A3-crystallin immediately after
the first motif. Since the Greek key motifs are formed with the
fourth strand of the first motif being provided by the second
motif and vice versa, without the second motif encoded by
exon 4, it would not be possible to form even a single Greek
key structure [40]. Due to the loss of exons 3 and 4 in CRYBA3/
Al mRNA, a BA1/A3-crystallin species is suggested which
contains only the COOH-terminal globular domain [8]. Gupta
et al. [41] constructed eight deletion mutants of BA1/A3-
crystallin and found that the deletion of exon 3 and exon 4
caused major structural instability, leading to the
insolubilization of BA1/A3-crystallin. However there is as yet
insufficient research in this field, and the nature of the
complex mechanism remains to be determined.

In conclusion, we have identified a progressive form of
congenital cataracts associated with the IVS3+1 G>A muta-
tion of CRYBA3/A1 in a Chinese family. This is the first
report to relate this mutation to progressive cataracts. This
study highlights the physiologic importance of PA1/A3-
crystallin and supports the role of CRYBA3/41 in human
cataract formation.
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