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Some psychiatric illnesses involve a learned component. For example, in posttraumatic stress disorder, memories triggered

by trauma-associated cues trigger fear and anxiety, and in addiction, drug-associated cues elicit drug craving and

withdrawal. Clinical interventions to reduce the impact of conditioned cues in eliciting these maladaptive conditioned

responses are likely to be beneficial. Extinction is a method of lessening conditioned responses and involves repeated

exposures to a cue in the absence of the event it once predicted. We believe that an improved understanding of the

behavioral and neurobiological mechanisms of extinction will allow extinction-like procedures in the clinic to become more

effective. Research on the role of glutamateFthe major excitatory neurotransmitter in the mammalian brainFin extinction

has led to the development of pharmacotherapeutics to enhance the efficacy of extinction-based protocols in clinical

populations. In this review, we describe what has been learned about glutamate actions at its three major receptor types

(N-methyl-D-aspartate (NMDA) receptors, a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, and

metabotropic glutamate receptors) in the extinction of conditioned fear, drug craving, and withdrawal. We then discuss how

these findings have been applied in clinical research.
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INTRODUCTION

Psychiatric illnesses are caused by an interaction between
genetic and environmental factors. For example, post-
traumatic stress disorder (PTSD) develops in vulnerable
people on the basis of genetics, early life stress, and
exposure to a traumatic event, and involves a constellation
of symptoms, including intrusive memories and re-experi-
encing of the trauma (‘flashbacks’) (American Psychiatric
Association, 2000). It is believed that these symptoms arise
in part through a Pavlovian conditioning process in which
cues present at the time of trauma acquire the ability to
elicit fear. Over time, generalization from those cues to
other cues and situations leads to pervasive, inappropriate
fear and anxiety (Rothbaum and Davis, 2003). Addiction
also involves a Pavlovian conditioning component in that
cues that reliably precede the onset of drug effects, such
as drug paraphernalia, acquire the ability to trigger

powerful drug craving and withdrawal responses that
contribute to the maintenance of and relapse to drug use
(Childress et al, 1986).

There has been considerable interest in developing
clinical interventions to reduce the impact of conditioned
cues in eliciting these maladaptive responses. One method
by which Pavlovian-conditioned responses can be lessened
is extinction, a protocol involving repeated or prolonged
exposure to a cue (known as the conditioned stimulus) in
the absence of the event it once predicted (known as the
unconditioned stimulus), resulting in a decrease in the
magnitude and/or frequency of the conditioned response.
Extinction has been applied successfully in the treatment of
fear and anxiety disorders; known as exposure therapy, it
involves graded exposure to the feared object, situation, or
memory in the absence of any aversive event. Attempts to
develop an exposure therapy protocol for addicts involving
exposure to drug-paired cues without subsequent drug
intake have a similar rationale, but thus far have had limited
success (Conklin and Tiffany, 2002).

We believe that a better understanding of the behavioral,
psychological, and neurobiological mechanisms of extinc-
tion will improve the effectiveness of extinction-likeReceived 20 April 2010; revised 18 May 2010; accepted 25 May 2010
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protocols in the clinic. There already have been great strides
in this regard: research on extinction in animal models has
revealed major mechanisms, and insights into the role of
glutamateFthe major excitatory neurotransmitter in the
mammalian brainFhave led to the development of
pharmacotherapeutics to enhance the efficacy of exposure
therapy in clinical populations. In this review, we describe
what has been learned about the role of glutamate in the
extinction of conditioned fear, conditioned drug craving,
and conditioned withdrawal, and discuss how those
findings have been applied in clinical research. We begin
with essential background information on animal models for
the study of extinction, terminology and basic behavioral
features of extinction, and the neural circuitry of extinction.
We then turn to the literature on glutamate actions in
extinction at its three major receptor subtypes: N-methyl-D-
aspartate (NMDA) receptors, a-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid (AMPA) receptors, and metabotropic
glutamate receptors (mGluRs). Finally, we consider how
these findings have been applied clinically and how they
might continue to inform clinical research and practice in
the future.

EXTINCTION: FUNDAMENTAL CONCEPTS

Pavlovian conditioning is a form of associative learning in
which a conditioned stimulus that predicts the occurrence
of an unconditioned stimulus comes to elicit a conditioned
response. For example, Pavlov (1927) observed that dogs
presented with the sound of a metronome (conditioned
stimulus) followed by delivery of food (meat powder;
unconditioned stimulus) came to exhibit salivation (condi-
tioned response) to the sound of the metronome alone.
Since then, innumerable types of conditioned responses, in
species ranging from invertebrates to humans, have been
observed. These include both conditioned autonomic
responses such as salivation and more complex responses,
such as fear evoked by cues associated with trauma in
PTSD and drug craving in the presence of drug-related
cues in addicts (Heather et al, 1991; Rothbaum and Davis,
2003).

Pavlov (1927) observed that conditioned salivation
decreased when dogs were exposed repeatedly to the
metronome without being given the meat powder. Known
as extinction, this decrease in the magnitude and/or
frequency of a conditioned response occurs with repeated
or prolonged exposure to the conditioned stimulus in
the absence of the unconditioned stimulus. All types of
conditioned responses are subject to extinction; in the
case of emotional conditioned responses such as fear or
drug craving, extinction can be conceptualized as reducing
the strength of the conditioned response and thereby
re-establishing some control.

Modern extinction research makes extensive use of
animal models and has uncovered a great deal about the
behavioral characteristics, psychological mechanisms, and

neurobiology of extinction. A major theme running through
the extinction literature is that although extinction is
procedurally simple, it is mechanistically complex. For
example, among the putative psychological mechanisms
underlying extinction are attentional modulation, habitua-
tion-like processes, contextual conditioning, modulation of
the strength of associations between the conditioned
stimulus and the conditioned response, and changes in
the activation threshold of the unconditioned stimulus
representation (for a review, see Delamater, 2004). Extinc-
tion also likely involves an error correction process in
which a discrepancy between the actual and predicted
unconditioned stimulus results in a proportional decrease
in the strength of the association between the conditioned
stimulus and the unconditioned stimulus (Rescorla and
Wagner, 1972; Wagner and Rescorla, 1972). The error
correction view has been particularly well-studied and leads
to strong predictions about the conditions under which
extinction occurs; for example, it correctly predicts that
extinction will not occur when a conditioned stimulus is
nonreinforced in compound with a conditioned inhibitor
(defined as a cue that has been trained separately to predict
the omission of the unconditioned stimulus), because the
discrepancy between the actual unconditioned stimulus and
the predicted unconditioned stimulus is zero (Rescorla,
2003; Soltysik et al, 1983). The error correction view also is
supported by neurobiological evidence, including findings
that dopamine signaling originating in the midbrain
(Schultz and Dickinson, 2000) and activity of the inferior
olive-climbing fiber system in the cerebellum (Robleto et al,
2004) corresponds to an error signal very much like that
envisioned by error correction-based mathematical models
of Pavlovian conditioning, such as the Rescorla-Wagner
model (1972).

Extinction in Animal Models

Both Pavlovian conditioned responses and instrumental
responses (defined as behaviors maintained by a response-
contingent outcome, such as delivery of food) are subject to
extinction. In general, extinction of one or the other type of
response is studied using a specialized animal model,
although some models include elements of both. In this
review, we are interested primarily in the extinction of
Pavlovian conditioned responses as observed in animal
models appropriate for the study of conditioned fear, drug
seeking, and withdrawal. This focus has implications in
terms of the types of cues and responses involved in the
studies we will describe. With regard to cues, we define
Pavlovian conditioned stimuli as elements of a contingency
in which conditioned stimulus presentation predicts
unconditioned stimulus delivery, independent of any
behavior on the part of the subject. We are not concerned
with other, similar types of cues that operate through
different mechanisms; these include discriminative stimuli
and occasion setters, which are cues that signify that a
contingency between other events (a response and an
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outcome, or a conditioned stimulus and an unconditioned
stimulus) is in effect. With regard to the response, we are
interested in Pavlovian conditioned responses to Pavlovian
conditioned stimuli, as we have defined them. We will not
consider extinction of other kinds of responsesFmost
notably instrumental responsesFeven if the two types of
extinction occur within the same paradigm. An example is
extinction of lever pressing for a drug of abuse in the
intravenous (IV) drug self-administration paradigm (see
below), which is an instrumental response. We will not
discuss the mechanisms of this kind of extinction, but we
will discuss extinction of conditioned stimulus-induced
drug craving (defined operationally as described below)
within this paradigm, which is a Pavlovian conditioned
response.

Most extinction studies focus on conditioned fear
responses, but the literature on extinction of conditioned
drug craving and withdrawal is growing (Myers and
Carlezon, 2010b). The most commonly used animal models
for studying these types of responses are Pavlovian fear
conditioning, IV drug self-administration, and place con-
ditioning. In each, there is an initial phase of training
(known as acquisition) in which an animal (often a rat or a
mouse) learns an association between a cue (conditioned
stimulus) and a salient event (unconditioned stimulus).
Extinction occurs in a subsequent phase of training in
which the animal is exposed to the conditioned stimulus
in the absence of the unconditioned stimulus.

In the Pavlovian fear conditioning paradigm, acquisition
occurs when an animal is presented with a cue such as a
light or tone, followed by an aversive stimulus, such as foot
shock. After one or more pairings of these events, the
animal exhibits fear in the presence of the cue. In rodents,
fear is defined operationally in any of several ways; the most
common measures are freezing (cessation of all bodily
movements, except those required for respiration) and
fear-potentiated startle (an increase in the amplitude of the
acoustic startle response when startle is elicited in the
presence of a fear-eliciting cue vs in its absence). Extinction
of conditioned fear occurs when the animal is exposed
repeatedly to the conditioned stimulus in the absence of the
unconditioned stimulus, and consists of a decrease in the
magnitude and/or frequency of the behavioral index of fear.

In the IV drug self-administration paradigm, acquisition
occurs over the course of several sessions in which an
animal learns to emit an operant response (typically a lever
press), which is reinforced by an IV infusion of a drug of
abuse. A multimodal stimulus consisting of visual (light)
and auditory (tone) components occurs simultaneously
with drug infusions and serves as the conditioned stimulus.
Cues established in this manner are believed to elicit
conditioned drug craving, which is defined operationally as
sustainment or reinstatement of drug-seeking behavior
(lever pressing) when the cue is presented. Extinction of
cue-elicited drug craving occurs over the course of one or
more test sessions in which the animal is given access to the
lever and the cues are presented periodically but drug

delivery is discontinued. Behaviorally, extinction consists of
a reduction in cue-elicited drug seeking.

The place conditioning paradigm involves a two- or
three-chambered apparatus in which the chambers are
distinguished by wall color, floor texture, or both. Typically,
the apparatus is configured such that a population of
subjects shows no inherent preference for one or the other
chamber during a pretraining test in which they are
permitted to explore freely. Acquisition occurs when an
animal is confined in one of the chambers (which serves
as the conditioned stimulus) after an injection of a drug of
abuse or a drug that precipitates withdrawal in drug-
dependent animals. The drug-paired context thus acquires
motivational significance, which is shown in a post-training
test in which the animal is once again given the opportunity
to explore the apparatus freely. Animals showing condi-
tioned place preference spend more time in the drug-paired
chamber than in the alternate chamber, whereas animals
showing conditioned place avoidance spend less time in the
withdrawal-paired chamber than in the alternate chamber.
Extinction of this approach or avoidance response can
occur in either of two ways: the animal can be given free
access to the place conditioning apparatus in repeated test
sessions, or the animal can be confined in the formerly
drug- or withdrawal-paired context in the absence of drug
administration or precipitated withdrawal (ie, after an
injection of saline) and subsequently given free access tests
to assess extinction. When extinction has occurred, the
animal no longer exhibits a preference for or an aversion to
the previously drug- or withdrawal-paired chamber; that
is, it spends approximately equal amounts of time in each.

Terminology and Behavioral Features of
Extinction

The term ‘extinction’ can be used to describe both a
behavioral training protocol and the outcome of exposure
to that protocol. As a way of disambiguating this term, we
will refer to the experimental protocol of presenting the
conditioned stimulus in the absence of the unconditioned
stimulus as extinction training and the observed decrease
in the magnitude and/or frequency of the conditioned
response as extinction. As there is ample evidence that they
are mediated by different mechanisms, a further distinction
is made between within-session extinction, defined as
extinction occurring during extinction training, and extinc-
tion retention, defined as extinction memory assessed at
some point after the completion of extinction training
(typically at least 24 h). Extinction, like other forms of
learning and memory, involves encoding, consolidation,
and retrieval/expression phases, which are mediated by
different neural mechanisms (Box 1).

A critical insight that has emerged from behavioral
studies of extinction is that extinction is not due to
forgetting, ‘unlearning,’ or erasure of the significance of
the conditioned stimulus. Pavlovian conditioned responses
are long-lasting and resistant to forgetting, such that
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without exposure to the conditioned stimulus in the absence
of the unconditioned stimulus, the conditioned response
does not disappear (Myers and Carlezon, 2010a; Stinus et al,
2000; Quirk, 2002). On the other hand, extinction memory is
fragile in that extinguished conditioned responses are
subject to recovery under several circumstances. For
example, exposure to the unconditioned stimulus alone
(ie, in the absence of the conditioned stimulus) after the
completion of extinction training can be sufficient to restore
the conditioned response, a phenomenon known as
reinstatement (Rescorla and Heth, 1975). Similarly, expo-
sure to the conditioned stimulus outside the context of
extinction training results in a reappearance of the condi-
tioned response, a very robust and reliable effect known as
renewal (Bouton and Bolles, 1979; Chaudhri et al, 2008).
Finally, extinguished conditioned responses re-emerge over
time after extinction training, an effect known as spontaneous
recovery (Brooks et al, 2004; Millin and Riccio, 2002; Pavlov,
1927; Quirk, 2002). Reinstatement, renewal, and spontaneous
recovery collectively are known as recovery effects and
indicate that extinction does not undo original learning, but
is itself a form of new learning in which the conditioned
response is suppressed in a context- and time-dependent
manner (Bouton, 1993). However, because ‘recovery’ is a
clinical term used to describe the beneficial outcome of
treatments for psychiatric disorders, including treatments
involving extinction protocols, we will describe reinstatement,
renewal, and spontaneous recovery as measures of relapse
rather than recovery.

Neural Circuitry of Extinction

Extensive work in the fear conditioning paradigm, primar-
ily, has begun to reveal critical elements of the neural
circuitry underlying extinction (Figure 1). A model has
emerged in which interactions among three key compo-
nentsFthe amygdala, medial prefrontal cortex (mPFC),
and hippocampusFmediate extinction learning and mem-
ory and its modulation by context (Quirk and Mueller,
2008). A small but growing literature suggests that a similar
scenario is likely to be true in addiction as well (Myers and
Carlezon, 2010b; Peters et al, 2009), but our discussion in
this section will draw primarily from the much more
extensive fear extinction literature.

The amygdala is a macrostructure that is the cornerstone
of the extinction process. In particular, the basolateral
complex (BLA; lateral and basolateral nuclei) and the
GABAergic intercalated cell masses (ICMs) that gate
impulse traffic from BLA to the central nucleus of the
amygdala (CeA) are critical. Individual BLA neurons fire
selectively to extinguished cues both as extinction training
progresses (Herry et al, 2008) and after extinction training
is complete, in a context-dependent manner (Herry et al,
2008; Hobin et al, 2003). Pre-extinction training inactivation
of the basal nucleus (Herry et al, 2008) or post-extinction
training lesions of the ICMs (Likhtik et al, 2008) impair
within-session extinction and extinction retention, respec-
tively (also see Fuchs et al, 2002, 2006). Both encoding and
consolidation of extinction memory can be modulated by
intra-BLA infusions of a wide variety of drugs, including

Box 1 Extinction-related terminology

Conditioned response. A particular response or internal state elicited by a conditioned stimulus.

Conditioned stimulus. An initially neutral cue that is paired with an unconditioned stimulus and consequently acquires the ability to elicit a conditioned response.

Erasure. A putative extinction mechanism in which memory/synaptic plasticity underlying the conditioned stimulus-unconditioned stimulus association is reversed.
Generally considered not to be a viable extinction mechanism because extinguished conditioned responses can reappear under some circumstances after extinction
(see relapse effects) indicating that the memory remains at least partially intact. However, recent evidence that fear extinction involves synaptic depotentiation within
BLA suggests that erasure may be one of multiple extinction mechanisms.

Extinction. A decline in the magnitude and/or frequency of a conditioned response after exposure to an extinction training protocol.

Extinction retention. Extinction memory assessed at some point after the completion of extinction training (generally at least 24 h).

Extinction training. A behavioral training protocol involving repeated or prolonged exposure to a conditioned stimulus in the absence of the unconditioned stimulus.

Forgetting. Passive loss or degradation of memory for a conditioned stimulus-unconditioned stimulus association. Extinction is distinguishable from forgetting in that
extinction requires extinction training to occur, whereas forgetting occurs over time in the absence of further training.

Inhibition. A putative extinction mechanism in which memory for the conditioned stimulus-unconditioned stimulus association remains intact but conditioned
response expression is actively inhibited in a context- and time-dependent manner.

Long-term extinction. Extinction memory assessed in an extinction retention test.

Relapse effects. Circumstances under which extinguished conditioned responses reappear. Relapse effects include reinstatement, renewal, and spontaneous recovery.

Reinstatement. Reappearance of an extinguished conditioned response after exposure to the unconditioned stimulus in the absence of the conditioned stimulus.

Renewal. Reappearance of an extinguished conditioned response in an extinction retention test that is conducted in a context different from that of extinction
training.

Short-term extinction. A phase of extinction memory assessed during extinction training as within-session extinction.

Spontaneous recovery. Reappearance of an extinguished conditioned response with the passage of time after extinction training.

Unconditioned stimulus. A biologically significant stimulus such as pain due to foot shock, the onset of drug effects, or drug withdrawal, which produces a particular
response or internal state. Pairing an unconditioned stimulus with a neutral stimulus (conditioned stimulus) elicits a response or internal state (conditioned response)
that is often (but not always) similar to that produced by the unconditioned stimulus.

Within-session extinction. Extinction occurring during extinction training.
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neurotransmitter receptor agonists and antagonists (Akirav,
2007; Berlau and McGaugh, 2006; Botreau et al, 2006; Falls
et al, 1992; Feltenstein and See, 2007; Harris and Westbrook,
1998; Hikind and Maroun, 2008; Kim et al, 2007b; Laurent
et al, 2008; Laurent and Westbrook, 2008; Ledgerwood et al,
2003; Lee and Kim, 1998; Lee et al, 2006; Lin et al, 2003b;
Mao et al, 2006, 2008; Paolone et al, 2009; Roche et al, 2007;
Schroeder and Packard, 2003, 2004; Sotres-Bayon et al,
2007, 2009; Yang et al, 2006; Walker et al, 2002), as well as
modulators of downstream second messengers, transcrip-
tion, and translation (Lin et al, 2003a, 2003b; Lu et al, 2001).
Extinction alters the phosphorylation state of second
messengers and gene expression patterns within BLA
(Cannich et al, 2004; Chhatwal et al, 2005, 2006; Heldt
and Ressler, 2007; Herry and Mons, 2004; Lin et al, 2003a,
2003b), and manipulation of gene expression within BLA
before extinction training modulates extinction memory
consolidation (Chhatwal et al, 2006). Hence, the amygdala is
a central locus underlying the encoding, consolidation, and
expression of extinction memory.

The mPFC sends dense projections to the amygdala that
terminate, in part, on GABAergic interneurons in BLA and
on the ICMs (Berretta et al, 2005; Quirk et al, 2003;
Rosenkranz and Grace, 2001, 2002; Rosenkranz et al, 2003).
Hence, mPFC is in a position to exert inhibitory control
over amygdalar throughput, a possible extinction mechan-
ism (Quirk and Mueller, 2008), at least under some
circumstances (cf. Garcia et al, 2006; Gewirtz et al, 1997).

Electrolytic lesions (Quirk et al, 2000) or localized
inactivation (Sierra-Mercado et al, 2006) of the infralimbic
(IL) region of mPFC impair extinction retention while
having little to no effect on acquisition or within-session
extinction, suggesting a role for this region specifically in
consolidation and/or expression of extinction memory (also
see Hsu and Packard, 2008). Single units within IL fire
selectively to presentations of a previously fear conditioned
cue during an extinction retention test 24 h after extinction
training but not during the extinction training session itself
(Milad and Quirk, 2002). Pre-extinction training, intra-
mPFC or intra-IL infusions of neurotransmitter receptor
agonists or antagonists (Burgos-Robles et al, 2007; Hikind
and Maroun, 2008; Laurent and Westbrook, 2008; Mueller
et al, 2008; Pfeiffer and Fendt, 2006; Sotres-Bayon et al,
2009; Zushida et al, 2007), as well as modulators of
downstream second messengers, transcription, and transla-
tion (Hugues et al, 2004, 2006; Mueller et al, 2008;
Santini et al, 2004), modulate extinction retention without
affecting within-session extinction. Immediate post-extinc-
tion training administration of many of these agents has a
similar effect. When IL microstimulation is paired with
presentations of a previously fear conditioned cue in
nonextinguished animals, freezing to those cues is attenu-
ated (Milad and Quirk, 2002; Milad et al, 2004). Collectively,
these findings indicate that mPFC has a significant role in
many cases in extinction memory consolidation and
expression, likely by its interactions with the amygdala.

Figure 1. Highly simplified schematic depicting the interactions among the amygdala, infralimbic (IL) region of the medial prefrontal cortex, and
hippocampus that are believed to underlie extinction of conditioned fear and, perhaps, extinction of conditioned drug craving and withdrawal as well.
The basolateral complex of the amygdala (BLA) is a site of essential plasticity underlying fear memories. BLA receives sensory information about discrete
conditioned stimuli, such as lights, tones, and odors, as well as (through the hippocampus) contextual or spatial cues. After acquisition, BLA triggers
conditioned fear responses through its projections to the central nucleus of the amygdala (CeA), which in turn innervates hypothalamic and brainstem
targets (such as the periaqueductal gray (PAG) and nucleus reticularis pontis caudalis (PnC)) to elicit behavioral indices of fear, including freezing and fear-
potentiated startle (FPS). In extinction, the omission of the unconditioned stimulus is detected through a mechanism that is not well understood. CS-
related information is relayed to both BLA and IL, and NMDA receptor-dependent synaptic plasticity occurs at both sites. After extinction training is
complete, IL contributes to the suppression of fear conditioned responses by inhibiting amygdalar throughput, likely by activating GABAergic
interneurons within BLA, GABAergic intercalated cell masses (ICMs) lying between BLA and CeA, or both. A similar scenario may be true for extinction of
conditioned drug craving and withdrawal. Drug-related conditioned responses presumably are triggered through different neural intermediaries (such as
the ventral tegmental (VTA) or bed nucleus of the stria terminalis (BNST)) than is conditioned fear, but the same basic BLA–mPFC circuitry may be
shared, as suggested by findings that NMDA receptor-mediated synaptic plasticity within BLA and mPFC contribute to extinction of cue-induced drug-
seeking behavior.
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The hippocampus also sends dense projections to the
amygdala (Pitkanen et al, 2000) and substantially innervates
mPFC as well (Jay and Witter, 1991). The hippocampus has
long been known to mediate spatial and contextual memory
(Kim and Fanselow, 1992; Morris et al, 1982), and
consistent with this, a role for it in the context dependence
of extinction has emerged. When hippocampal function is
intact throughout acquisition and extinction training,
lesions or temporary inactivation of the hippocampus
before an extinction retention test block renewal of
extinguished freezing when that test occurs outside of
the extinction training context (Corcoran et al, 2005;
Corcoran and Maren, 2001, 2004; Hobin et al, 2006; Ji and
Maren, 2008; Maren and Hobin, 2007). In other words,
contextual modulation of extinction memory expression is
diminished in the absence of hippocampal input. This effect
is not restricted to behavioral indices of conditioned fear,
but is seen with conditioned stimulus-evoked single-unit
responses in BLA as well, such that hippocampal inactiva-
tion before an extinction retention test blocks the con-
textual renewal of conditioned stimulus-related single-unit
firing (Maren and Hobin, 2007). On the other hand,
temporary inactivation of the hippocampus before extinc-
tion training enhances the contextual sensitivity of
extinction memory, such that renewal is observed in a
subsequent extinction retention test even when that test is
conducted in the same context as extinction training
(Corcoran et al, 2005). One possible interpretation of this
finding is that prevention of contextual encoding by
the hippocampus during extinction training causes the
extinction context not to be recognized as such when
hippocampal functionality is restored, leading to renewal.
Taken together, these findings indicate that the hippocam-
pus is responsible for encoding contextual information
during extinction training and subsequently using that
information to promote or impede expression of extinction
memory, as appropriate, perhaps by its interactions with
the amygdala and mPFC.

NMDA RECEPTORS

The NMDA receptor is an ionotropic receptor that has the
unique feature of being doubly gated, requiring both
membrane depolarization and ligand binding for activation
(Seeburg et al, 1995). NMDA receptors are located
throughout the brain and are heterotetramers comprising
two obligatory NR1 subunits and two subunits from the
NR2 family (denoted NR2A–D) or the more recently
discovered NR3 family. They are implicated heavily in
learning, memory, and experience-dependent forms of
synaptic plasticity, such as long-term potentiation (LTP)
(Nicoll and Malenka, 1999), with NR2A- and NR2B-
containing NMDA receptors being particularly important
in this regard. Subunit composition greatly influences
receptor properties; for example, NR2A-containing recep-
tors have lower glutamate affinity, faster kinetics, and

greater channel open probability than do NR2B-containing
receptors (Cull-Candy and Leszkiewicz, 2004). Functional
differences between NR2A- and NR2B-containing receptors
have been noted as well (Walker and Davis, 2008), although
the nature of these differences is highly dependent on the
brain region and developmental stage in question.

The NMDA receptor was the first of the glutamate
receptors to be implicated in extinction and continues to
be the most thoroughly studied. Owing to the size of the
literature, we will consider studies involving NMDA
receptor antagonism, positive modulation of NMDA
receptor function, and modulation of NMDA subunit
expression in separate subsections.

NMDA Receptor Antagonism

Studies involving systemic administration of NMDA re-
ceptor antagonists before fear extinction training report
dose-dependent impairments of both within-session extinc-
tion and extinction retention (Baker and Azorlosa, 1996;
Chan and McNally, 2009; Cox and Westbrook, 1994; Dalton
et al, 2008; Kelamangalath et al, 2007; Lee et al, 2006; Liu
et al, 2009; Santini et al, 2001; Sotres-Bayon et al, 2007,
2009; Storsve et al, 2010; Walker et al, 2002) (Table 1).
Systemic NMDA receptor antagonists also impair extinction
retention or reinstatement when administered immediately
after extinction training (Burgos-Robles et al, 2007; Laurent
et al, 2008; Johnson et al, 2000; Laurent and Westbrook,
2008; Liu et al, 2009; Santini et al, 2004; Sotres-Bayon et al,
2009) (Table 1), indicating that NMDA receptors are
involved in consolidation as well as encoding of extinction
memory.

NMDA receptors within BLA and IL contribute to
different aspects or phases of fear extinction. Microinfu-
sions of NMDA receptor antagonists into BLA before fear
extinction training impair both within-session extinction
and extinction retention (Falls et al, 1992; Feltenstein and
See, 2007; Laurent et al, 2008; Laurent and Westbrook, 2008;
Lee and Kim, 1998; Lin et al, 2003b; Sotres-Bayon et al,
2007). However, local infusions of NMDA 2A and 2B
antagonists into BLA block the expression of several fear-
related conditioned responses, including freezing, suggest-
ing that these drugs could artifactually block extinction
retention by interfering with synaptic transmission.
Arguing against this possibility is the observation that
infusions of ifenprodil, an NMDA 2B-preferring antagonist
that does not block expression of fear conditioned
responses, also blocks extinction retention (Laurent et al,
2008; Laurent and Westbrook, 2008; Sotres-Bayon et al,
2007). Immediate post-extinction training intra-BLA infu-
sions of ifenprodil have no effect on subsequent extinction
retention when extinction of fear is measured (Laurent and
Westbrook, 2008; Sotres-Bayon et al, 2009), but similar
intra-BLA infusions of AP5 do impair extinction retention
when cocaine conditioned place preference is measured
(Feltenstein and See, 2007). This suggests that NMDA
receptor-dependent synaptic plasticity within BLA is
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TABLE 1 Studies Employing NMDA Receptor Antagonists

Species Test Drug type Drug, dose Locus Time of admin. Effect Reference

Rat FC-cue-FPS NR2A, 2B com. AP5, 1.25-10μg/side BLA Pre-ext Impaired ext ret.; NE on CR expression Falls et al. (1992)
Rat FC-ctx-analgesia Noncom. MK-801, 0.025-0.1mg/kg Sys. Pre-ext Impaired ext ret.; NE on CR expression; not state-dep. Cox and Westbrook (1994)
Rat FC-cue-lick suppr. Noncom. MK-801, 0.025-0.1 mg/kg Sys. Pre-ext Impaired ext ret.;  not state-dep.
Rabbit Eyeblink Noncom. MK-801, 0.05.-0.1 mg/kg Sys. Pre-ext Impaired ext; impaired CR expression
Rat FC-cue/ctx-freezing NR2A, 2B com. AP5, 2.5 μg BLA Pre-ext Impaired ext ret.; impaired CR expression Lee and Kim (1998)
Rat FC-ctx-freezing Noncom. MK-801, 0.05-0.1 mg/kg Sys. Johnson et al. (2000)

Rat FC-cue-freezing, CER NR2A, 2B com. CPP, 10mg/kg Sys. Pre and 24 hrs post-ext Santini et al. (2001)

Rat FC-cue-FPS Noncom.(partial) (±)HA-966, 6 mg/kg Sys. Pre-ext Impaired ext ret.
Rat Inhib. avoidance Noncom. AP5, 25 nmoles CA1 Pre-ext Impaired ext ret. Szapiro et al. (2003)
Rat FC-cue-FPS NR2A, 2B com. AP5, 5 μg/side BLA Pre-ext Impaired ext ret.; NE on CR expression Lin et al. (2003b)
Rat Inhib. avoidance NR2A, 2B com. AP5, 5 μg/side Hipp. Pre-ext Blocked ext ret. if given prior to 1st but not 6th ext training trial Cammarota et al. (2005)
Rat FC-cue-freezing Noncom. MK-801, 0.1 mg/kg Sys. Pre-ext Impaired ext ret.; impaired CR expression
Rat Inhib. avoidance NR2A, 2B com. AP5, 5 μg/side Drug admin. immed. but not 24 hrs post-ext impaired ext ret. Bevilaqua et al. (2006)

Rat FC-cue-freezing NR2B noncom. Ifenprodil, 5 mg/kg Sys. Pre-ext Impaired within-sess ext and ext ret.; NE on CR expression
Ifenprodil, 1-5 μg BLA Pre-ext Same as systemic

NR2A, 2B com. CPP, 10mg/kg Sys. Pre-ext NE on within-sess ext; impaired ext ret.
Rat FC-cue-freezing NR2A, 2B com. CPP, 0.06 mg vmPFC Pre-ext Burgos-Robles et al. (2007)

Immed. post-ext Impaired ext ret.
Rat FC-cue-freezing Noncom. MK-801, 0.05-0.2 mg/kg Sys. Pre-ext Langton et al. (2007)

Rat FC-ctx-freezing NR2A, 2B com. AP5, 2.5 μg/side BLA Pre-ext or pre-re-ext

NR2B noncom. Ifenprodil, 1 μg/side BLA Pre-ext

Rat FC-ctx-freezing NR2B noncom. Ifenprodil, 1 μg/side BLA Pre-ext Impaired within-sess ext and ext ret., 1st and 2nd ext
BLA Immed. post-ext NE

Ifenprodil, 2 μg/side vmPFC Pre-ext Impaired ext ret. for 1st and 2nd ext; NE on within-sess ext
vmPFC Post-ext Impaired ext ret. for 1st and 2nd ext

Rat FC-cue-freezing NR2B noncom. Ro 25-6981, 6 mg/kg Sys. Pre-ext Impaired within-sess ext but not ext ret. Dalton et al. (2008)
Rat FC-cue-freezing Noncom. MK-801, 0.1 mg/kg Sys. Pre-ext Chan and McNally (2009)

Rat FC-cue-freezing Noncom. MK-801, 0.3 mg/kg Sys. Pre or post-ext Liu et al. (2009)

Rat FC-cue-freezing NR2B noncom. Ifenprodil, 5 mg/kg Sys. Immed. post-ext Impaired ext ret.
Ifenprodil, 2 μg vmPFC Pre-ext NE

vmPFC Immed. post-ext Impaired ext ret.
Ifenprodil, 1 μg/side BLA Immed. post-ext NE on ext ret. 

Rat FC-cue-freezing Noncom. MK-801, 0.1 mg/kg Sys. Storsve et al. (in press)

Rat Cocaine IVSA NR2A, 2B com. AP5, 3 μg/side BLA Immed. post-ext Impaired ext. ret. Feltenstein and See (2007)
Rat Cocaine IVSA NR2A, 2B com. CPP, 5 mg/kg Sys. Pre-ext Kelamangalath et al. (2007)

Rat Amphet. cond. PP NR2A, 2B com. AP5, 1.25-5 μg/side mPFC Pre-ext Impaired ext retention Hsu and Packard (2008)

Baker and Azorlosa (1996)
Kehoe et al. (1996)

Lee et al. (2006)

Walker et al. (2002)

Impaired ext ret. in test 24 hrs after ext. NE on ext ret. in test 
48 hrs after ext unless CPP given again 24 hrs post-ext

NE on rate of ext; increased susceptibility to cocaine-induced 
reinst.

NE on within-sess ext; impaired ext ret. and post-ext burst 
firing, magnitude of which correlated with ext

Laurent and Westbrook (2008b)

Sotres-Bayon et al. (2007)

Sotres-Bayon et al. (2009)

Laurent and Westbrook (2008a)Impaired ext ret. for 1st but not 2nd ext, unless 1st ext also 
blocked by AP5; impaired CR expression
Impaired within-sess ext and ext ret. for 1st and 2nd ext; NE 
on CR expression

Pre- or post-US 
habituation

Impaired ability of US habituation (an extinction-like 
procedure) to reduce CR magnitude if drug given pre- but not 
4 hrs post-US habituation

Abbreviations: acq, acquisition;  admin, administration; amphet, amphetamine; BLA, basolateral amygdala; com, competitive antagonist; cond, conditioned; CPA, conditioned place aversion; CR, conditioned 
response; ctx, context; dep, dependent; ext, extinction; FC, fear conditioning; FPS, fear-potentiated startle; hipp, hippocampus; immed, immediate; inhib, inhibitory; IVSA, intravenous self-administration; mPFC, 
medial prefrontal cortex; NE, no effect; noncom, noncompetitive antagonist; PP, place preference; pos, positive; prob, probably; reinst, reinstatement; ret, retention; sess, session; suppr., suppression; sys, systemic; 
vmPFC, ventromedial prefrontal cortex.

Blocked reinst.,  prob. due to block of ctx conditioning needed 
for reinst.

Post-ext; prior to 
unsignaled US

Drug admin. pre- or 4 hrs post-ext but not 12 hrs post-ext 
impaired ext ret. out to 20 d

Entorhinal
cortex

Immed. post-ext or 24 
hrs post-ext

Impaired ext ret. in 23- but not 16-d old pups; impaired fear 
acq at both ages

Impaired ext ret. for 1st but not 2nd ext; blocked CR 
expression. Impaired 2nd ext if CS made more novel (via 
fewer ext trials, new ctx). NE on 1st ext if CS made more 
familiar (via CS or ctx pre-exposure). Conclude that MK-801 
impairs ext for relatively novel CSs but not for relatively 
familiar CSs.
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involved in encoding fear extinction memory, but that
NR2B-containing NMDA receptors within BLA are not
required for consolidation, at least for conditioned fear.
With regard to IL, pre-extinction training infusions of
NMDA receptor antagonists into IL but not the neighboring
prelimbic cortex have no effect on within-session extinction
but generally impair later extinction retention (Burgos-
Robles et al, 2007; Laurent and Westbrook, 2008, 2009a; but
see Sotres-Bayon et al, 2009). Immediate post-extinction
infusions of NMDA receptor antagonists into IL block
extinction retention consistently (Burgos-Robles et al, 2007;
Laurent and Westbrook, 2008; Sotres-Bayon et al, 2009),
providing strong evidence that NMDA receptor-dependent
synaptic plasticity within IL is primarily involved in the
consolidation of extinction memory.

Interestingly, the contribution of NMDA receptors to fear
extinction shifts somewhat when a cue is extinguished a
second time; that is, when the experimental protocol
involves fear acquisition and extinction, followed by
reacquisition and re-extinction of the same cue. Systemic
administration of the NMDA receptor antagonist MK-801
before re-extinction training does not impair subsequent
extinction retention, unless re-extinction and the extinction
retention test occur in a context different from that of
initial acquisition and initial extinction (Chan and McNally,
2009). This may result from a more general phenomenon,
namely that NMDA receptor activation is required when
extinction events are relatively novel but not when they are
relatively familiar (Chan and McNally, 2009). Thus,
systemic administration of MK-801 does block second
extinction if the re-extinguished conditioned stimulus or
the context of re-extinction training is relatively novel by
virtue of fewer extinction trials or a shift in context.
Conversely, MK-801 fails to block first extinction if the
extinguished conditioned stimulus or the context of
extinction training is relatively familiar by virtue of pre-
exposure to the conditioned stimulus or context. On the
other hand, novelty does not seem to matter for fear
conditioning itself because AP5 blocks fear acquisition in
both a novel and a familiar context (Lee and Kim,
1998; Laurent and Westbrook, 2009b). Effects with
localized infusions of NMDA receptor antagonists before
second extinction are complex. Intra-BLA infusions
of AP5 before re-extinction training have no effect on
subsequent extinction retention; however, infusions of
ifenprodil impair both within-session extinction and
extinction retention (Laurent et al, 2008; Laurent and
Westbrook, 2008). Interestingly, intra-BLA infusions
of AP5 do block re-extinction if initial extinction was also
blocked by intra-BLA AP5 (Laurent et al, 2008), as if
blockade of the first extinction restored the sensitivity of the
second extinction to NMDA receptor blockade. However,
this does not seem to hold for localized infusions into
mPFC, where either pre-extinction or immediate post-
extinction training infusions of ifenprodil block retention of
both first and second extinction (Laurent and Westbrook,
2008).

NMDA receptor antagonism impairs extinction not only
of fear conditioned responses but also of conditioned drug
craving. Intra-mPFC, pre-extinction training infusion of
AP5 impairs extinction of amphetamine conditioned place
preference (Hsu and Packard, 2008). In the drug IV self-
administration paradigm, systemic pre-extinction training
administration of the competitive NMDA receptor antago-
nist CPP is associated with more robust cocaine-induced
reinstatement, perhaps indicative of reduced extinction
(Kelamangalath et al, 2007), and intra-BLA infusions of AP5
immediately after each of several test (ie, cue extinction)
sessions leads to more persistent cue-maintained drug-
seeking behavior, perhaps because extinction of the
response-reinstating or response-maintaining value of the
cues is impaired (Feltenstein and See, 2007).

Positive Modulation of NMDA Receptor Function

Whereas antagonism of NMDA receptors impairs extinction,
enhancement of NMDA receptor function by the NMDA
receptor partial agonist D-cycloserine (DCS) facilitates extinc-
tion. DCS acts at the glycine modulatory site on the NR1
NMDA receptor subunit to increase calcium influx without
causing damage due to neurotoxicity (Sheinin et al, 2001).

In the Pavlovian fear conditioning paradigm, systemic
administration of DCS either before (Bouton et al, 2008;
Weber et al, 2007; Hefner et al, 2008; Kelley et al, 2007;
Langton and Richardson, 2008; Ledgerwood et al, 2003,
2005; Lee et al, 2006; Lin et al, 2009a, b; Mao et al, 2006,
2008; Myers and Carlezon, 2010a; Tomilenko and Dubrovina,
2007; Walker et al, 2002; Weber et al, 2007; Woods and
Bouton, 2006; Yamada et al, 2009; Yang and Lu, 2005) or
after (Ledgerwood et al, 2003, 2004, 2005; Parnas et al, 2005;
Weber et al, 2007; Werner-Seidler and Richardson, 2007)
extinction training facilitates extinction (Table 2). Similarly,
mutant mice with a single point mutation in the gene
encoding D-amino acid oxidase, a catabolic enzyme of
D-serine (an endogenous ligand at the NR1 glycine modu-
latory site), show increased whole-brain D-serine concen-
trations and facilitated extinction of freezing to contextual,
but not auditory, cues (Labrie et al, 2009). Immediate post-
extinction injection of spermine, another positive modu-
lator of the NMDA receptor, into the hippocampus
facilitates extinction of the inhibitory avoidance response
(Gomes et al, 2010). To our knowledge, no published
studies have examined the effect of DCS infusions
directly into IL, but local infusion of DCS into BLA before
(Akirav, 2007; Lee et al, 2006; Mao et al, 2006, 2008; Walker
et al, 2002) or after (Ledgerwood et al, 2003) fear extinction
training mimics the effects of systemic administration.

DCS may be more effective under some circumstances
than others (Table 3). For example, there is a growing body
of evidence to suggest that DCS reverses fear extinction
deficits that are observed after stress (Akirav, 2007;
Matsumoto et al, 2008; Nic Dhonnchadha et al, 2010;
Yamamoto et al, 2008), alcohol withdrawal (Bertotto et al,
2006), or REM sleep deprivation (Silvestri and Root, 2008);
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in genetically modified mice that have a polymorphism in
the BDNF gene (val-met substitution) (Yu et al, 2009); and
even when muscimol is infused into BLA (Akirav, 2007).
Perhaps consistent with these stress-related effects, DCS
interacts with stress hormones: DCS blocks the extinction-
impairing effect of the corticosteroid synthesis inhibitor
metyrapone and enhances the extinction-facilitating effects
of the synthetic glucocorticoid dexamethasone (Yang et al,
2007). These observations also may be consistent with
findings in clinical studies (described below, in the
‘Targeting glutamate clinically: clinical use of DCS’ section)
that DCS facilitates exposure therapy in clinical, but not in
subclinical, populations. Finally, DCS facilitates extinction
retention only in rats that show some evidence of within-
session extinction during extinction training and not in rats
that are resistant to extinction (Bouton et al, 2008; Hefner
et al, 2008; Weber et al, 2007), and DCS administered before
re-extinction training has no effect, similar to the failure of
systemic NMDA receptor antagonists to block re-extinction
under many circumstances (Langton and Richardson,
2008).

Yang and Lu (2005) examined the molecular mechanisms
underlying DCS-induced facilitation of fear extinction. They
found that exposure to a suboptimal extinction training
protocol modestly increases phospho-MAPK and phospho-
Akt (the activated forms of kinases that have important
roles in intracellular signaling cascades) in BLA, and that
exposure to this same protocol after administration of DCS
leads to more robust increases. Consistent with this, intra-
BLA infusions of the MAPK inhibitors U0126 or PD98059 or
the PI3K inhibitor wortmannin block the behavioral
facilitation of extinction by DCS. Intra-BLA infusions of
actinomycin D, a transcriptional inhibitor, and anisomycin,
a protein synthesis inhibitor, also block DCS-induced
facilitation of extinction. In the ‘AMPA receptors’ section,
we describe other findings indicating that DCS modulates
the expression and trafficking of AMPA receptor subunits
in BLA (Lin et al, 2009a, b; Mao et al, 2006; Mao et al, 2008).

Extinction of conditioned drug craving and withdrawal is
sensitive to DCS as well. Systemic administration of DCS
before or immediately after repeated place preference tests,
or localized infusion of DCS into the BLA immediately after
repeated tests, facilitates extinction of cocaine conditioned
place preference (Botreau et al, 2006; Paolone et al, 2009;
Thanos et al, 2009). Pre-extinction training systemic
administration of DCS also facilitates extinction of nalox-
one-induced conditioned place aversion in morphine-
dependent rats (Myers and Carlezon, 2010a). DCS does
not enhance the rate of extinction of ethanol conditioned
place preference but retards subsequent reconditioning,
suggesting a facilitation of extinction that may have been
obscured by floor or performance effects (Groblewski et al,
2009); similarly, pre-extinction training DCS dose depen-
dently retards subsequent reacquisition of cocaine seeking
in both rats and squirrel monkeys (Nic Dhonnchadha et al,
2010; but see Sakurai et al, 2007). Finally, in cocaine (Nic
Dhonnchadha et al, 2010) and ethanol (Vengeliene et al,

2008) self-administration paradigms, rats receiving DCS
before sessions in which drug delivery was discontinued but
response-contingent cues continued to occur stopped
responding more rapidly than did rats receiving vehicle,
presumably because DCS facilitated extinction of the
secondary reinforcing value of the cues. DCS also facilitates
extinction of maze running or bar pressing for food
(Gabriele and Packard, 2007; Shaw et al, 2009). In some of
these studies, DCS-facilitated extinction is especially
enduring: DCS reduced cocaine-induced reinstatement
(Kelamangalath et al, 2009; Paolone et al, 2009; but see
Kelley et al, 2007) and retarded spontaneous recovery
(Botreau et al, 2006; Kelley et al, 2007).

Modulation of NMDA Receptor Subunit
Expression

Some investigators have noted extinction-related changes in
NMDA receptor subunit expression in brain areas including
mPFC and hippocampus. In a study examining the effect of
previous corticosterone (cort) exposure on subsequent fear
learning, cort-exposed rats showed impaired extinction and
reduced NR2B expression within vmPFC (Gourley et al, 2009).
Rats exhibiting the poorest extinction showed the least NR2B
expression, suggesting that the extinction deficit could be a
product of changes in vmPFC NMDA receptor expression
induced by previous cort exposure. Similarly, rats that had
undergone maternal separation as pups showed impaired fear
extinction and reduced NR1 expression in IL (Wilber et al,
2009). In a study involving drug-paired cues, rats that received
noncontingent (yoked) administrations of cocaine in an operant
chamber and which subsequently were exposed to that chamber
in the absence of cocaine showed increased expression of
the NR1 subunit in mPFC (Crespo et al, 2002). In the
hippocampus, contextual fear extinction was found to be
associated with decreased expression of NR1, NR2A, and NR2C,
and increased expression of NR2B (Yamamoto et al, 2008).
Finally, transgenic mice with elevated forebrain NR2B expres-
sion show facilitated fear extinction (Tang et al, 1999),
suggesting that genetic manipulations that increase NMDA
receptor expression can positively impact extinction.

AMPA RECEPTORS

The AMPA receptor is found throughout the brain and
is an ionotropic receptor mediating fast synaptic transmis-
sion. AMPA receptors are tetramers composed of sub-
units designated GluR1-4, which assemble as a ‘dimer of
dimers.’ In addition to its role as a mediator of basal
synaptic transmission, the AMPA receptor also is involved
in experience-dependent forms of synaptic plasticity (eg,
see Carlezon and Nestler, 2002; Malinow and Malenka,
2002).

The literature on the involvement of AMPA receptors in
extinction comes almost entirely from studies of fear
extinction (Table 4). An early finding was that infusion of
the AMPA receptor antagonist CNQX into BLA before
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extinction training had no effect on subsequent extinction
retention (Falls et al, 1992). The possibility that the small
amount of fear seen in the extinction retention test was
due to amygdalar neurotoxicity as opposed to intact
extinction was ruled out in a separate experiment, in
which rats infused with CNQX without undergoing
extinction training showed robust fear in a test conducted
at the same post-infusion interval. These findings, which
have since been replicated by a different group (Lin et al,
2003b), were unexpected and have been somewhat of an
enigma in the field, as it is not immediately obvious why
blocking the action of glutamate at AMPA receptors in BLA
should have no effect, given that BLA activation is
considered by most to be critical for fear extinction.
However, they do show that extinction can still occur when
expression of the conditioned response is blocked, as often
occurs with local infusion of AMPA receptor antagonists
into BLA (Kim et al, 1993).

A recent finding indicates that the AMPA receptor agonist
PEPA dose-dependently facilitates contextual fear extinc-
tion when administered systemically to mice before
extinction training (Yamada et al, 2009; Zushida et al,
2007). PEPA had a similar facilitatory effect when infused
directly into the anterior cingulate/prelimbic region of
mPFC and (in a separate experiment) into the basolateral/
central amygdala, although the effect size was larger with
mPFC infusions (Zushida et al, 2007). Consistent with these
behavioral findings, electrophysiological and gene expres-
sion (qPCR) analyses indicated that GluR3 and GluR4
subunits and flop AMPA receptor splice variantsF
which are preferred by PEPAFare enriched in mPFC
(Zushida et al, 2007).

A potential mechanism whereby PEPA might exert its
behavioral effect is by promotion of AMPA receptor
internalization. Conditioned fear acquisition is associated
with increased cell-surface expression of GluR1 and GluR2
subunits in BLA (Rumpel et al, 2005); recent reports
indicate that fear extinction, under some circumstances,
reverses this increase. Kim et al (2007a) found decreased
cell-surface expression of GluR1 and GluR2 subunits in BLA
in extinguished animals relative to that seen in fear-
conditioned controls that did not undergo extinction.
Similarly, Mao et al (2006, 2008) reported decreased cell-
surface and increased cytoplasmic GluR1 and GluR2
subunit expression in BLA after extinction, when extinction
training occurred soon (1 h) after fear acquisition but not at
longer intervals (24–48 h), unless extinction training
24–48 h after acquisition occurred under the influence of
DCS. Consistent with these biochemical findings, Lin et al
(2009a, b) performed whole-cell patch-clamp recordings of
BLA neurons in slices obtained from rats that had been fear
conditioned and extinguished, and found that increased
AMPA/NMDA ratios seen after fear acquisition were
reversed after extinction coupled with DCS. Molecular
mechanisms of AMPA receptor internalization in extinction
include unbinding of GluR subunits from scaffold proteins,
including PSD-95 and SAP97 (Mao et al, 2008), activation of
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the phosphatase calcineurin (Havekes et al, 2008; Lin et al,
2003a), decoupling of protein kinase A from its anchoring
protein AKAP (Isiegas et al, 2006; Nijholt et al, 2008), and
proteolysis (Mao et al, 2008).

Recently, a novel tool has become available that can be
used to manipulate AMPA receptor internalization directly.
Known as GluR23Y, it is a synthetic peptide containing
a sequence of amino acids found in the carboxy terminus of
the GluR2 subunit that is critical to activity-induced AMPA
receptor internalization. By competing with endogenous
GluR2 subunits, GluR23Y largely blocks AMPA receptor
internalization and associated forms of synaptic plasti-
city, including long-term depression and depotentiation
(Brebner et al, 2005). GluR23Y can be dialyzed directly
into neurons during whole-cell patch-clamp recordings or
conjugated to the HIV Tat protein, which allows it
to cross cell membranes, permitting intracerebral or even
systemic administration. In amygdala slices, GluR23Y (but
not GluR23A, a control construct) blocks the induction of
GluR2 internalization (Lin et al, 2009a, b) and synaptic
depotentiation in slices obtained from fear-conditioned
animals (Kim et al, 2007a). Behaviorally, systemic admin-
istration (Dalton et al, 2008) or intra-BLA infusion (Kim
et al, 2007a) of Tat-GluR23Y (but not GluR23A) before
extinction training impairs within-session extinction and
subsequent extinction retention. GluR23Y had no effect
when administered in the absence of extinction training
(Kim et al, 2007a) or before a test of extinction retention in
animals extinguished previously (Dalton et al, 2008).
Finally, Lin et al (2009a, b) found that Tat-GluR23Y infused
into BLA before extinction training blocks DCS-induced
facilitation of extinction and the accompanying decrease in
AMPA/NMDA ratios.

AMPA receptor binding is sufficient but not necessary for
AMPA receptor internalization. There is evidence for
NMDA receptor-dependent AMPA receptor endocytosis in
cultured hippocampal (Beattie et al, 2000) and nucleus
accumbens neurons (Mangiavacchi and Wolf, 2004) and in
the lateral amygdala in vitro (Mao et al, 2008; Yu et al,
2008). In this light, it may be understandable why pre-
extinction training intra-BLA infusions of AMPA receptor
antagonists have no apparent effect on extinction: if
extinction-related AMPA receptor internalization in BLA
in vivo were mediated primarily by glutamate binding to
NMDA receptors, then AMPA receptor antagonists would
not be expected to have an effect. This might provide a
mechanism for DCS-induced facilitation of fear extinction:
rather than (or in addition to) facilitating extinction-related
LTP in BLA, DCS might enhance NMDA receptor-dependent
AMPA receptor internalization. Consistent with this, Mao
et al (2008) found that DCS facilitated NMDA-induced
GluR1 and GluR2 internalization in BLA in vitro.

AMPA receptor internalization is a mechanism of
synaptic depotentiation, a form of synaptic plasticity
amounting to a reversal of LTP (Huang and Hsu, 2001).
Other evidence for a role of BLA depotentiation in
extinction includes the finding that application of

depotentiation-inducing stimulation to BLA in vivo in
previously fear-conditioned animals leads to attenuation
of fear memory expression (Lin et al, 2003) and that the
induction of BLA depotentiation in vitro is occluded in
slices obtained from extinguished animals (Kim et al,
2007a). A puzzle still to be solved in the extinction field is
how reversal of BLA LTPFwhich is believed to underlie
fear memory storage (Sigurdsson et al, 2007)Fcan be
reconciled with relapse phenomena indicating that extinc-
tion is not ‘unlearning.’ The most likely scenario is that
depotentiation is but one of multiple extinction mechan-
isms. For example, some conditioned stimulus-related
single-unit responses in BLA diminish over the course of
extinction training, potentially through a depotentiation
mechanism, but some persist (Herry et al, 2008; Quirk et al,
1997; Repa et al, 2001) and others develop as extinction
training progresses (Herry et al, 2008), suggesting that other
forms of synaptic plasticity are involved. In addition,
modulation of GABAergic (and not just glutamatergic)
neurotransmission has a significant role in extinction in
that extinction is impaired by administration of a GABAA

receptor inverse agonist (Harris and Westbrook, 1998) or
targeted lesions of the ICMs (Likhtik et al, 2008) and is
associated with increased frequency and amplitude of IPSCs
(Lin et al, 2009a, b), GABA-related gene expression
(Chhatwal et al, 2005; Heldt and Ressler, 2007), and GABAA

receptor membrane insertion in BLA (Lin et al, 2009a, b).
Finally, as we have seen, BLA is one of the several sites of
extinction-related plasticity; mPFC and hippocampus are
engaged as well and may contribute to the expression of
extinction memory by modulating amygdalar activity. A
major goal of extinction research is to determine how these
varied mechanisms interact to produce context- and time-
dependent conditioned response suppression.

The literature on extinction of drug- and withdrawal-
paired cues is largely silent on AMPA receptor involvement,
with the exception of two studies on Narp, which is a
protein that binds to AMPA receptors and contributes to
their trafficking and clustering at synapses. Both of these
studies were conducted in the place conditioning paradigm;
the major findings were that Narp knockout mice show
delayed extinction of morphine conditioned place pre-
ference (Crombag et al, 2009) and enhanced extinction of
morphine withdrawal-induced conditioned place aversion
(Reti et al, 2008). It is not immediately obvious how to
interpret these findings, both because the knockout was
constitutive rather than localized and because so little is
known about the neurobiological underpinnings of these
two types of extinction, which likely rely on somewhat
different substrates. However, at the very least, the data
suggest that AMPA receptors have an important role in the
extinction of drug- and withdrawal-paired cues, just as they
do in fear extinction (also see Sutton et al, 2003). In
addition to these studies, there is a recent report that GluR2
expression and AMPA/NMDA current ratios were decreased
in mPFC in rats that had been re-exposed to a heroin-
associated cue in the IVSA paradigm after extinction of
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lever pressing (Van den Oever et al, 2008). Although the
authors of this study suggest that these changes are
associated with cue-induced reinstatement of drug-seeking
behavior, an alternative explanation is that the changes are
reflective of extinction of the response-reinstating value of
the cues over the course of the test session.

METABOTROPIC GLUTAMATE RECEPTORS

Metabotropic glutamate receptors (mGluRs) are G protein-
coupled receptors mediating slow synaptic transmission.
There are eight subtypes, denoted mGluR1–8, which are
classified into three groups based on sequence similarity
and signal transduction mechanisms: group I (mGluR1,
mGluR5); group II (mGluR2, mGluR3); and group III
(mGluR4, mGluR6-8). They are located throughout the
brain, with different subtypes having different regional and
developmental patterns of expression. Some subtypes (eg,
mGluR5) have been implicated in learning and memory and
experience-dependent forms of synaptic plasticity (Simonyi
et al, 2005).

Studies on the contribution of mGluRs to extinction have
appeared relatively recently, and the literature at this time is
somewhat limited (Table 4). Thus far, there are data
regarding the role of mGluR1, mGluR5, and mGluR7.

Localized infusions of the mGluR1 antagonist CPCCOEt
into BLA before extinction training dose-dependently
impair within-session extinction and subsequent extinction
retention when extinction training occurs 48 h after acquisi-
tion, but not 1 h after acquisition (Kim et al, 2007b). The
apparent time-dependent nature of mGluR1 involvement is
consistent with evidence from other sources that the
mechanisms of short- and long-interval extinction may
differ (Cain et al, 2005; Mao et al, 2006; Maren and Chang,
2006; Myers et al, 2006). In an electrophysiological study,
Kim et al (2007a) found that CPCCOEt blocks ex vivo
induction of synaptic depotentiation in BLA in slices
obtained from fear-conditioned animals, whereas the group
I mGluR agonist DHPG induces depotentiation in these
slices (also see Hong et al, 2009). These findings may be
consistent with those described in the ‘AMPA receptors’
section suggesting that BLA depotentiation is a mechanism
of extinction, at least under some circumstances.

Both mGluR5 knockout mice (Xu et al, 2009) and mGluR7
knockout mice (Callaerts-Vegh et al, 2006; Goddyn et al,
2008) show deficits in fear extinction. Conversely, systemic
administration of the newly synthesized mGluR7 agonist
AMN082 before extinction training dose-dependently facil-
itates fear extinction (Fendt et al, 2008). AMN082 has no
effect when administered in the absence of extinction
training (Fendt et al, 2008).

Extinction of conditioned responses to drug-paired cues
is sensitive to manipulations of mGluR function as well, as
indicated by the finding that systemic administration of
CDPPB, a positive allosteric modulator of mGluR5, before
extinction training dose-dependently facilitates extinction
of cocaine conditioned place preference (Gass and Olive,

2009). This effect was blocked by coadministration of the
mGluR5 antagonist MTEP or the NMDA receptor antagonist
MK-801, highlighting the functional interactions between
mGluRs and NMDA receptors.

TARGETING GLUTAMATE CLINICALLY:
CLINICAL USE OF DCS

The finding that DCS can facilitate fear extinction in
animals (Walker et al, 2002) sparked interest in the idea that
this drug might also be effective in facilitating exposure
therapy for fear and anxiety disorders in people. DCS
has been FDA-approved for some time as an antibiotic
treatment for tuberculosis at high doses, allowing for
clinical studies examining the utility of this compound in
humans to be set up relatively quickly and easily.

The first of the DCS clinical studies (Ressler et al, 2004)
examined the ability of DCS to enhance exposure therapy
for acrophobia, or fear of heights, using virtual reality
exposure (VRE) therapy. Previous work had shown
improvements in acrophobia outcome measures after
7 weekly VRE therapy sessions (Rothbaum et al, 1995).
Volunteer participants who met DSM-IV criteria for
acrophobia were assigned randomly to groups receiving
placebo or one of two doses of DCS (50 or 500 mg) in
conjunction with VRE. Participants underwent a subopti-
mal amount of exposure therapy for acrophobia (two VRE
sessions) and were instructed to take a single dose of study
medication 2–4 h before each session. Similar to rats in the
preclinical work, participants receiving either dose of DCS
exhibited significantly more improvement than did those
receiving placebo, with no statistical difference between the
two doses. DCS-treated patients exhibited less fear and
fewer skin conductance fluctuations in the VR environment,
lower overall acrophobia symptoms, increased self-reports
of exposure to heights in the ‘real world,’ and higher self-
ratings of improvement.

Since then, other groups have found that DCS enhances
exposure therapy for other fear and anxiety disorders,
including social anxiety disorder (Guastella et al, 2008;
Hofmann et al, 2006), obsessive-compulsive disorder
(Kushner et al, 2007; Wilhelm et al, 2008; but see Storch
et al, 2007), and panic disorder (Otto et al, 2010), indicating
that the DCS effect is a relatively general one. The failure in
Storch et al (2007) may have resulted from administering
DCS 4 h before exposure therapy, which may have been too
early. There has been one report of a failure of DCS to
facilitate exposure therapy for subclinical spider phobia
(Guastella et al, 2007a) and failures of DCS to facilitate
extinction of Pavlovian-conditioned fear in a laboratory
situation in humans (Guastella et al, 2007b; Grillon, 2009).
However, these negative effects may indicate that DCS is
useful only in people with clinically significant, maladaptive
fearFconsistent, perhaps, with the preclinical data suggest-
ing that DCS is particularly effective in stressed animals
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(described in the ‘Positive modulation of NMDA receptor
function’ section).

A very recent study examined the utility of DCS as an
adjunct to exposure therapy for nicotine addiction in
cigarette smokers (Santa Ana et al, 2009). Smokers under-
went two sessions of smoking cue exposure involving
handling cigarettes, lighters, and ashtrays, during which
skin conductance responses (SCRs) and self-reports of
craving were recorded. One hour before each exposure
session, participants were administered 50 mg DCS (n¼ 12)
or placebo (n¼ 13). In general, exposure therapy for
addiction has not been met with great success, for reasons
that remain unclear (Conklin and Tiffany, 2002), and
consistent with this, participants in the smoking study
who received placebo showed little evidence of extinction
of SCR or craving during exposure sessions. Intriguingly,
however, participants who received DCS showed facilitated
within-session extinction of both measures.

Another recent study examined the effect of DCS on
extinction of cocaine cue-induced craving in addicts, using
a design similar to that of the smoking cue study in that it
involved two sessions in which participants handled
paraphernalia and simulated cocaine (Price et al, 2009).
Two hours before each session, participants received 50 mg
DCS (n¼ 5) or placebo (n¼ 5). One week later, a follow-up
session was conducted without previous administration
of DCS or placebo. Although not statistically significant,
there was a trend in follow-up toward decreased self-
reported craving in the DCS group relative to that in
the placebo group. Owing to the small group sizes, these
results are preliminary, but they are suggestive of a
facilitation of extinction of cocaine cue-induced craving
by DCS. However, DCS also significantly enhanced
drug craving during exposure sessions, leading the authors
of this study to question the clinical utility of DCS in the
treatment of cocaine addiction.

There are two other potential problems with the clinical
use of DCS that have emerged in the preclinical (animal)
literature, and which need to be considered alongside the
successes. One is the finding (discussed earlier) that DCS
facilitates extinction but not re-extinction of a conditioned
fear response (Langton and Richardson, 2008). Together
with related findings that the mechanisms of re-extinction
differ under some circumstances from those of original
extinction (Chan and McNally, 2009; Laurent et al, 2008;
Laurent and Westbrook, 2008), this finding may imply that
DCS will be less effective as a clinical tool in patients who
have relapsed after treatment and are seeking treatment
again. Relapse is prevalent in both anxiety disorders and
addiction; hence, it will be important to determine whether
DCS is useful with this population and, if necessary, to
develop alternative approaches. A second potential cause
for concern is the finding that DCS modulates not only
extinction but also reconsolidation (Lee et al, 2006, 2009).
Reconsolidation is a form of memory consolidation that
occurs after reactivation of a memory formed previously.
For example, after training a rat to associate a tone with a

foot shock, briefly re-exposing the rat to the tone seems to
make the previously consolidated memory sensitive to
disruption once again, such that the rat will be amnestic
with regard to the tone when tested some time later if it was
administered a memory-impairing treatment at the time of
memory reactivation (Nader et al, 2000). Perhaps consistent
with its function as a cognitive enhancer, DCS has the
opposite effect; that is, it potentiates memory reconsolida-
tion when administered in conjunction with a brief re-
exposure to a previously conditioned stimulus, such that
rats exhibit stronger memories when tested later. This is
true for both fear conditioned stimuli (Lee et al, 2006) and
drug-related conditioned stimuli (Lee et al, 2009). Recon-
solidation and extinction are highly related phenomena,
being distinguished procedurally by the duration of CS
re-exposure, such that short re-exposures seem to promote
reconsolidation and long re-exposures promote extinction
(Eisenberg et al, 2003; Pedreira and Maldonado, 2003;
Suzuki et al, 2004). This suggests that there may be a danger
in using DCS clinically if an exposure therapy session is too
brief or otherwise favors memory reconsolidation as
opposed to extinction. At present, there are no data by
which to assess the impact of these two potential problems
in clinical populations, but they will be important
considerations if DCS is to advance from being an
experimental drug to being accepted and used as a clinical
tool.

FUTURE RESEARCH DIRECTIONS

A great deal has been learned about the contribution of
glutamate to extinction, but there is still much more work to
be done. An unanswered question in the fear extinction
literature, in particular, is how the apparently multiple
mechanisms underlying extinction interact. Focusing just
on BLA, a priority in future research will be identifying the
various forms of synaptic plasticity involved, keeping in
mind that different ones are likely to occur in different cell
types, and that the nature of that plasticity might change
depending on the circumstances of extinction trainingFfor
example, whether extinction is occurring for the first or
second time, or if the interval between acquisition and
extinction training is long or short.

The literature on extinction of conditioned drug craving
and withdrawal is still in its infancy, but interest in this
area is increasing and progress is being made. Immediate,
major goals of this work include developing a map of the
underlying circuitries and characterizing the interactions
among the structures that are involved. It is likely that this
type of extinction involves similar cortico-limbic mechan-
isms as implicated in fear extinction (Myers and Carlezon,
2010b), but more evidence is required to solidify that view.
Having done this, teasing apart the contribution of
glutamate receptor subtypes to the encoding, consolidation,
and expression of drug-related extinction memory will be
more feasible.
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Clinical Implications

Basic research on glutamate receptor involvement in
extinction has had an immediate, direct clinical benefit in
the use of DCS to facilitate exposure therapy for fear and
anxiety disorders. Particularly in the context of addiction,
however, more study is required to determine the generality
of the DCS effect. The evidence for clinical efficacy of DCS
in exposure therapy for nicotine and cocaine addiction
(Price et al, 2009; Santa Ana et al, 2009) is encouraging, and
this, together with the growing animal literature on DCS-
induced facilitation of extinction of conditioned drug
craving and withdrawal (described in the ‘Positive modula-
tion of NMDA receptor function’ section), provides a
rationale for further study.

DCS is not the only drug that facilitates extinction. We
have described three others that do as well: the AMPA
receptor agonist PEPA, and the mGluR agonists AMN082
and CDPPB. Any of these might be an attractive candi-
date for further development as a potential clinical tool,
assuming that they do not have unintended side effects. In
this respect, the indirect, modulatory effect of DCS on
glutamate function might be the key to its putative safety
and efficacy.

Looking further ahead, if our understanding of glutamate
actions within specific cell populations or brain regions
were increased, technology might evolve to permit targeting
treatments to those substrates to facilitate and maximize
the generalizability of extinction. For example, gene therapy
might become available whereby genes encoding NMDA
receptor subunits could be delivered specifically to the
amygdala or mPFC, before exposure therapy.
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