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Comparing the effectiveness of alternative cancer treatments is a 
critical objective for medical and health services researchers. 
Practicing physicians need to have valid information about the 
risks and benefits of alternative treatments to discuss options with 
their patients and make treatment recommendations. Moreover, in 
a climate of rapidly growing health-care costs and constrained 
national resources, health-care policymakers need comparative 
effectiveness information to make decisions about reimbursement 
rates and insurance coverage.

The randomized controlled trial is considered the most valid 
methodology for assessing treatments’ efficacy. However, random-
ized controlled trials are costly, time consuming, and frequently not 
feasible because of ethical constraints. Moreover, some randomized 

controlled trial results have limited generalizability because of dif-
ferences between randomized controlled trial study populations, 
who may be screened for eligibility on the basis of age and comor-
bidities, and community populations, who are likely to be much 
more heterogeneous with regard to health conditions and socioeco-
nomic characteristics.

Given the need for comparative effectiveness information and 
the limitations of randomized controlled trials, investigating the 
feasibility of using observational data from actual medical practice 
in comparative effectiveness studies as a complement to random-
ized controlled trials is important. However, observational studies 
are subject to bias that are caused by selection of patients into 
treatments for reasons related to expected survival (eg, patients 
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 Background  Using  observational  data  to  assess  the  relative  effectiveness  of  alternative  cancer  treatments  is  limited  by 
patient  selection  into  treatment,  which  often  biases  interpretation  of  outcomes.  We  evaluated  methods  for 
addressing confounding in treatment and survival of patients with early-stage prostate cancer in observational 
data and compared findings with those from a benchmark randomized clinical trial.

  Methods  We selected 14 302 early-stage prostate cancer patients who were aged 66–74 years and had been treated with rad-
ical prostatectomy or conservative management from linked Surveillance, Epidemiology, and End Results–Medicare 
data from January 1, 1995, through December 31, 2003. Eligibility criteria were similar to those from a clinical trial 
used to benchmark our analyses. Survival was measured through December 31, 2007, by use of Cox proportional 
hazards models. We compared results from the benchmark trial with results from models with observational data 
by use of traditional multivariable survival analysis, propensity score adjustment, and instrumental variable analysis.

  Results  Prostate cancer patients receiving conservative management were more likely to be older, nonwhite, and single 
and  to have more advanced disease  than patients  receiving radical prostatectomy.  In a multivariable survival 
analysis, conservative management was associated with greater risk of prostate cancer–specific mortality (haz-
ard ratio  [HR] = 1.59, 95% confidence  interval  [CI] = 1.27 to 2.00) and all-cause mortality  (HR = 1.47, 95% CI = 
1.35 to 1.59) than radical prostatectomy. Propensity score adjustments resulted in similar patient characteristics 
across  treatment groups,  although survival  results were  similar  to  traditional multivariable  survival  analyses. 
Results  for  the same comparison  from the  instrumental variable approach, which  theoretically equalizes both 
observed and unobserved patient characteristics across treatment groups, differed from the traditional multivar-
iable  and  propensity  score  results  but  were  consistent  with  findings  from  the  subset  of  elderly  patient  with 
early-stage  disease  in  the  trial  (ie,  conservative  management  vs  radical  prostatectomy:  for  prostate  cancer–
specific mortality, HR = 0.73, 95% CI = 0.08 to 6.73; for all-cause mortality, HR = 1.09, 95% CI = 0.46 to 2.59).

 Conclusion  Instrumental variable analysis may be a useful technique in comparative effectiveness studies of cancer treat-
ments if an acceptable instrument can be identified.
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with a better prognosis may be more likely to receive one treat-
ment over another) and the inability to observe all relevant  
information (1–4). Patient selection into specific treatments is an 
important consideration in all observational studies, but particu-
larly for those in prostate cancer, because incidence is highest  
in the elderly who are also most likely to have multiple 
comorbidities.

The number of published studies that used observational data 
to assess the effectiveness of cancer treatment has increased dra-
matically in the past decade (5–9) and is likely to increase even 
more rapidly with the growing emphasis on comparative effective-
ness research (10). In addition to traditional multivariable regres-
sion analyses, researchers have used propensity score analysis to 
adjust for differences in observed patient and physician character-
istics. Observational studies (1,11–13) have previously used tradi-
tional regression and propensity score methods to evaluate 
associations between specific prostate cancer treatments with sur-
vival. In these studies, the propensity score methods did not com-
pletely balance (ie, equalize) important patient characteristics such 
as tumor grade, size, and comorbidities across treatment groups. 
Furthermore, patients who received active treatment had better 
survival for noncancer causes of death than patients who received 
conservative management, indicating that unobserved differences 
between groups affected both treatment choice and survival.

Instrumental variable analysis is a statistical technique that uses 
an exogenous variable (or variables), referred to as an “instru-
ment,” that is hypothesized to affect treatment choice but not to 
be related to the health outcome (14–17). Variations in treatment 
that result from variations in the value of the instrument are con-
sidered to be analogous to variations that result from randomiza-
tion and so address both observed and unobserved confounding. 
Instrumental variable analysis has been used with observational 
data to investigate clinical treatment effects among patients with 
breast cancer (18–20), lung cancer (21), or prostate cancer (5,22).

Early-stage prostate cancer is an ideal disease for comparing 
analytic techniques for addressing observed and unobserved con-
founding because it is a common cancer among men with uncer-
tainty as to which treatment is optimal (23). Geographic variation 
in surgical treatment has been consistently reported in the United 
States (7,24,25), and patient selection into different treatments on 
the basis of their ages and/or comorbid conditions is particularly a 
concern in evaluations of prostate cancer treatments (24–27). In 
this study, we evaluated traditional multivariable regression, pro-
pensity score, and instrumental variable analyses for addressing 
observed and unobserved confounding among patients with early-
stage prostate cancer who were treated with radical prostatectomy 
or conservative management. We also compared findings from 
these analyses with those from a benchmark randomized clinical 
trial that evaluated the same two treatments (28,29).

Patients and Methods
This study evaluated three statistical techniques (ie, traditional 
multivariable regression analysis, propensity score analysis, and 
instrumental variable analysis) for assessing survival among early-
stage prostate cancer patients who received either radical prosta-
tectomy or conservative management within 6 months of diagnosis. 

CONTEXT AND CAVEATS

Prior knowledge
Although randomized controlled trials provide the best assessment 
of  alternative  treatments,  such  trials  are  costly,  time  consuming, 
and may have limited generalizability. Observational data might be 
an alternative, but these data can be limited by confounding.

Study design
Data  from  early-stage,  elderly  prostate  cancer  patients  who  had 
been treated with radical prostatectomy or conservative manage-
ment  were  from  the  linked  Surveillance,  Epidemiology,  and  End 
Results–Medicare database. Observational data were examined by 
use of traditional multivariable survival analysis, propensity score 
adjustment, and instrumental variable analysis. Results were com-
pared with those from a benchmark randomized trial.

Contribution
Propensity score adjustments resulted in similar patient character-
istics across treatment groups, and survival was similar to that of 
traditional multivariable survival analyses. The  instrumental vari-
able  approach,  which  theoretically  equalizes  both  observed  and 
unobserved  patient  characteristics  across  treatment  groups,  dif-
fered  from  multivariable  and  propensity  score  results  but  were 
consistent with findings from a subset of elderly patient with early-
stage disease in the randomized trial.

Implications
Instrumental variable analysis may be a useful technique in com-
parative effectiveness studies of cancer treatments.

Limitations
The study population was restricted to Medicare enrollees in fee-
for-service plans. Data from only one randomized trial were used, 
and its study sub-population of elderly prostate patients may have 
been under-powered.

From the Editors
 

We used the linked Surveillance, Epidemiology, and End Results 
(SEER)–Medicare data to identify patients with early-stage pros-
tate cancer, to measure treatment, and to assess prostate cancer–
specific and all-cause mortality (30). Findings were compared with 
those from a benchmark randomized controlled trial that was con-
ducted in Scandinavia (28,29). This Scandinavian trial compared 
radical prostatectomy with conservative management among 
newly diagnosed patients with early-stage prostate cancer. To the 
extent possible, we selected patients by use of the same eligibility 
criteria as the clinical trial.

Patient Data
We used data from the SEER program maintained by the National 
Cancer Institute that was linked to Medicare claims data. The 
SEER registries (which include the metropolitan areas San 
Francisco–Oakland, Detroit, Seattle, Atlanta, San Jose–Monterey, 
and Los Angeles county, and the states of Connecticut, Hawaii, 
Iowa, Kentucky, Louisiana, New Mexico, New Jersey, Utah, and 
the remainder of California) represent approximately 26% of the 
US population (1). For each person diagnosed within these defined 
geographic catchment areas, the SEER registries collect informa-
tion on every occurrence of a primary incident cancer, the month 
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and year of diagnosis, cancer site, stage, histology, initial treatment, 
and vital status including cause of death for patients who died.

Cancer patients reported to SEER from January 1, 1973, 
through December 31, 2005, have been matched against Medicare’s 
master enrollment file, and Medicare claims have been extracted 
for those with fee-for-service coverage. Among patients aged 65 
years or older with a cancer diagnosis recorded in the SEER data, 
94% have been linked with Medicare enrollment data (2). A more 
detailed description of the linked SEER-Medicare data is available 
at http://healthservices.cancer.gov/seermedicare/.

Patient demographic characteristics and vital status were 
obtained from Medicare enrollment data. Information about inpa-
tient and outpatient care, specifically surgery, radiation therapy, 
injectable hormone treatment, and chemotherapy was obtained 
from SEER data and Medicare claims. The inpatient (Medicare 
Provider Analysis and Review), Hospital Outpatient, and Carrier 
Medicare claims files were used in this study.

We used the eligibility criteria in the randomized controlled 
trial that compared radical prostatectomy and conservative man-
agement (28,29) to select the study population, including newly 
diagnosed and previously untreated patients with prostate cancer 
who were younger than 75 years and whose tumor stage was T1 or 
T2 (28,29). We selected newly diagnosed early-stage prostate can-
cer (International Classification of Diseases for Oncology [ICD-O code 
C61.9]) patients aged 66–74 years in linked SEER-Medicare data 
from January 1, 1995, through December 31, 2003. Survival was 
observed for up to 12 years, through December 31, 2007. The 
median survival time from date of diagnosis to December 31, 2007, 
was 78 months (interquartile range = 48 months). We used diag-
nosis and procedure codes from the inpatient and outpatient 
Medicare claims in the year before diagnosis to classify patient 
comorbid status that was based on a series of condition indicators 
and condition-specific weights by use of the NCI combined 
comorbidity index (26).

We defined radical prostatectomy within 6 months of diagnosis 
from SEER surgery codes and International Classification of Diseases, 
Ninth Edition (ICD-9), and Current Procedural Terminology, Fourth 
Edition (CPT-4), codes from the Medicare claims (Appendix Table 1). 
Conservative management was defined as no radiation, surgery, 
hormonal treatment, or chemotherapy within 6 months of diagno-
sis. Among the 110 857 newly diagnosed elderly patients with pros-
tate cancer who had fee-for-service coverage, patients were excluded 
for the following reasons: unusual histology (n = 2149), identified as 
having cancer through a death certificate or autopsy (n = 291), not 
from a SEER registry (n = 283), month of diagnosis or date of death 
unknown (n = 977), aged 65 years and no data for previous year  
(n = 10 806), incomplete Medicare Part A and Part B data because 
of managed care enrollment or only Part A enrollment for 1 year 
before or after diagnosis (n = 39 417), distant stage or not clinical 
stage T1 or T2 disease (n = 21 512), and treatment with chemo-
therapy, radiation therapy, or hormone therapy but without surgery 
(n = 17 607). The remaining 17 815 patients were used to construct 
the propensity scores and the primary instrumental variable (ie, the 
lagged [previous year’s], local area, adjusted probability of receiving 
conservative management). The final sample of 14 302 patients for 
the estimation of survival models resulted from eliminating patients 
in geographic areas with fewer than 50 patients over the entire 

observation period (n = 561) and using a lagged value of the primary 
instrumental variable (n = 2952).

The primary health outcome measures are the number of 
months of survival from diagnosis to death or the end of the obser-
vation period. We measured both death from prostate cancer from 
SEER and death from any cause from Medicare claims.

Alternative Statistical Methodologies
The key assumption of a randomized controlled trial is that ran-
dom assignment to treatment groups effectively holds constant the 
effects of all observed and unobserved patient characteristics on 
health. In this analysis, we investigated three analytic alternatives 
to a randomized controlled trial design that used observational 
data and statistical methods, rather than randomization, to hold 
constant the effects of factors other than the treatments that might 
affect health at the end of the observation period.

Multivariable Regression Analysis. Multivariable regression 
analysis is the conventional analytic approach for comparing 
groups. It holds constant the effects of observable factors by in-
cluding them as covariates in the regression model, but its key as-
sumption is that unobserved factors that affect health are not 
associated with the treatment received. If this assumption is vio-
lated, then the magnitude and possibly the direction of the esti-
mated treatment effect will be biased. The clearest examples of this 
type of bias occur when there are systematic differences in unob-
served health between patients receiving different treatments (1).

Propensity Score Analysis. Propensity score analysis addresses 
the potential problem that some patient characteristics may vary 
systematically and substantially across treatment groups so that the 
other independent variables cannot adequately control for the ef-
fects of nonoverlapping characteristics and thus leads to a biased 
estimate of the effect of the treatment on health. Propensity score 
analysis also implicitly makes the fundamental assumption that 
balancing (ie, equalizing) the observable patient characteristics 
across treatment groups minimizes the potential bias from unob-
servable factors (31–33).

In practice, there are several approaches to balancing character-
istics across treatment groups that typically begin by estimating a 
logistic regression model to calculate a propensity score [ie, the 
probability of receiving the particular treatment as a function of all 
measured factors (ie, confounders) that might affect the treatment 
outcome (34)]. Factors that arguably influence only treatment 
choice, but not outcome, should not be included in estimating the 
propensity score.

After each patient is assigned a propensity score, there are three 
general strategies for “balancing” patients’ characteristics across 
treatment groups (35): 1) grouping, which subdivides patients into 
homogeneous subgroups on the basis of the propensity score; 2) 
matching, which essentially pairs patients with identical or nearly 
identical propensity scores across treatment arms; and 3) weight-
ing, which assigns patients differential weights on the basis of their 
propensity score. In each of these approaches, the primary goal is 
to develop samples of treated and untreated patients who are as 
similar as possible and arguably mimic samples that would be cre-
ated by randomization.
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Previous studies (34,35) indicate that the weighting approach is 
the most general and most efficient because it uses all available data 
and does not require any arbitrary decisions with regard to grouping 
or matching. Therefore, in this analysis, we proceeded by esti-
mating the propensity score (ps) from a logistic regression model of 
the probability of conservative management relative to aggressive 
(surgical) treatment as a function of clinical and demographic char-
acteristics. We then compared two weighting approaches that make 
different assumptions about the distribution of propensities between 
the treated and untreated (or control) populations (34). 1) 
Specifically, the inverse probability of treatment weighting assigns 
weights of 1/ps for patients receiving conservative management 
and 1/(1 2 ps) for patients receiving radical prostatectomy. This 
approach assumes that the two patient populations are reasonably 
similar and that the treatment could be applied to the entire study 
population. 2) Standardized mortality ratio weighting assigns a 
weight of 1 for treated patients (conservative management) and a 
weight of [ps/(1 2 ps)] for untreated patients (radical prostatec-
tomy). Under this assumption, the estimated treatment effect  
applies to the subpopulation that has characteristics similar to the 
treated population. This approach is more appropriate when the 
study populations in the two treatment groups are very different.

Instrumental Variable Analysis. Instrumental variable analysis 
addresses a potential limitation of traditional regression analysis and 
propensity score analysis by seeking to adjust for the effects of both 
observable and unobservable characteristics. The key challenge of 
instrumental variable analysis is identifying at least one factor that 
statistically significantly affects treatment choice but is not related 
to the health outcome. Variations in treatment that result from this 
exogenous factor, referred to as an instrument, can be regarded as 
similar to randomization because random assignment is itself essen-
tially an exogenous instrument in that it affects treatment but is 
unrelated to the subsequent effect on health. Like treatment groups 
created by randomization, patients who receive different treatments 
because of variation in the value of the instrument should have 
similar observable and unobservable characteristics.

In general, there are two assumptions and conditions for using 
instrumental variable analysis (36,37). First, the instrument should 
have a statistically significant impact on the treatment (ie, should 
be a statistically significant cause of treatment variation). In prac-
tice, this condition has been translated into a rule of thumb that 
the test for the statistical significance of the instrument(s) should 
have an F statistic value of at least 10 and that the instrument 
should account for a meaningful share of the observed variation in 
the treatment, because, if the instrument does not explain very 
much of the variation in the treatment, then predicted treatment 
will not differ very much across patient populations.

Second, the instrument should not be associated with the health 
outcome or with unobserved factors that might influence the 
health outcome. However, there is no definitive statistical test that 
proves an instrument’s validity. In effect, any potential instrument 
also needs to satisfy a plausibility condition (ie, a logical and con-
vincing argument that justifies the instrument as a factor that sta-
tistically significantly influences the treatment received but is not 
associated with either the patient’s current health or the treatment 
outcome).

Applying instrumental variable analysis requires a two-stage 
estimation approach. The first-stage equation predicts the likeli-
hood of receiving the treatment as a function of the instrument and 
other exogenous factors, and the second-stage equation estimates 
the effect of the treatment on the health outcome incorporating 
the “instrumental variable” generated from the first-stage equa-
tion. If the health outcome model is nonlinear (eg, a logistic or 
hazard model), as in this analysis, then the appropriate instrumen-
tal variable procedure is the two-stage residual inclusion method 
(38), which adds the residual (ie, the difference between the actual 
value of the treatment choice variable and the predicted value) 
from the first-stage equation as an additional variable in the sec-
ond-stage equation. In principle, only one instrument is needed to 
implement instrumental variable analysis for a single comparison 
of two treatment choices. However, there may be several potential 
instruments, and investigators should assess the relative strengths 
and robustness of estimates generated from alternative individual 
or combinations of instruments.

Although not a definitive classification scheme, past instrumen-
tal variable analyses (5,18,19,21,39–42) have tended to select in-
struments of the following types: 1) the frequency of a particular 
treatment in a geographic area, sometimes referred to as a local 
area treatment pattern or treatment signature; 2) the treatment 
pattern of the patient’s provider (ie, physician, hospital, clinic) that 
is based on the pattern of care received by other patients with the 
same condition treated by that provider; 3) the distance to or avail-
ability of a key type of medical resource that is strongly associated 
with the treatment of interest; 4) the economic cost to the provider 
and/or the patient of alternative treatments; or 5) natural “experi-
ments” that occur because of changes in policy or institutional 
structure that are independent of individual patients’ health.

Exogenous Instrumental Variables. We selected the lagged (ie, 
previous year’s) local area treatment pattern for conservative man-
agement as the primary instrumental variable for three reasons. 
First, it varies substantially across geographic areas (Supplementary 
Table 1, available online) and has a highly statistically significant 
impact on the actual treatment received (Supplementary Table 2, 
available online). Second, it satisfies the key plausibility criterion of 
being independent of a current patient’s health and other charac-
teristics because it reflects provider treatment decisions from a 
previous time period (ie, the year before the patient was diag-
nosed). Third, it can be constructed from readily available data.

The instrument was created by grouping eligible patients from 
the SEER-Medicare database into hospital referral regions as 
developed by the Dartmouth Atlas of Health Care (43). A hospital 
referral region is the set of contiguous zip codes around a major 
hospital (defined as a hospital that performs cardiovascular surgery 
and neurosurgery) from which the hospital draws substantial pro-
portions of patients admitted for major cardiovascular surgery or 
neurosurgery. We defined geographic areas as hospital referral 
regions because of probable intra-area heterogeneity in treatment 
patterns within the several geographically large SEER registry 
areas and small sample concerns that are associated with geograph-
ically smaller health-care service areas (ie, 561 patients were de-
leted after applying the constraint that a hospital referral region 
have at least 50 patients during the entire study period and 19  
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adjoining or nearby hospital referral regions were combined to 
satisfy this condition) (see Supplementary Table 1, available online 
for a list of the hospital referral regions and their sample sizes).

We constructed the primary instrumental variable for treat-
ment received by use of a two-step process. First, we used  
the entire dataset (n = 17 815) to estimate the probability of 
receiving conservative management as a function of patients’ 
clinical characteristics (tumor stage and grade, NCI comorbid-
ity index, and Medicare reimbursements for medical care in the 
previous year), demographics (age, race, ethnicity, and marital 
status), year of diagnosis, and all possible interactions among 
these variables. Second, we calculated the difference between 
the actual proportion of patients receiving conservative man-
agement and the average predicted probability of receiving 
conservative management (generated from the logistic regres-
sion model) in each hospital referral region by year. Areas with 
relatively large positive differences between the actual and pre-
dicted proportions of patients receiving conservative manage-
ment favor a conservative management treatment pattern, and 
areas with large negative differences between the actual and 
predicted proportions of patients receiving conservative man-
agement favor a radical prostatectomy treatment pattern. We 
then lagged this measure of the local area treatment pattern by 
1 year and linked it to each patient in the analysis to enhance the 
instrument’s independence from patients’ current health and 
unobserved characteristics.

Additional potential instruments were used to construct a sec-
ond instrumental variable for sensitivity analysis. These variables 
measure the availability of medical resources in patients’ counties 
of residence in 2000: total number of patient care physicians, urol-
ogists, radiation oncologists, and hospital beds per 100 000 popula-
tion [from the Area Resource File (44)]. Controlling for the overall 
availability of physicians, we hypothesized that conservative man-
agement will be less likely in areas with more hospital beds and 
more specialists who tend to concentrate on care of prostate cancer 
patients. Although these measures are likely not to be associated 
with patients’ underlying health, their direct association with pros-
tate cancer treatment may be relatively weak because they are not 
specific to Medicare patients with prostate cancer. Moreover, they 
are measured at only a single point in time, 2000, during the 
14-year observation period in this study.

Statistical Estimation
All statistical models included the following control variables: age 
(66–69 or 70–74 years), race or ethnicity (white non-Hispanic, 
white Hispanic, African American, or all other races), marital 
status (single or married), tumor characteristics (stage and grade), 
previous health problems [as measured by the NCI combined 
comorbidity index (26) and Medicare reimbursements in the 12 
months before diagnosis], and year of diagnosis. Year of diagnosis 
captured the combined effects of several factors that were changing 
over the study’s time period, including the increase in prostate-
specific antigen testing, movements by Medicare beneficiaries into 
and out of managed care organizations, and changes in Medicare 
physician reimbursement. These trends potentially change the 
nature of the underlying population of elderly fee-for-service 
Medicare patients who are diagnosed with prostate cancer.

Treatment propensity (ie, the predicted probability of receiving 
conservative management) for the propensity score analysis and for 
constructing the lagged area treatment pattern for the instrumen-
tal variable analysis was estimated with logistic regression. The 
survival models were estimated with Cox proportional hazard 
models. Visual inspection of the parallelism of the Kaplan–Meier 
plots of the logarithms of the estimated cumulative survival models 
by treatment supported the proportionality assumption. The 
instrumental variable version of the Cox hazard model was esti-
mating with the two-stage residual inclusion method (38), which 
has been shown to be appropriate for nonlinear outcome models. 
This approach adds a separate variable that measures the residual 
(ie, the difference between the actual value of the [0,1] dependent 
variable and the predicted probability generated by the logistic 
model from the first-stage model for predicting treatment choice 
as a function of the instrumental variable. All models were esti-
mated with the SAS statistical software (Cary, NC). All statistical 
tests were two-sided.

Results
Prostate cancer patients receiving conservative management were 
statistically significantly older, much more likely to be African 
American, more likely to have more advanced disease and much 
less likely to be married than patients receiving radical prostatec-
tomy (Table 1). The conservative management group was also 
much less likely to have any Medicare claims in the year before 
diagnosis and, as a result, has a much higher proportion with 
unknown comorbidities. Characteristics of the two treatment 
groups changed after applying the statistical adjustments designed 
to correct for potential observational data biases. As expected after 
propensity score reweighting that used the inverse probability of 
treatment weights, the weighted characteristics of the two treat-
ment groups were virtually identical. The one characteristic that 
was not equalized was the lagged difference between the actual and 
predicted proportions of patients who received conservative man-
agement. This difference between treatment groups in actual and 
predicted proportions of patients who received conservative man-
agement indicates that unobserved differences, which influenced 
the treatment received between the reweighted populations, may 
persist even after reweighting. (In data not shown, using the stan-
dardized mortality ratio weight also balances the characteristics of 
the two treatment groups by adjusting the radical prostatectomy 
group to have the same reweighted characteristics as the conserva-
tive management group.)

Characteristics of the sample were also grouped by the value of 
the primary instrument for the instrumental variable approach (ie, 
the lagged area-wide difference between the actual and predicted 
proportions of patients who were treated by conservative manage-
ment). Splitting the sample at the median value of the instrument 
resulted in a 12.8% difference in the instrument’s value between 
the two groups, which meant that by holding clinical characteris-
tics constant, patients in the above-median group were, on av-
erage, 6.4% more likely to receive conservative management, and 
those in the below-median group were 6.4% less likely to receive 
conservative management. (The range across individual hospital 
referral regions was from 213.9% in the region including 
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Owensboro, Paduca, and Nashville, TN, to 19.4% in New Haven, 
CT.) Similarly, 35% of the patients in the above-median group 
actually received conservative management compared with 27.1% 
in the below-median group. Thus, the instrument successfully 
distinguishes between patients that are more or less likely to 
receive conservative management for reasons that were indepen-
dent of their observed health characteristics. Grouping patients  
by the value of the instruments narrowed, although did not elimi-
nate, several of the differences in the observed characteristics. It 
equalized the values of characteristics measuring disease stage,  
the number of comorbidities, and the presence and amount of 
Medicare claims in the year before diagnosis.

The unadjusted observational data and the propensity score 
reweighted data clearly indicate a statistically significant survival 
advantage for both prostate cancer–specific death and death from 
all causes associated with radical prostatectomy (Table 2). (The 
longer survival time shown for all-cause mortality reflected a lag in 
reporting cause-specific mortality in the SEER-Medicare data.) 
The same comparisons for patients grouped by the value of the 
instrument narrowed the differences in both months of prostate-
specific and all-cause survival and mortality percentages, which  
are not statistically significantly different from each other. The 
absence of statistically significant differences in the mortality rates 
was consistent with the findings from the randomized controlled 
trial after 12 years of follow-up (29).

As in the comparison of means in Table 2, the hazard rates from 
the models estimated with the unweighted observational sample 
and the two propensity score reweighted samples indicated that a 

large and statistically significant survival advantage was associated 
with radical prostatectomy (Tables 3–5). In unweighted multivari-
able survival analysis, conservative management was associated 
with greater risk of prostate cancer–specific mortality (Tables 3 
and 4; hazard ratio [HR] = 1.59, 95% confidence interval [CI] = 
1.27 to 2.00) and all-cause mortality (Tables 3 and 5; HR = 1.47, 
95% CI = 1.35 to 1.59) than radical prostatectomy. Hazard rates 
for conservative management compared with radical prostatec-
tomy by using both propensity score reweighting approaches were 
similar for prostate cancer–specific and all-cause mortality. In con-
trast, the hazard rates estimated by instrumental variable analysis 
did not show a statistically significant survival advantage for radical 
prostatectomy (Tables 3 and 6; for prostate cancer–specific  
mortality, HR = 0.73, 95% CI = 0.08 to 6.73; for all-cause  
mortality, HR = 1.09, 95% CI = 0.46 to 2.59). Moreover, the 
instrumental variable estimates were also very similar to the rela-
tive risk rates calculated by the benchmark randomized controlled 
trial. (Tables 4–6 report the complete models underlying the 
results summarized in Table 3.)

The strength of the primary instrumental variable was indi-
cated by its statistical significance in the first-stage equation that 
predicts treatment choice for each case and its lack of statistical 
significance in the second-stage survival model. It was highly  
statistically significant in the first-stage model (F = 109.5 and 
P < .001) and accounted for 4.2% of the explained variation, which, 
although not as large as one would like, was partially attributed to 
the fact that the first stage–dependent variable was dichotomous 
rather than continuous. Its independence of the survival outcomes 

Table 2. Comparisons of mean values of outcome variables by estimation method and treatment*

Estimation method  
and treatment

Prostate cancer–specific death All-cause death

% died (95% CI) Survival, mo (95% CI) % died (95% CI) Survival, mo (95% CI)

All patients (unweighted) 0.028 73.2 0.200 83.0
Observational (unweighted)
  RP 0.025 (0.022 to 0.028) 75.0 (74.46 to 75.62) 0.177 (0.170 to 0.185) 85.1 (84.49 to 85.70)
  CM 0.036 (0.030 to 0.041) 69.2 (68.38 to 70.05) 0.249 (0.237 to 0.263) 78.4 (77.57 to 79.33)
  P for difference in means <.001 <.001 <.001 <.001
PS reweighted (IPTW)
  RP 0.026 (0.023 to 0.030) 75.2 (74.6 to 75.7) 0.185 (0.177 to 0.193) 85.1 (84.5 to 85.7)
  CM 0.035 (0.029 to 0.040) 68.4 (67.6 to 69.2) 0.236 (0.223 to 0.248) 77.8 (76.9 to 78.7)
  P for difference in means <.001 <.001 <.001 <.001
PS reweighted (SMRW)
  RP 0.030 (0.026 to 0.033) 75.4 (74.8 to 76.0) 0.203 (0.195 to 0.211) 85.2 (84.6 to 85.8)
  CM 0.036 (0.030 to 0.041) 69.2 (68.4 to 70.0) 0.250 (0.237 to 0.263) 78.4 (77.6 to 79.3)
  P for difference in means <.001 <.001 <.001 <.001
Instrumental variable†
  Less than median value of  
    instrument

0.027 (0.023 to 0.031) 73.7 (73.05 to 74.41) 0.192 (0.183 to 0.201) 83.6 (82.94 to 84.35)

  Median value of instrument  
    or higher

0.030 (0.026 to 0.034) 72.7 (72.05 to 73.39) 0.208 (0.199 to 0.218) 82.4 (81.71 to 83.12)

  P for difference in means .351 .038 .012 .016
RCT (12 y of follow-up)‡
  RP 0.131 (0.088 to 0.195) NR 0.420 (0.350 to 0.505) NR
  CM 0.132 (0.089 to 0.196) NR 0.393 (0.325 to 0.477) NR
  P for difference in means NR   NR

*  A two-sided t test was used. CM = conservative management; IPTW = inverse probability of treatment weights; NR = not reported; PS = propensity score; 
RCT = randomized controlled trial; RP = radical prostatectomy; SMRW = standardized mortality ratio weights.

†  Lagged area treatment was the only instrument.

‡  Bill-Axelson et al. (29).



jnci.oxfordjournals.org    JNCI | Articles 1787

Table 3. Adjusted hazard ratios (HR) comparing conservative management vs radical prostatectomy by the estimation method*

Estimation method

Death from prostate cancer Death from all causes

Adjusted HR (95% CI) P Adjusted HR (95% CI) P

Observational (unweighted) 1.59 (1.27 to 2.00) <.001 1.47 (1.35 to 1.59) <.001
PS reweighted (IPTW) 1.60 (1.40 to 1.83) <.001 1.54 (1.46 to 1.62) <.001
PS reweighted (SMRW) 1.39 (1.10 to 1.76) <.001 1.46 (1.33 to 1.59) <.001
Instrumental variable† 0.73 (0.08 to 6.73) .78 1.09 (0.46 to 2.59) .84

*  Data are from the randomized controlled trial (29) with a follow-up of 12 years that reported the following relative risks (RR): for death from prostate cancer  
for men aged 65–74 years at diagnosis, RR = 0.87, 95% CI = 0.51 to 1.49, P = .55; and for death from all causes, RR = 1.04, 95% CI = 0.77 to 1.40, P = .81. 
CI = confidence interval; IPTW = inverse probability of treatment weights; PS = propensity score; SMRW = standardized mortality ratio weights.

†  Lagged area treatment was the only instrument.

Table 4. Prostate-specific Cox proportional hazard models, unadjusted and propensity score (PS) adjusted*

Variable label

Unadjusted PS adjusted (IPTW) PS adjusted (SMRW)

HR (95% CI) P† HR (95% CI) P† HR (95% CI) P†

Conservative management vs  
  radical prostatectomy

1.593 (1.267 to 2.003) <.001 1.599 (1.396 to 1.831) <.001 1.389 (1.098 to 1.757) .006

Age at diagnosis 70–74  
  vs 66–69 y

1.546 (1.265 to 1.89) <.001 1.578 (1.378 to 1.806) <.001 1.574 (1.232 to 2.01) <.001

Black non-Hispanic vs white  
  non-Hispanic

1.023 (0.749 to 1.397) .887 1.225 (0.998 to 1.504) .052 1.336 (0.999 to 1.788) .051

Hispanic vs white non-Hispanic 1.057 (0.712 to 1.57) .783 0.993 (0.75 to 1.314) .960 1.237 (0.77 to 1.99) .379
Other race vs white non-Hispanic 0.505 (0.29 to 0.881) .016 0.435 (0.286 to 0.661) <.001 0.472 (0.247 to 0.902) .023
Married vs single 0.829 (0.662 to 1.038) .102 0.85 (0.729 to 0.991) .038 0.844 (0.663 to 1.074) .168
Stage T2 vs T1 1.265 (1.037 to 1.543) .021 1.38 (1.206 to 1.581) <.001 1.181 (0.932 to 1.498) .169
Grade moderately differentiated vs  
  well differentiated

1.929 (1.116 to 3.335) .019 2.184 (1.463 to 3.262) .001 2.469 (1.327 to 4.593) .004

Grade poorly differentiated vs well  
  differentiated

8.953 (5.167 to 15.516) <.001 10.376 (6.942 to 15.51) <.001 10.017 (5.317 to 18.873) <.001

Grade unknown vs well  
  differentiated

4.441 (2.26 to 8.728) <.001 5.487 (3.385 to 8.895) <.001 5.984 (3.037 to 11.791) <.001

NCI comorbidity index of 0 vs  
  unknown

0.417 (0.227 to 0.766) .005 0.342 (0.234 to 0.501) <.001 0.344 (0.186 to 0.634) <.001

NCI comorbidity index of 1 vs  
  unknown

0.447 (0.225 to 0.89) .022 0.292 (0.186 to 0.457) <.001 0.285 (0.133 to 0.611) .001

NCI comorbidity index of ≥2 vs 
  unknown

0.681 (0.347 to 1.335) .263 0.451 (0.292 to 0.696) <.001 0.47 (0.229 to 0.966) .040

Inflation-adjusted reimbursement  
  in the year before diagnosis  
  (2003 prices)

1 (1 to 1) .148 1 (1 to 1) <.001 1 (1 to 1) .210

Any inpatient, outpatient, or  
  carrier claims in year before  
  diagnosis vs no claims

1.572 (0.823 to 2.999) .170 1.995 (1.32 to 3.014) .001 1.956 (1.043 to 3.666) .036

Diagnosed in 1997 vs 1996 1.256 (0.938 to 1.682) .126 1.475 (1.202 to 1.81) <.001 1.492 (1.048 to 2.125) .026
Diagnosed in 1998 vs 1996 0.739 (0.512 to 1.068) .108 0.763 (0.59 to 0.987) .039 1.056 (0.698 to 1.599) .797
Diagnosed in 1999 vs 1996 0.777 (0.524 to 1.15) .207 0.918 (0.706 to 1.194) .523 0.709 (0.422 to 1.191) .194
Diagnosed in 2000 vs 1996 0.999 (0.666 to 1.498) .996 1.051 (0.798 to 1.383) .723 1.165 (0.717 to 1.894) .538
Diagnosed in 2001 vs 1996 0.645 (0.429 to 0.971) .036 0.661 (0.502 to 0.871) .003 0.742 (0.454 to 1.212) .234
Diagnosed in 2002 vs 1996 0.964 (0.643 to 1.445) .858 0.983 (0.745 to 1.298) .905 1.069 (0.648 to 1.763) .795
Diagnosed in 2003 vs 1996 0.586 (0.348 to 0.987) .045 0.67 (0.477 to 0.942) .021 0.712 (0.379 to 1.335) .289

*  CI = confidence interval; HR = hazard ratio; IPTW = Inverse probability of treatment weights; NCI = National Cancer Institute; SMRW = standardized mortality 
ratio weights.

†  A two-sided Wald x2 test was used.

was confirmed by its lack of statistical significance as an indepen-
dent variable in an alternative version (data not shown) of the Cox 
survival models (P = .68 in the all-cause survival model and P = .34 
in the prostate-specific survival model). A second set of instrumen-
tal variable estimates that used additional area variables to  

construct the treatment instrument resulted in even smaller hazard 
rates than reported in Table 3. However, these estimates were not 
as reliable because of the relatively weaker association between 
general area variables and prostate cancer treatment choices in 
older men.
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Discussion
In this study, we evaluated statistical methods for addressing 
observed and unobserved confounding in treatment of early-stage 
prostate cancer patients and prostate cancer–specific and all-cause 
mortality in observational data. We compared our findings with 
those from a clinical trial that provided the benchmark results that 
patients aged 65 years or older receiving radical prostatectomy or 
conservative management had similar prostate cancer–specific 
mortality (relative risk [RR] = 0.87, 95% CI = 0.51 to 1.49) and 
all-cause mortality (RR = 1.04, 95% CI = 0.77 to 1.40) (28,29). 
Contrary to these benchmark results, both multivariable regres-
sion analysis and the propensity score reweighting methods pro-
duced very similar implications (ie, that aggressive treatment by 
radical prostatectomy was associated with statistically significant 
better survival than conservative management). Consistency 

between propensity score reweighting and traditional multivari-
able analysis is not uncommon (45,46).

The instrumental variable results, which accounted for  
unobserved confounding, were more similar to results from the 
benchmark randomized controlled trial than to results from  
the unadjusted multivariable regression and propensity score 
reweighted analyses. Alternative specifications of the instrumental 
variable produced different point estimates of the hazard rate, 
although all were found to be non-statistically significant. Findings 
from this study suggest that the instrumental variable approach 
may be useful in comparative effectiveness studies of observational 
databases of other treatments for other diseases. In particular, the 
lagged area treatment variable that we constructed from the 
SEER-Medicare data may be a good instrument in studies of other 
cancer treatments.

Table 5. All-cause Cox proportional hazard survival models, unadjusted and propensity score (PS) adjusted*

Variable label

Unadjusted PS adjusted (IPTW) PS adjusted (SMRW)

HR (95% CI) P† HR (95% CI) P† HR (95% CI) P†

Conservative management vs  
  radical prostatectomy

1.467 (1.351 to 1.594) <.001 1.537 (1.46 to 1.618) <.001 1.457 (1.332 to 1.593) <.001

Age at diagnosis 70–74 vs  
  66–69 y

1.627 (1.508 to 1.756) <.001 1.573 (1.494 to 1.657) <.001 1.573 (1.432 to 1.727) <.001

Black non-Hispanic vs white  
  non-Hispanic

1.293 (1.163 to 1.438) <.001 1.365 (1.269 to 1.468) <.001 1.37 (1.227 to 1.53) <.001

Hispanic vs white non-Hispanic 0.946 (0.81 to 1.104) 0.479 0.924 (0.829 to 1.031) .158 0.978 (0.802 to 1.193) .828
Other race vs white non-Hispanic 0.667 (0.553 to 0.805) <.001 0.708 (0.623 to 0.805) <.001 0.615 (0.497 to 0.761) <.001
Married vs single 0.701 (0.646 to 0.761) <.001 0.743 (0.702 to 0.786) <.001 0.73 (0.667 to 0.8) <.001
Stage T2 vs T1 0.955 (0.884 to 1.032) .242 0.995 (0.944 to 1.05) .865 0.947 (0.865 to 1.037) .242
Grade moderately  
  differentiated vs well  
  differentiated

0.888 (0.786 to 1.003) .057 0.885 (0.813 to 0.963) .005 0.893 (0.778 to 1.024) .105

Grade poorly differentiated vs  
  well differentiated

1.348 (1.172 to 1.55) <.001 1.46 (1.326 to 1.607) <.001 1.458 (1.234 to 1.722) <.001

Grade unknown vs well  
  differentiated

0.94 (0.75 to 1.179) .594 0.911 (0.775 to 1.072) .261 0.921 (0.749 to 1.131) .431

NCI comorbidity index of 0 vs  
  unknown

0.701 (0.507 to 0.968) .031 0.626 (0.505 to 0.776) <.001 0.661 (0.474 to 0.922) .015

NCI comorbidity index of 1 vs  
  unknown

1.144 (0.817 to 1.601) .435 1.046 (0.836 to 1.309) .695 1.034 (0.725 to 1.473) .855

NCI comorbidity index of ≥2 vs 
  unknown

1.897 (1.36 to 2.646) <.001 1.593 (1.275 to 1.989) <.001 1.695 (1.198 to 2.398) .003

Inflation-adjusted reimbursement  
  in the year before diagnosis  
  (2003 prices)

1 (1 to 1) <.001 1 (1 to 1) <.001 1 (1 to 1) <.001

Any inpatient, outpatient, or  
  carrier claims in year before  
  diagnosis vs no claims

1.118 (0.798 to 1.567) .515 1.295 (1.033 to 1.625) .025 1.213 (0.864 to 1.704) .265

Diagnosed in 1997 vs 1996 1.118 (0.993 to 1.259) .065 1.147 (1.055 to 1.246) .001 1.164 (1.009 to 1.342) .037
Diagnosed in 1998 vs 1996 0.921 (0.807 to 1.052) .226 0.87 (0.794 to 0.953) .003 0.921 (0.787 to 1.077) .302
Diagnosed in 1999 vs 1996 0.923 (0.799 to 1.066) .277 0.889 (0.806 to 0.982) .020 0.862 (0.722 to 1.03) .102
Diagnosed in 2000 vs 1996 0.971 (0.829 to 1.138) .719 0.902 (0.809 to 1.006) .063 0.932 (0.771 to 1.127) .468
Diagnosed in 2001 vs 1996 0.839 (0.727 to 0.967) .016 0.783 (0.711 to 0.863) <.001 0.824 (0.696 to 0.976) .025
Diagnosed in 2002 vs 1996 0.799 (0.683 to 0.936) .005 0.755 (0.679 to 0.839) <.001 0.769 (0.637 to 0.929) .007
Diagnosed in 2003 vs 1996 0.676 (0.562 to 0.814) <.001 0.633 (0.56 to 0.717) <.001 0.656 (0.524 to 0.82) <.001

*  CI = confidence interval; HR = hazard ratio; IPTW = inverse probability of treatment weights; NCI = National Cancer Institute; SMRW = standardized mortality 
ratio weights.

†  A two-sided Wald x2 test was used.
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Previous studies (21,39,47) have used both propensity score and 
instrumental variable analyses with the same data to assess treat-
ment outcomes. Earle et al. (21) examined the effect of chemo-
therapy on survival in elderly patients with stage IV non–small cell 
lung cancer and compared these results with those of a randomized 
controlled trial. In that study, both the instrumental variable and 
propensity score analyses produced results that were similar to 
those of the randomized controlled trial, although median follow-up 
was much shorter for this acute disease, and there were stronger 
associations between observable clinical characteristics and sur-
vival among patients with lung cancer than among those with 
prostate cancer. Other studies have investigated the effects of inva-
sive cardiac management on acute myocardial infarction survival 
(39) and adherence to two oral antidiabetic drug therapies that 
differ in patient tolerance, adverse events, and side effects (47). 
The acute myocardial infarction survival study compared multivar-
iable regression, two propensity score methods, and instrumental 
variable analysis with randomized controlled trial findings and 
reported similar findings from the multivariable and two propen-
sity score methods. However, the instrumental variable findings 
were comparable to the results from randomized controlled trials, 
indicating that there was selection bias that was caused by unob-
servable confounders that could not be adjusted by propensity 
score analysis. In the drug adherence study, multivariable, propen-
sity score, and instrumental variable findings were similar, indi-
cating that any selection bias was caused by observable factors 

because all three methods of adjusting for confounding produced 
similar results.

This study and previous studies (21,39,47) indicated that if 
unobservable factors were not a major source of bias, then instru-
mental variable and propensity score methods should provide 
similar results. Whether the instrumental variable and propensity 
score results support or contradict unadjusted results depends on 
the extent of selection bias in assigning patients to alternative 
treatments. These differences across studies also suggest that it 
may not be possible to generalize about the choice of a statistical 
method across different clinical conditions. Instrumental variable 
analysis in principle is the more robust approach because it adjusts 
for both observable and unobservable potential sources of bias. 
However, this outcome depends critically on the identification of 
a valid and plausible instrument, which is controversial because 
there is no definitive test of the instrument’s lack of association 
with the health outcome and, if the instrument is not strongly as-
sociated with the treatment received, the estimate of the treatment 
effect will be highly imprecise. Thus, it is difficult to distinguish 
between a true lack of statistical significance between treatment 
outcomes and an imprecise statistical estimate from a weak instru-
ment. The differences in the estimated hazard rates between the two 
instrumental variable models that we used illustrate this concern.

One advantage of using SEER-Medicare data for comparative 
effectiveness studies of alternative cancer treatments is that the 
lagged treatment pattern in the local geographic area, which we 

Table 6. Instrumental variable estimates of Cox proportional hazard survival models*

Variable label

Prostate-specific survival All-cause survival

HR (95% CI) P† HR (95% CI) P†

Watchful waiting 0.725 (0.078 to 6.729) .777 1.094 (0.462 to 2.593) .838
Residual (waiting)—from Supplementary Table 2, 
  available online

2.442 (0.215 to 27.71) .471 1.491 (0.64 to 3.475) .354

Age at diagnosis 70–74 vs 66–69 y 1.536 (1.144 to 2.061) .004 1.678 (1.509 to 1.865) <.001
Black non-Hispanic vs white non-Hispanic 1.125 (0.725 to 1.745) .599 1.367 (1.181 to 1.583) <.001
Hispanic vs white non-Hispanic 0.868 (0.542 to 1.389) .554 0.933 (0.799 to 1.09) .381
Other race vs white non-Hispanic 0.504 (0.259 to 0.982) .044 0.7 (0.573 to 0.855) .001
Married vs single 0.743 (0.496 to 1.112) .149 0.662 (0.573 to 0.765) <.001
Stage T2 vs T1 1.197 (0.946 to 1.515) .135 0.976 (0.898 to 1.061) .568
Grade moderately differentiated vs well differentiated 1.969 (1.008 to 3.843) .047 0.848 (0.728 to 0.988) .035
Grade poorly differentiated vs well differentiated 8.079 (3.612 to 18.071) <.001 1.227 (0.975 to 1.546) .082
Grade unknown vs well differentiated 6.491 (2.312 to 18.224) <.001 1.067 (0.763 to 1.493) .705
NCI comorbidity index of 0 vs unknown 0.322 (0.148 to 0.703) .004 0.668 (0.462 to 0.965) .031
NCI comorbidity index of 1 vs unknown 0.354 (0.152 to 0.825) .016 1.095 (0.752 to 1.594) .637
NCI comorbidity index of ≥2 vs unknown 0.488 (0.213 to 1.117) .090 1.845 (1.277 to 2.667) .001
Inflation-adjusted reimbursement in the year before  
  diagnosis (2003 prices)

1 (1 to 1) .704 1 (1 to 1) <.001

Any inpatient, outpatient, or carrier claims in year  
  before diagnosis vs no claims

1.349 (0.583 to 3.119) .484 0.989 (0.677 to 1.444) .953

Diagnosed in 1997 vs 1996 1.185 (0.857 to 1.637) .304 1.104 (0.979 to 1.244) .106
Diagnosed in 1998 vs 1996 0.772 (0.522 to 1.142) .195 0.929 (0.814 to 1.061) .279
Diagnosed in 1999 vs 1996 0.987 (0.653 to 1.492) .952 0.928 (0.803 to 1.073) .313
Diagnosed in 2000 vs 1996 1.176 (0.741 to 1.866) .492 0.998 (0.848 to 1.175) .983
Diagnosed in 2001 vs 1996 0.733 (0.453 to 1.187) .207 0.851 (0.733 to 0.988) .034
Diagnosed in 2002 vs 1996 1.061 (0.632 to 1.783) .822 0.844 (0.711 to 1.002) .052
Diagnosed in 2003 vs 1996 0.871 (0.441 to 1.72) .690 0.723 (0.592 to 0.884) .002

*  CI = confidence interval; HR = hazard ratio; NCI = National Cancer Institute.

†  A two-sided Wald x2 test was used.
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used in this study, is a potentially readily available choice for an 
instrumental variable, as long as there is sufficient variation across 
small geographic areas and there are enough patients in each treat-
ment group to generate reasonably stable local area estimates. 
Similar treatment propensity measures can be constructed for 
other cancers. An important innovation in this study was that the 
instrumental variable was defined as the difference between the 
actual and predicted treatment proportions in the geographic area 
because the underlying characteristics of patients are not likely to 
be similar across geographic areas.

Findings from this study have important ramifications for physi-
cians who rely on the medical literature to counsel newly diagnosed 
patients with localized prostate cancer regarding treatment and also 
patients who learn of newly published findings on the comparative 
effectiveness of various prostate cancer treatments in the popular 
press. Given the difficulties in successfully conducting randomized 
trials of prostate cancer treatments, observational data may form the 
preponderance of evidence that treating physicians will rely on to 
guide their discussions with patients. Many practicing physicians 
may not have the time or expertise to evaluate the biases inherent in 
observational reports published in academic journals. Thus, when 
observational data analyses are published without the appropriate 
methodology to account for observed and unobserved sources of 
bias, treating physicians may ascribe inappropriate validity to their 
findings when advising patients about treatment choice.

A recent study (13) and accompanying editorial (2) underscore 
the very real nature of this problem. Using a propensity score 
methodology, Wong et al. (13) found, as we did in this analysis, 
that aggressive management (either surgery or radiation) was asso-
ciated with better survival than conservative management among 
older patients with prostate cancer. The accompanying editorial 
(2) noted that the findings of the study seemed counter to clinical 
intuition and that perhaps there was inadequate risk adjustment. 
Despite this concern, the article received substantial coverage in 
the lay press (48,49).

Sensitivity analyses (50,51) can reassure clinicians that the 
results are robust to alternative assumptions about the presence of 
a hypothetical confounder. For example, Wong et al. (13) showed 
that relative to their primary result that active treatment was asso-
ciated with statistically significant better survival than conservative 
management (HR for mortality = 0.69, 95% CI = 0.66 to 0.72), the 
effect of an omitted confounder would have to be large to generate 
a result of no difference in mortality. However, such a finding does 
not mean that there were no unobserved confounders or that  
actual treatment decisions might not be influenced by multiple 
unobserved factors, which alone might make a small contribution 
but in combination might influence treatment decisions in a sys-
tematic way. Moreover, our analysis indicated that unobserved 
confounding may in fact be large because we found that the pro-
pensity score–adjusted survival (HR range = 1.46–1.56) was higher 
than the instrumental variable estimate (HR = 1.09, 95% CI = 0.46 
to 2.59) and the estimate from the randomized controlled trial (RR =  
1.04, 95% CI = 0.77 to 1.40) (Table 3).

For the sake of patients and health-care providers who use 
study results to make life-changing decisions, researchers need to 
use multiple methods of risk adjustment, such as propensity score 
reweighting and instrumental variable analysis, to confirm that the 

results are not sensitive to the method of risk adjustment. If differ-
ences are noted, the clinical plausibility and statistical validity of 
the various approaches should be reexamined and results should be 
considered with appropriate caution. Patient selection into specific 
treatments on the basis of factors related to prognosis is an impor-
tant consideration in all observational studies, but particularly in 
studies involving cancer in which the incidence is highest in the 
elderly who are also most likely to have multiple comorbidities.

As we have noted, instrumental variable analysis does not 
guarantee that all observational data bias is eliminated. The 
variable(s) selected as the instrument should have a statistically 
significant association ith treatment choice but not with the 
health outcome or with unobserved factors that influence the 
health outcome. Although there are guidelines for assessing 
whether an instrument is a strong predictor of the treatment 
received, there is no definitive test for an instrument’s validity. If 
the instrument is weak, the extent of bias in the instrumental 
variable estimate may be greater than in the unadjusted observa-
tional data. For example, our alternative instrumental variable 
analysis that used both the lagged area treatment and measures 
of local area medical resources, which were not strongly related 
to the treatment received, resulted in much better all-cause sur-
vival (HR = 0.71, 95% CI = 0.31 to 1.59). Although this estimate 
had a large confidence interval and the hypothesis of no differ-
ence in survival could not be rejected, its low point value could 
lead some to conclude that conservative management was associ-
ated with better survival than radical prostatectomy in this popu-
lation of men between the ages of 66 and 74 years. Although use 
of multiple instruments may increase the ability to explain the 
treatment received, it can also increase the likelihood of an asso-
ciation between the instrumental variable and the health outcome. 
It is also important to recognize that the result of the instrumental 
variable analysis is limited primarily to the population on the 
treatment margin (ie, men who do not have strong indications 
that would favor one treatment approach over the other). Given 
these caveats, however, if a conceptually plausible instrument that 
has a strong and statistically significant association with the treat-
ment can be found, instrumental variable analysis should provide 
a potentially important alternative and complementary method-
ology to propensity score methods for assessing treatment out-
comes without having to make any a priori assumptions about the 
potential magnitude of unobserved confounders.

There were several limitations in our study. First, the bench-
mark Scandinavian randomized controlled trial (28,29) that we 
used to assess the alternative statistical methods of adjusting for 
observational data bias is only one study and is not representa-
tive of all elderly prostate patients in the United States. It was 
also limited to the comparison of radical prostatectomy and 
conservative management, excluding men who were treated by 
radiation therapy. Although we selected our study sample of 
patients from the SEER database to be as similar as possible to 
patients in the benchmark clinical trial, we were not able to 
include prostate cancer patients who were younger than 66 
years, a group that represented approximately 46% of the trial 
population (28,29). The effectiveness of treatment varied in the 
two age groups (ie, <65 and ≥65 years), and we compared our 
findings with the population aged 65 years or older. 
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Consequently, our analysis should be viewed primarily from a 
methodological perspective rather than as an analysis with 
direct implications for clinical treatment. Second, our sample 
was restricted to the approximately 85% of Medicare enrollees 
in fee-for-service plans. Prostate cancer stage at diagnosis has 
been reported to be similar in Medicare managed  
care and fee-for-service settings; however, among patients with 
clinically localized disease, treatment varies by setting (8). 
Patients with early-stage prostate cancer in managed care were 
less likely to receive radical prostatectomy and more likely to 
receive radiation or conservative management than similar 
patients in fee-for-service settings (8). Third, enrollment in 
Medicare managed care changed during the study period, which 
may also limit the generalizability of our findings to the man-
aged care population. Fourth, we did not have information 
about prostate-specific antigen screening before diagnosis. Use 
of prostate-specific antigen screening increased dramatically 

over the period of our study (52–54), and the number of men 
diagnosed with early-stage prostate cancer increased accord-
ingly (55). Although we included year of diagnosis in our 
models, we could not identify which prostate cancer patients 

were diagnosed because of elevated prostate-specific antigen 
levels and which were diagnosed because of symptoms. Lastly, 
a complete statistical assessment of the Cox hazard model’s 
proportionality assumption indicated that the effects of some 
covariates may not be time invariant, especially in the analysis 
of all-cause mortality. Although a sensitivity analysis of the ef-
fects of allowing time-varying covariates did not alter the prin-
ciple findings with regard to treatment effects, further analysis 
of time-varying effects may be warranted.

In summary, survival after radical prostatectomy or conserva-
tive management in elderly patients with early-stage prostate can-
cer as calculated by instrumental variable estimation of Cox 
proportional hazard models from observational data was similar to 
that calculated by Cox proportional hazard models from clinical 
trial data. Consequently, instrumental variable analysis may be a 
useful technique in comparative effectiveness studies of prostate 
cancer and other cancer treatments if an acceptable instrument can 
be identified. Future research is warranted to evaluate additional 
methods of addressing confounding in observational data and to 
compare results from these methods with those from benchmark 
randomized controlled trials.

Appendix Table 1. Definitions of radical prostatectomy and conservative management from Medicare claims and Surveillance, Epidemiology, and End 
Results (SEER) registry data*

Treatment Medicare claims SEER

Radical prostatectomy† Exclusion ICD-9 procedure codes 60.2-60.6 Surgery codes 30, 50, 80
CPT-4 codes 55840, 55845, 55810, 55815

Conservative  
  management‡

Radiation ICD-9 diagnosis codes V58.0, V66.1, V67.1 Radiation codes 1-5, 7
ICD-9 procedure codes 92.21-92.29
CPT-4 codes 77261-77299, 77300, 77305, 
  77401-77499, 77750-77799
Revenue center codes 0330 or 0333

Chemotherapy ICD-9 diagnosis code V58.1 Chemotherapy codes 01, 02, 03
ICD-9 procedure code 99.25
CPT-4 96400-96549, 95990, 95991, 96530, 
  G0355, G0357-G0359, J0640, J2405,  
  J8520-J8999, J9000-J9164, J9166-J9201,  
  J9203-J9216, J9220-J9999, K0415,  
  K0416, Q0083-Q0085, Q0179, S0177,  
  S0181;
Revenue center codes 0331, 0332, or 0335

Hormonal therapy J1950, J9217-J9219, J9202, J9165 Hormone therapy 01
Prostate cancer–directed surgery ICD-9 procedure codes 60.2–60.6 Surgery codes 30, 50, 80

CPT-4 codes 55840, 55845, 55810, 55815

*  ICD-9 = International Classification of Diseases, Ninth Edition; CPT-4 = Current Procedural Terminology, Fourth Edition.

†  Radical prostatectomy was defined as receiving radical prostatectomy within 6 months of diagnosis.

‡  Conservative management was defined as not receiving any prostate cancer–directed surgery, radiation therapy, chemotherapy, or hormonal therapy within 6 
months of diagnosis.
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