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Abstract
There is substantial evidence that mitochondria are involved in the aging process. Mitochondrial
function requires the coordinated expression of hundreds of nuclear genes and a few dozen
mitochondrial genes, many of which have been associated with either extended or shortened life
span. Impaired mitochondrial function resulting from mtDNA and nuclear DNA variation is likely
to contribute to an imbalance in cellular energy homeostasis, increased vulnerability to oxidative
stress, and an increased rate of cellular senescence and aging. The complex genetic architecture of
mitochondria suggests that there may be an equally complex set of gene interactions (epistases)
involving genetic variation in the nuclear and mitochondrial genomes. Results from Drosophila
suggest that the effects of mtDNA haplotypes on longevity vary among different nuclear allelic
backgrounds, which could account for the inconsistent associations that have been observed
between mitochondrial DNA (mtDNA) haplogroups and survival in humans. A diversity of
pathways may influence the way mitochondria and nuclear – mitochondrial interactions modulate
longevity, including: oxidative phosphorylation; mitochondrial uncoupling; antioxidant defenses;
mitochondrial fission and fusion; and sirtuin regulation of mitochondrial genes. We hypothesize
that aging and longevity, as complex traits having a significant genetic component, are likely to be
controlled by nuclear gene variants interacting with both inherited and somatic mtDNA variability.
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Mitochondria and aging
The vast majority (90%) of the energy needs of the human body are met by mitochondrial
oxidative phosphorylation (OXPHOS). OXPHOS takes place entirely in mitochondria and is
a highly efficient system for producing the energy required to maintain the structure and
function of the body. OXPHOS enzyme activities decline with age in human and primate
muscle (Boffoli et al., 1994; Cooper et al., 1992; Trounce et al., 1989), liver (Yen et al.,
1989), and brain (Bowling et al., 1993; Jazin et al., 1996) and correlate with the
accumulation of somatic mtDNA deletions (Arnheim and Cortopassi, 1992; Bender et al.,
2006; Bua et al., 2006; Chang et al., 2005; Corral-Debrinski et al., 1992a; Corral-Debrinski
et al., 1992b; Cortopassi et al., 1992; Hattori et al., 1991; Hayakawa et al., 1993; Herbst et
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al., 2007; Kraytsberg et al., 2006; Linnane et al., 1990; Liu et al., 1998a; Mann et al., 1992;
Melov et al., 1995; Nagley et al., 1992; Piko et al., 1988; Reeve et al., 2008; Sciacco et al.,
1994; Simonetti et al., 1992; Soong et al., 1992; Sugiyama et al., 1991; Wallace et al., 1995;
Wei, 1992; Yang et al., 1994; Yen et al., 1994; Yen et al., 1992; Yen et al., 1991; Zhang et
al., 1992; Zhang et al., 1999; Zhang et al., 1998; Zhang et al., 2002) and base substitutions
(Chinnery et al., 2001; Greaves et al., 2006; Kadenbach et al., 1995; Liu et al., 1998b;
Michikawa et al., 1999; Munscher et al., 1993a; Munscher et al., 1993b; Murdock et al.,
2000; Nekhaeva et al., 2002; Soong et al., 1992; Taylor et al., 2003; Wang et al., 2001;
Zhang et al., 1993). For example, skeletal muscle mtDNA deletions localize to fibers that
are also deficient in electron transport activity, and these defective fibers increase with age
in humans and rodents (Bua et al., 2006; Herbst et al., 2007). High levels of somatic mtDNA
deletions have been described in substantia nigra neurons from both elderly control subjects
and patients with Parkinson disease (Bender et al., 2006; Kraytsberg et al., 2006; Reeve et
al., 2008). High levels of mtDNA deletions were associated with respiratory chain
deficiency (Bender et al., 2006) with these mutations being significantly higher in
cytochrome c oxidase (COX)-deficient neurons than in COX-positive neurons, suggesting
that mtDNA deletions may be directly responsible for impaired cellular respiration
(Kraytsberg et al., 2006). High levels of somatic mtDNA mutations may also result in low
COX activity observed in substantia nigra and muscle fibers from elderly humans (Itoh et
al., 1996; Sciacco et al., 1994). An age-related decline in mtDNA content in skeletal muscle
from humans (Short et al., 2005) and mice (Li et al.) has been related to decreases in both
mitochondrial ATP production rate (Short et al., 2005) and oxidative phosphorylation
coupling (Li et al.).

At present, it is unknown what mechanism is generating mtDNA deletions and mutations
and the ideas concerning the role of mitochondria and mtDNA in aging continue to be in
flux. While the mitochondrial theory of aging‘ hypothesis is attractive, in which somatic
mutation of mtDNA leads respiratory chain dysfunction, enhancing the production of DNA-
damaging oxygen radicals that in turn result in the accumulation of further mtDNA
mutations and bioenergetic crisis, there is no evidence to support this process. Indeed, a
rigorous test of the vicious cycle‘ remains to be undertaken.

The link between mtDNA mutations and reactive oxygen species (ROS) production is in
question and remains to be tested. Recent results suggest that respiratory chain dysfunction
is the primary inducer of premature aging in mtDNA mutator mice, independent of ROS
(Trifunovic et al., 2005). MtDNA mutator mice accumulate mtDNA mutations in an
approximately linear manner over their lifetime (Trifunovic et al., 2005). Despite the
profound respiratory chain deficiency and premature aging phenotypes observed in mtDNA
mutator mice, the amount of ROS produced is normal (Trifunovic et al., 2005). While ROS
are toxic and may damage a variety of cellular components, there are also data to suggest
that the organism may cope with increased ROS damage without developing premature
aging (Trifunovic et al., 2005). Transgenic mice with reduced mitochondrially generated
oxidative damage had a modest but significant increase in life span (Lapointe and Hekimi,
2008; Schriner et al., 2005).

The majority of genes encoded by the mtDNA are crucial for the machinery that converts
metabolic energy into ATP. Human mtDNA is a 16,569 base pair loop that contains 37
genes coding for two rRNAs, 22 tRNAs and 13 polypeptides. These genes include NADH
dehydrogenase, cytochrome c oxidase, ubiquinol/cytochrome c oxidoreductase, and ATP
synthase, as well as the genes for unique ribosomal RNA and transfer RNA particles that are
required for translating these genes into proteins. A major, unresolved issue remains that of
the relationship between overall mutation load and its physiological effects at the tissue and
organism level. Somatic (acquired) MtDNA mutations occur in postmitotic tissues (i.e.,
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heart, brain, nerve). Cells in these high-energy tissues have a higher degree of heteroplasmy
than cells in rapidly dividing, low-energy requiring tissues. However, the assertion that
mtDNA is uniquely vulnerable to attack by ROS is not completely supported by current
evidence (Jacobs, 2003). To date, no general consensus has been reached on the age related
changes of mtDNA content (Santoro et al., 2006).

The role of mitochondria and mtDNA in aging is still being elucidated. Energy metabolism
is generally preserved in long-living subjects and centenarians, suggesting an important role
in human longevity for mitochondria (Salvioli et al., 2008). Mutations in mitochondrial
DNA cause profound changes in many systems due to mitochondrial malfunction and may
be an indication of the fundamental role that these organelles play in everyday processes.
Even though mitochondrial deletions and mutations accumulate with age, their effects on
tissue function have not been clearly demonstrated (Krishnan et al., 2007). In addition, the
role of mtDNA and nuclear-encoded mitochondrial gene variants has not been investigated
in sufficiently large populations to yield information on how mitochondrial and nuclear
genes interact in promoting longevity. While much is known about the role of mitochondrial
dysfunction in many diseases, significant advances in our understanding of the role of
mitochondria in aging will continue to be made for years to come.

Mitochondrial DNA
Inherited variants and human longevity

Several small and somewhat underpowered studies have associated variations in mtDNA
with human longevity. These studies have described associations between specific inherited
mitochondrial variants and extended lifespan in Japanese (Niemi et al., 2005; Tanaka et al.,
2004), Chinese Uygur (Ren et al., 2008), Italian (De Benedictis et al., 1999), French
(Ivanova et al., 1998), Irish (Ross et al., 2001) and Finnish (Niemi et al., 2003; Niemi et al.,
2005) populations. On the whole, these results support the idea that the effect of mtDNA
inherited variants on longevity is population- and possibly sex-dependent, perhaps due to
differences in nuclear genetic background.

Associations between mtDNA and longevity differ from the —usual SNP-based associations
seen with the nuclear genome. Unlike nuclear DNA, the mitochondrial genome does not
recombine, so that the DNA sequence remains together as a 16,569-bp segment. Studies of
human populations have revealed ancestral-associated polymorphisms whose combination
defines groups of mtDNA types (called haplogroups) that can be used to reconstruct human
evolution lineages. The European population is almost exclusively distributed among the
nine haplogroups designated as H, I, J, K, T, U, V, W and X, whereas haplogroups A, B, C,
D, F, G and certain subclusters of macrohaplogroups M and N are characteristic to Asian
populations, haplogroups A, B, C and D to native Americans and haplogroups L0, L1, L2
and L3 to African populations (Niemi et al., 2005).

New sub-haplogroups are being identified (Achilli et al., 2004). For instance, haplogroup H,
the most common in Europe, can be subdivided into at least 15 sub-haplogroups (Kivisild et
al., 2006), and formerly haplogroup K has been lately recognized as a sub-haplogroup of
haplogroup U. These variants are likely non-neutral. In particular, a series of experiments
suggesting that some mtDNA haplogroups are associated with longevity (De Benedictis et
al., 1999; Niemi et al., 2003; Ren et al., 2008; Ross et al., 2001; Tanaka et al., 1998), as well
as with mitochondrial diseases (Brown et al., 2002; Howell et al., 2003; Sadun et al., 2004),
and complex diseases (Wallace, 2005). For example, in Caucasians such as northern Italians,
haplogroup J is over-represented in long-living people and centenarians (De Benedictis et
al., 1999). However, this association was seen only in male centenarians (De Benedictis et
al., 1999). An over-representation of haplogroup J in nonagenarians and centenarians has
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been replicated in Irish and Finnish long-living people (Niemi et al., 2003; Ross et al.,
2001), but not in southern Italians (Dato et al., 2004).

By contrast, the J haplogroup was underrepresented in Chinese Uygur nonagenarians (Ren et
al., 2008). SNPs in the D-loop region also occurred in lower frequencies in Chinese Uygur
nonagenarians (Ren et al., 2008). The 150T polymorphism in the noncoding region was
associated with longevity in Finnish and Japanese subjects (Niemi et al., 2005).
Interestingly, a stratified analysis revealed that mtDNA mutations characteristic of the J2
subhaplogroup (489C and 10398G) modified the association between the 150T mutation and
longevity (Niemi and Majamaa, 2005). These findings suggest that longevity is partly
determined by epistatic interactions among these mtDNA loci.

Oxidative phosphorylation
A key feature of the aging process is that the mitochondrial respiratory capacity declines and
the production of reactive oxygen species increases in the later part of life span. The most
commonly observed age-related changes in mitochondrial activity include an elevation in
the rates of generation of superoxide anion radical and hydrogen peroxide, both progenitors
for other intracellular ROS (Marnett et al., 2003; Sohal and Weindruch, 1996), and a decline
in the rate of maximal respiration (Chiu and Richardson, 1980; Ferguson et al., 2005;
Trounce et al., 1989). Drosophila aging is also associated with changes in mitochondrial
structure and a decline in mitochondrial function (Ferguson et al., 2005; Walker and Benzer,
2004). Cytochrome c oxidase (COX; complex IV) is the only mitochondrial respiratory
complex which shows an age- related decline in activity in Drosophila (Ferguson et al.,
2005; Sohal et al., 1995). The decline in COX activity is accompanied by a decrease in
ADP-stimulated respiration, and elevation of mitochondrial superoxide and hydrogen
peroxide production (Ferguson et al., 2005; Sohal et al., 1995). Decreased COX activity
(~30–50%) and increased superoxide generation are among the most consistent age-related
alterations in mammalian tissues (Benzi et al., 1992; Cooper et al., 1992; Desai et al., 1996;
Kwong and Sohal, 2000; Martinez et al., 1996). As in mammals, complex IV activity
appears to be particularly vulnerable to both aging (Ferguson et al., 2005) and oxidative
stress (Walker and Benzer, 2004) in flies. In Drosophila, two of the three COX subunits
encoded in mitochondrial DNA show age-related decreases in protein abundance (43% and
75%, respectively) which could explain the age-related decrease in mitochondrial respiratory
activity and an increase in ROS production (Sohal et al., 2008). Another likely explanation
behind the age-related decline in OXPHOS function is the decline in expression of nuclear-
encoded genes. For example, age-related changes in a large set of nuclear-encoded genes
involved in ATP synthesis and mitochondrial respiration have been observed for both
Caenorhabditis elegans and Drosophila (McCarroll et al., 2004). RNA interference of five
genes encoding components of OXPHOS complexes I, III, IV, and V leads to increased life
span in Drosophila (Copeland et al., 2009). However, reduced expression of OXPHOS
genes was not consistently associated with reduced assembly of the complexes or reduced
ATP levels. In addition, extended longevity was not correlated with energy consumption and
accumulation of damage. Targeted RNAi of two complex I genes in adult tissues or in
neurons alone was sufficient to extend life span (Copeland et al., 2009). Further support for
the key role of specific OXPHOS-related genes in lifespan comes from mouse models where
a knockout of SURF1 (Dell'agnello et al., 2007), a gene encoding a putative complex IV
assembly factor, or reduced activity of murine CLK1 (Lapointe and Hekimi, 2008; Liu et al.,
2005), a mitochondrial enzyme necessary for ubiquinone biosynthesis, lead to substantial
increases in life span.

It has been proposed that the geographic distribution of human mtDNA lineages resulted
from selection mainly driven by adaptation to climate and nutrition (Mishmar et al., 2003;
Ruiz-Pesini et al., 2004; Ruiz-Pesini and Wallace, 2006; Wallace et al., 2003). According to
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this hypothesis, certain ancient mtDNA variants permitted humans to adapt to colder
climates resulting in the regional enrichment of specific lineages. Underlying this selection
were functional mtDNA variants that altered OXPHOS coupling efficiency, shifting the
energetic balance from ATP generation to heat production consequently allowing Homo
sapiens to adapt to colder environments after leaving Africa (Mishmar et al., 2003; Ruiz-
Pesini et al., 2004).

While there is strong evidence supporting selection as an important factor in the evolution of
human mtDNA (Balloux et al., 2009; Elson et al., 2004; Kivisild et al., 2006; Marcuello et
al., 2009; Martinez-Redondo et al., ; Mishmar et al., 2003; Moilanen et al., 2003; Moilanen
and Majamaa, 2003; Montiel-Sosa et al., 2006; Ruiz-Pesini et al., 1998; Ruiz-Pesini et al.,
2000; Ruiz-Pesini et al., 2004; Ruiz-Pesini and Wallace, 2006), not all studies support
climate as the driving force for human mtDNA evolution (Amo and Brand, 2007; Amo et
al., 2008; Elson et al., 2004; Kivisild et al., 2006; Moilanen et al., 2003). Evidence that
climatic adaptation has influenced the geographic distribution of mtDNA diversity was
obtained by examining patterns of genetic variation across the mtDNA coding region,
including the 13 mtDNA OXPHOS genes (Balloux et al., 2009; Mishmar et al., 2003; Ruiz-
Pesini et al., 2004). An examination of regional (tropical, temperate and arctic) gene-specific
variation in mitochondrial OXPHOS genes provided support for adaptive selection
influencing mtDNA diversity (Mishmar et al., 2003). ATP6 was highly variable in the
mtDNAs from the arctic, cytb was more variable in temperate Europe, and COI was highly
variable in tropical Africa (Mishmar et al., 2003). These genes were largely invariant in the
regions outside of their high adaptation zones (e.g. ATP6 was strongly conserved in the
temperate and tropical zones). These results were interpreted as evidence for regional gene-
specific selection since this pattern of variation would not be expected if all mtDNA
mutations were random and neutral. The frequency of conserved, non-synonymous
(missense) mutations across the mtDNA coding region was also found to increase from
tropical Africa to temperate Europe and arctic northeastern Siberia (Ruiz-Pesini et al., 2004).
This excess of non-synonymous mutations in the colder latitudes was interpreted as
evidence for adaptive selection playing an important role as people migrated out of Africa
into temperate and arctic Eurasia. However, other analyses do not support a simple model in
which climatic adaptation has been a major force during human mtDNA evolution (Elson et
al., 2004; Kivisild et al., 2006; Moilanen et al., 2003). For example, the excess non-
synonymous substitutions observed in some OXPHOS genes may not reflect positive
selection but the relaxation of negative selection in specific populations (Elson et al., 2004)
or may be a feature of the terminal branches of the phylogenetic tree, independent of
geographical region (Kivisild et al., 2006). Others have observed significant differences in
the frequency of non-synonymous mutations among the European haplogroups (Moilanen et
al., 2003), suggesting some mutations may be non-neutral within specific phylogenetic
lineages but neutral within others.

Functional evidence supporting metabolic differences between haplogroups is equally
inconsistent (Amo and Brand, 2007; Amo et al., 2008; Marcuello et al., 2009; Martinez-
Redondo et al., ; Montiel-Sosa et al., 2006; Ruiz-Pesini et al., 1998; Ruiz-Pesini et al.,
2000). Comparisons of spermatozoa motility among several European haplogroups revealed
that sperm from haplogroups H subjects swam significantly faster than those from
haplogroups T subjects (Ruiz-Pesini et al., 2000). Human spermatozoa motility is fully
dependent on the functionality of the OXPHOS system and the haplogroup T samples
showed 23% and 29% reductions, respectively, in complexes I and IV activity compared
with haplogroup H samples (Ruiz-Pesini et al., 2000). Interestingly, no differences in
complex II activity were observed between haplogroups H and T (complex II is exclusively
encoded by the nuclear genome). Spermatozoa motility is directly correlated with activities
of OXPHOS complexes I-IV (Ruiz-Pesini et al., 1998). Within the broadly distributed
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European haplogroup U, sublineages of the group exhibited differences in sperm motility
(Montiel-Sosa et al., 2006). Conserved cytb mutations were enriched in northern Europe and
less prevalent in southern Europe, which is suggestive of selection allowing adaptation to a
colder northern climate (Montiel-Sosa et al., 2006). Maximal oxygen uptake (VO2 max) and
mitochondrial oxidative damage have been shown to be higher in human subjects from
European haplogroup H compared with haplogroup J (Marcuello et al., 2009; Martinez-
Redondo et al.). By contrast, studies of cybrids harboring mitochondria with either
haplogroup H or haplogroup T in cultured cells with identical nuclear backgrounds show no
functionally important differences in bioenergetic capacities and coupling efficiencies (Amo
et al., 2008) and results were similar for both isolated mitochondria and mitochondria within
cells. Furthermore, cybrid studies comparing arctic (A, C and D) or tropical (L1, L2 and L3)
haplogroups yielded no overall differences between arctic and tropical mtDNA haplogroups
with regard to the overall kinetics of substrate oxidation (Amo and Brand, 2007).
Intriguingly, mitochondria from Arctic haplogroups had similar or greater coupling
efficiency than mitochondria from tropical haplogroups, which is contrary to the hypothesis
that mitochondrial haplogroups with lower coupling efficiency were positively selected
during radiations of modern humans (Amo and Brand, 2007).

There is likely a larger role for nuclear and mitochondrial interactions in determining the
effect of mtDNA variation on OXPHOS function. In particular, nuclear-encoded ROS-
scavenging mechanisms may interact with mtDNA haplotype to influence ROS homeostasis
and affect OXPHOS capacity. Early studies in cultured primary cells with different human
or mouse mtDNA haplotypes concluded that the respiratory capacity is not substantially
influenced by any of the mtDNA variants tested (Battersby and Shoubridge, 2001; Carelli et
al., 2002). More recently, a study examining OXPHOS capacity in mouse cell lines carrying
a homogeneous nucleus but mtDNA derived from four crosses and NIH3T3 mouse cells also
showed little variation in respiration (Moreno-Loshuertos et al., 2006), a coarse indicator of
OXPHOS function. However, further examination revealed that differences in OXPHOS
performance were detectable but masked by a specific upregulation in mitochondrial
biogenesis, triggered by an increase in generation of ROS. The genetic element underlying
the functional differences was an 'A' track polymorphism in tRNAArg. Cell lines with ten
adenines had higher ROS production and increased amounts of mtDNA (Moreno-
Loshuertos et al., 2006). This study demonstrated that some common and 'non-pathological'
mtDNA variants in mice can reduce OXPHOS function, but this reduction can be
compensated by enhanced ROS production.

Mitochondrial-nuclear epistasis
More than 90% of the functional mitochondrial genome is encoded in the nucleus. These
nuclear-encoded mitochondrial genes (mitonuclear genes) arose either by transfer events
from the mitochondrial to the nuclear genome or by recruitment of nuclear genes to a novel
mitochondrial function through the acquisition of mitochondrial targeting sequences (Rand
et al., 2004). Mildly deleterious mtDNA polymorphisms are a general property of animal
populations (Nachman, 1998; Rand and Kann, 1998; Weinreich and Rand, 2000); as a result,
the mitochondrial genome, which has high levels of genetic variation (Parsons et al., 1997),
presents a large pool of potential variants that could affect aging and provide a broad
opportunity for mitochondrial-nuclear interactions. As previously described, in humans there
is statistical evidence that mtDNA haplotypes are associated with variation in longevity.
However, some long-lived haplotypes also carry mutations associated with disease,
suggesting that genetic background is an important modulator of mtDNA effects on aging
(Rose et al., 2001).
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While there is a wealth of research on mitochondrial aspects of aging, studies that
manipulate nuclear and mitochondrial genetic variation to explore nuclear – mitochondrial
epistatic effects on longevity are generally lacking (Blier et al., 2001; Dowling et al., 2007;
Etterson et al., 2007; Rand et al., 2001; Rhode and Cruzan, 2005; Tang et al., 2007; Wade
and Goodnight, 2006). Because mitochondria play a central role in energy metabolism it is
likely that mitochondrial-nuclear epistasis has important fitness effects (Dowling et al.,
2007; Hutter and Rand, 1995; Rand et al., 2001; Rawson and Burton, 2002; Rhode and
Cruzan, 2005; Schmidt et al., 2001; Willett and Burton, 2003). and is evolutionarily
important (Rand et al., 2004). Coadaptation among mitochondrial and mitonuclear genes
predicts that the phenotypic effects of alternative mtDNAs should increase with increasing
levels of DNA sequence divergence between native and foreign mtDNAs (from different
populations or species, for example) (Rand et al., 2004). Studies in Drosophila have
established that nuclear – mitochondrial interactions (epistases) are important in the fitness
effects of mtDNA variation (Clark and Lyckegaard, 1988; James and Ballard, 2003;
Kilpatrick and Rand, 1995; Rand et al., 2001). In particular, effects of the foreign
Drosophila mtDNA on longevity depend strongly on the nuclear genetic background
demonstrating that there is a nuclear – mtDNA epistatic effect for longevity (Rand et al.,
2006). These previous studies have shown that the nuclear – mitochondrial epistatic effects
are often stronger than mtDNA main effects on Drosophila longevity. One explanation for
this observation is that the disruption of coadapted mitonuclear genotypes (e.g. coordination
of protein synthesis in the nucleus and meitochondria) reduces mitochondrial performance
(Blier et al., 2001). Evidence from a variety of systems including Drosophila, marine
copepods and mouse cells (McKenzie et al., 2003; Rawson and Burton, 2002; Sackton et al.,
2003) has supported this explanation. It might follow that such genotypes would have
reduced longevity due to disrupted OXPHOS functions (detailed in the next section).

Results from several animal systems demonstrate that epistatic interactions with nuclear
genetic background are a significant component of the mitochondrial genetics of aging. This
epistasis may explain why some mtDNA mutations have very different phenotypic effects in
different individuals, possibly obscuring the mtDNA effects in human aging and disease.
Examples of nuclear – mitochondrial coadaptation in humans are limited (Bykhovskaya et
al., 2000; De Benedictis et al., 2000; Shankar et al., 2008). De Benedictis et al. (De
Benedictis et al., 2000) analyzed the distribution of the mtDNA inherited variants by
tyrosine hydroxylase (THO) genotypes in three sample groups of increasing ages (20–49
years; 50–80 years; centenarians). The mtDNA haplogroups and THO genotypes were
associated randomly in the first group, while in the second group, and particularly in the
centenarians, a non-random association was observed between the mtDNA and nuclear
DNA variability. Moreover, the U haplogroup was over-represented in centenarians carrying
a THO genotype unfavorable to longevity. Maternally inherited deafness associated with the
A1555G mutation in the mitochondrial 12S ribosomal RNA (rRNA) gene appears to require
additional environmental or genetic changes for phenotypic expression (Bykhovskaya et al.,
2000). Linkage results in several families with the A1555G mutation suggest that the
chromosomal region around marker D8S277 harbors a nuclear modifier gene for this
mitochondrial DNA disease mutation (Bykhovskaya et al., 2000). Leber Hereditary Optic
Neuropathy (LHON) is a maternally inherited blinding disease caused by missense
mutations in the mitochondrial DNA (mtDNA). Incomplete penetrance and a predominance
of male patients presenting with vision loss suggest that both nuclear modifier genes and
environmental factors play an important role in the development of the disease (Shankar et
al., 2008). Linkage analysis in a large family harboring a homoplasmic G11778A mtDNA
mutation on a haplogroup J background identified a novel LHON susceptibility locus on
chromosome Xq25-27.2 (Shankar et al., 2008). These findings support the hypothesis that
some human aging traits and diseases require particular interactions between mtDNA and
nuclear DNA.
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Consequences for oxidative phosphorylation
OXPHOS proteins are jointly encoded by nuclear and mitochondrial genes (Table 1). The
enzyme complexes of the electron transport chain and OXPHOS are particularly attractive
models for the analysis of cytonuclear co-adaptation (Rand et al., 2004). Several lines of
evidence have shown that interactions between nDNA- and mtDNA-encoded OXPHOS
proteins are functionally important, including: backcross analyses in whole organisms; cell
cultures with mixed nuclei and mitochondria from evolutionarily diverged organisms; and
comparisons of nuclear DNA- and mtDNA- substitution rates across multiple taxa.
Structural models for complexes II – V are available that increase the power of molecular
evolutionary analyses, and phenotypes can be studied with the use of enzyme assays. At a
molecular level, co-adaptation should be evident from coordinated amino acid changes on
gene trees of interacting OXPHOS proteins. A simple prediction of co-adaptation is that an
experimental transplant‘ of interacting partners results in diminished OXPHOS
performance, and this disruption should increase as the level of evolutionary divergence
increases. We have additionally compiled a list of currently known interactions among
nDNA- and mtDNA-encoded OXPHOS proteins from the Human Protein Reference
Database (Mishra et al., 2006) and the IntAct database (Hermjakob et al., 2004) (Table 2).

Backcross analyses in whole organisms—Maternal inheritance of organelle DNA
enables one to transplant‘ the cytoplasmic genome from one strain or species onto the
nuclear background of the paternal line. With control backcrosses to the maternal line, one
can compare phenotypes of disrupted‘ (mtDNA on foreign nuclear background) and
reconstituted‘ (mtDNA on original nuclear background) genotypes. Studies of the intertidal
copepod Tigriopus californicus provide evidence for cytonuclear co-adaptation using
enzyme assays of COX activity (Burton et al., 1999; Willett and Burton, 2003). In backcross
genotypes between different geographical populations, COX activity is significantly reduced
relative to control backcrosses. Sequence polymorphism surveys among Tigriopus
populations show evidence for positive selection at COX but negative selection at
mitochondrial and nuclear genes of complex III (plus other enzymes) (Willett and Burton,
2003).

Similar analyses among strains and species of Drosophila (James and Ballard, 2003; Sackton
et al., 2003) provide important contrasts for the outcome of co-adaptation. Deleterious
mutations should accumulate more rapidly in small (Tigriopus) than in large (Drosophila)
populations; hence, disruption of co-adapted gene complexes might be detected among
geographical populations in Tigriopus, but not Drosophila. More studies are needed to
establish the generality of this population size effect on cytonuclear co-adaptation.

Cell cultures with mixed nuclei and mitochondria—In vitro models have been
developed to demonstrate that mtDNA inherited variants modulate biological functions. The
best known in vitro model is represented by cytoplasmic hybrids also known as cybrids.
This technique allows the analysis of mtDNA mutations or inherited variants by minimizing
the effect of the nuclear genome that is kept constant. Cybrid cell lines are relatively easy to
obtain and easy to maintain (cells can be frozen and stored for years). This model can be
used to test the effect of specific mtDNA mutations. In brief, cybrids are constructed by
preparing mitochondria from human platelets and fusing them with mtDNA free cells.
Several metabolic and other tests can be performed on the cybrid cells including: respiratory
flux and membrane potential, modular kinetic analysis of OXPHOS, and catalase activity.
Amo and Brand (Amo and Brand, 2007) examined the bioenergetic importance of mtDNA
variants using modular kinetic analysis of oxidative phosphorylation in mitochondria from
cybrid cells with constant nuclear DNA but different mtDNA. They found that there were no
functionally-important bioenergetic differences between mitochondria bearing different
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mtDNA haplogroups using either isolated mitochondria or mitochondria within cells (Amo
and Brand, 2007).

Mitochondrial-nuclear epistasis was examined in cardiomyocytes from unrelated
cardiomyopathy patients (Davidson et al., 2009). The A4300G mutation in the
mitochondrial tRNA gene is a known hotspot for mutations associated with cardiomyopathy.
Biochemical analyses have shown decreased Complex I and IV activity (encoded by both
nuclear and mitochondrial subunits) with normal Complex II activity (exclusively nuclear
encoded) among A4300G mutation carriers (Davidson et al., 2009). Cybrids were
constructed from cardiomyocytes to determine pathogenicity of the A4300G mtDNA
mutation in different nuclear backgrounds. Four transnuclear cardiomyocyte cell lines were
created with normal or patient nuclei and containing wild type or mutant A4300G mtDNA.
Of the four cell lines analyzed, COX activity was low only in patient cardiomyocytes
containing both the patient's nucleus and mitochondria. COX activity was normal in cells
with either wild type nucleus or wild type mtDNA. These results strongly suggest that a
(tissue specific) nuclear modifier gene may interact synergistically with the A4300G
mtDNA mutation to cause COX deficiency (Davidson et al., 2009).

Mixing nuclei and mitochondria from organisms that have evolutionarily diverged over time
results in reduced mitochondrial OXPHOS function (Kenyon and Moraes, 1997; McKenzie
et al., 2003). Cell cultures have been established in which mitochondria from one species are
placed in a cell with a foreign‘ nucleus. In primate models, cells carrying a human nucleus
with mitochondria from chimpanzee or gorilla showed normal cellular respiration, but
mitochondria from the orangutan or more distant primate species did not restore respiration
(Kenyon and Moraes, 1997). In a mouse model, cell lines carrying mitochondria from six
different species spanning 2–12 million years of divergence revealed a nearly linear
disruption of respiratory chain function with evolutionary distance (McKenzie et al., 2003);
complex II, which lacks mtDNA subunits, failed to show disruption (McKenzie et al., 2003).
These results are consistent with the transplant‘ prediction of cytonuclear co-adaptation, and
the complex II result provides an internal control: the disruption is only seen in those
complexes involving both nuclear and mitochondrial subunits (McKenzie et al., 2003).

Comparisons of nuclear DNA and mtDNA-substitution rates—The evolution of
nDNA-mtDNA-encoded protein interactions has been explored to determine whether rates
of nonsynonymous substitutions have been higher, the same, or lower for nuclear- and
mitochondrial-encoded residues in close proximity (Schmidt et al., 2001). Using
evolutionary and crystallographic data for COX, Schmidt et al. (Schmidt et al., 2001)
demonstrated that: (a) mtDNA-encoded residues in close physical proximity to nuclear
DNA-encoded residues mutated at a faster (optimizing) rate than the other mitochondrial-
encoded residues, and (b) nuclear DNA-encoded residues in close physical proximity to the
mtDNA-encoded residues evolve more slowly (constraining) than the other nuclear-encoded
residues in the complex.

These results suggest that the faster mtDNA mutation rate, which allows sampling of more
residues in the interacting region, makes mtDNA the predominant partner in accommodating
mutations important for subunit interaction. The Schmidt et al. (Schmidt et al., 2001) data
suggest that polymorphisms affecting interactions would be biased towards mitochondrial
subunits. Since there are >70 nuclear genes encoding four of the OXPHOS complexes we
believe that genetic approaches that focus on common variation in the nDNA-encoded
residues for interaction analysis will improve power and minimize false positives when we
examine mitochondrial-nuclear epistasis.
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Nuclear mitochondrial genes
A diversity of pathways may influence the way mitochondria and nuclear – mitochondrial
interactions modulate longevity. Likely candidate pathways include OXPHOS,
mitochondrial uncoupling, antioxidant defenses, mitochondrial fission and fusion, transport
and degradation, and sirtuin regulation of mitochondrial genes.

Uncoupling protein gene variants
Human genetic variation in uncoupling proteins, UCP1-3, has been associated with several
metabolic phenotypes and specific diseases but has not been examined with regard to
lifespan or mortality. Variation in UCP1-3 has been associated with obesity (Alonso et al.,
2005; Esterbauer et al., 1998; Evans et al., 2000; Lentes et al., 1999; Oh et al., 2004; Shin et
al., 2005; Urhammer et al., 1998; van Abeelen et al., 2008), BMI (Heilbronn et al., 2000;
Nakano et al., 2006), weight change (Berentzen et al., 2005), waist-to-hip ratio (Herrmann et
al., 2003), body fat (Oppert et al., 1994) and body fat accumulation (Kim et al., 2005).
UCP2-3 genetic polymorphisms have also been shown to modify the effect of a low calorie
diet on body fat reduction (Cha et al., 2006; Yoon et al., 2007). Although the mechanism
behind these associations is not clear, a UCP1 promoter variant has been shown to affect
adipocyte transcription factor binding (Schaffler et al., 1999). Polymorphisms in UCP1-3
have also been associated with high-density lipoprotein cholesterol (Cha et al., 2007; Kotani
et al., 2008) and UCP2 variants with increased carbohydrate and decreased lipid oxidation in
juvenile obesity (Le Fur et al., 2004). UCP2 polymorphisms have been associated with
insulin resistance (D'Adamo et al., 2004), type 2 diabetes (Bulotta et al., 2005; D'Adamo et
al., 2004), and UCP2 genetic variation affects peripheral nerve dysfunction (Yamasaki et al.,
2006) and dehydroepiandrosterone levels (Zietz et al., 2001) in type 2 diabetics. Other UCP
genetic associations include: UCP1 and hypertension (Kotani et al., 2007); UCP2 and
schizophrenia (Yasuno et al., 2007); UCP2-3 and anorexia nervosa(Campbell et al., 1999);
UCP2 and exercise efficiency (Buemann et al., 2001); and UCP2-3 with diabetic neuropathy
in patients with type 1 diabetes (Rudofsky et al., 2006)

Sirtuin decatylases
Sirtuins are —class 3 histone deacetylases (HDAC) (Gregoretti et al., 2004) that regulate the
acetylation of histones and ultimately alter gene transcription. In general, histone acetylation
is associated with gene transcription, while histone deacetylation silences genes; however,
deacetylase activity may sometimes activate genes (Grozinger and Schreiber, 2002;
Johnstone, 2002; Kurdistani and Grunstein, 2003). The evolutionary conservation of an
NAD+ dependent deacetylase mechanism extends from yeast to mammals, and the SIR2
gene and its orthologs extend lifespan in yeast (Kaeberlein et al., 1999; Tissenbaum and
Guarente, 2001), nematodes (Kaeberlein et al., 1999; Tissenbaum and Guarente, 2001), and
flies (Rogina and Helfand, 2004). Lifespan in S. cerevisiae can be extended by
overexpression of SIR2 (Kaeberlein et al., 1999) or through the addition of an extra copy of
the SIR2, which extends lifespan up to 30% (Tissenbaum and Guarente, 2001). In C.
elegans, gene duplication of sir-2.1 extends lifespan by up to 50% (Tissenbaum and
Guarente, 2001) while dSir2 overexpression in D. melanogaster increases lifespan by 57%
(Rogina and Helfand, 2004).

Studies involving several model organisms suggest that SIR2 deacetylase enzymes (sirtuins)
may mediate the connection between energetics and lifespan (Guarente and Kenyon, 2000;
Kaeberlein et al., 2004; Kaeberlein et al., 1999; Lamming et al., 2004; Rogina and Helfand,
2004; Tissenbaum and Guarente, 2001; Wood et al., 2004). While sirtuins suppress the
transcription of a wide range of genes, their nicotinamide adenine dinucleotide (NAD+)
dependent deacetylase activity (Imai et al., 2000; Landry et al., 2000) may allow them to act
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as sensors of nutrient fluctuation (Revollo et al., 2004). Moreover, the SIR2 gene and its
orthologs mediate the life-extending effects of caloric restriction in yeast (Blander and
Guarente, 2004; Kaeberlein et al., 2004; Lamming et al., 2004; Lin et al., 2000) and flies
(Rogina and Helfand, 2004; Wood et al., 2004). In S. cerevisiae, SIR2 is upregulated by
changes in metabolic activity due to calorie restriction, which leads to extended lifespan
(Kaeberlein et al., 2004; Lin et al., 2000). Similarly, CR extends lifespan in D. melanogaster
by increasing dSir2 expression (Rogina and Helfand, 2004). Both S. cerevisiae SIR2 and D.
melanogaster dSir2 mutants do not live longer with caloric restriction (Kaeberlein et al.,
2004; Lin et al., 2000), implying that caloric restriction-mediated lifespan extension
involves SIR2.

The seven mammalian sirtuins, including human sirtuins SIRT 1-7 (Frye, 2000), are
currently undergoing functional characterization. Sirtuins are expressed in a wide variety of
tissues and each sirtuin has a unique expression profile (McBurney et al., 2003; Michishita
et al., 2005). In general, SIRT1-7 exhibit abundant expression in brain and testes, and most
sirtuins show higher expression in fetal brain than adult brain, suggesting a role in
development (Michishita et al., 2005). Human sirtuins have adapted specialized cellular
roles involving minimal functional redundancy (Michishita et al., 2005).

Sirtuin decatylases and mitochondrial function
SIRT3 (Onyango et al., 2002; Schwer et al., 2002), SIRT4, and SIRT5 (Michishita et al.,
2005) localize to the mitochondria. SIRT3 activates several mitochondrial functions
including mitochondrial uncoupling and respiration (Shi et al., 2005). Although initially
described as a mitochondrial protein, recent studies suggest that SIRT3 can also be a nuclear
protein that transfers to the mitochondria during cellular stress (Onyango et al., 2002; Scher
et al., 2007; Schwer et al., 2002). Caloric restriction activates SIRT3 and enhances the
expression of mitochondrial genes ATP-synthetase and cytochrome-c oxidase (Shi et al.,
2005). The absence of SIRT3 results in the increased acetylation of multiple components of
Complex I of the electron transport chain. In particular, SIRT3 physically interacts with the
NDUFA9 protein of Complex I which may provide a mechanism for how SIRT3 functions
in vivo to regulate and maintain basal ATP levels (Ahn et al., 2008). SIRT4 interacts with
glutamate dehydrogenase (GDH) to promote mitochondrial activation and increases the
ATP/ADP ratio (Haigis et al., 2006; Kelly and Stanley, 2001). Human SIRT1 regulates
genes that are critical to lipid mobilization and glucose homeostasis (Picard et al., 2004;
Rodgers et al., 2005). SIRT1 also regulates insulin secretion by repressing UCP2 in
pancreatic beta cells (Bordone et al., 2006) and in the liver (Rodgers et al., 2005).

Sirtuin decatylase gene variants
To date, studies of the effects of genetic variants in human sirtuins on lifespan are limited.
Two studies in Calabria, Italy (Bellizzi et al., 2005; Rose et al., 2003) demonstrated an
association between two linked SIRT3 polymorphisms and lifespan. In the first study, Rose
et al. (Rose et al., 2003) reported the effects of a silent G477T polymorphism in exon 3
(Ser159Ser). In this study of 120 centenarians (36 men and 84 women), the TT genotype
was associated with increased survival in men — but not women. Bellizzi et al. (Bellizzi et
al., 2005) later reported that this polymorphism was in complete linkage with a specific
allele in a variable number tandem repeat (VNTR) in intron 5 that exhibits enhanced enzyme
activity (Bellizzi et al., 2005). In this study, the allele lacking enhanced activity was nearly
absent in the 86 men more than 90 years old (3% allele prevalence), but not in the 156
women in this age group (10% allele prevalence) (Bellizzi et al., 2005). These studies
suggest that underexpression of SIRT3 may be detrimental for longevity in men. However,
the small sample size leaves open the possibility that these findings are due to chance since
the risk‘ allele occurs in only 14% of men and 10% of women under age 80. The lack of
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concordant results between men and women is also unexplained. The authors also assessed
linkage in the region of SIRT3, which is located near the telomeric terminal of chromosome
11p15. Four genes potentially associated with longevity are found in this region: tyrosine
hydroxylase (TH), proinsulin (INS), IGF2, and HRAS1 (Rose et al., 2003). Rose et al. (Rose
et al., 2003) however, found no evidence of linkage disequilibrium (LD) between the SIRT3
G477T polymorphism and SNPs in these four genes (Rose et al., 2003). A meta-analysis of
SIRT3 SNPs was recently carried out in four European populations (Lescai et al., 2009).
One SIRT3 SNP (rs939915) was associated with longevity among Italian, French and
German centenarians. Additional studies of SIRT1 SNPs did not identify associations with
longevity (Flachsbart et al., 2005; Kuningas et al., 2007).

Lagouge et al. (Lagouge et al., 2006) recently examined the effect of SIRT1 genetic variants
on energy expenditure in Finnish subjects. Three common SIRT1 SNPs were significantly
associated with whole body energy expenditure in a cohort of healthy, normal-weight,
nondiabetic offspring of type 2 diabetic patients. Higher free-living activity energy
expenditure has demonstrated a strong association with lower risk of mortality among older
adults (Manini et al., 2006). Energy expenditure was evaluated either during fasting or
during a hyperinsulinemic clamp. The three SNPs included a promoter A/G (rs3740051), an
intron 3 A/G (rs2236319), and the synonymous L322L C/T polymorphism (rs 2273773);
however, these three SNPs are in high LD in European populations. The variant alleles were
associated with a 6% increase in energy expenditure. Two other SIRT1 SNPs were not
associated with energy expenditure. While these data indicate that humans SIRT1
polymorphisms influence energy expenditure, a more thorough assessment of SIRT1
variation, including all haplotype tagging SNPs and the six remaining sirtuin genes would
strongly support the direct involvement of sirtuins in modulating energy homeostasis in
humans.

Antioxidant defenses
The primary antioxidant proteins that defend against ROS damage are the mitochondrial
Mn-superoxide dismutase (SOD2), and the cytoplasmic CuZn-superoxide dismutase
(SOD1), catalase (CAT), and glutathione peroxidase (GPX1). The SOD2 gene encodes an
intramitochondrial free radical scavenging enzyme that is the first line of defense against
superoxide produced as a byproduct of OXPHOS. Most SOD2-knock-out mice die soon
after birth as a consequence of lung damage and those animals that do survive suffer severe
neurodegeneration (Lebovitz et al., 1996). SOD2 mutant mice also exhibit a tissue-specific
inhibition of the OXPHOS complexes I and II and accumulation of oxidative DNA damage
(Melov et al., 1999a). SOD1 is a major cytoplasmic antioxidant enzyme that metabolizes
superoxide radicals to molecular oxygen and hydrogen peroxide, thus providing a defense
against oxygen toxicity. Overexpression of the human SOD1 gene in Drosophila motor
neurons extended normal life span of the animals by up to 40% and rescued the life span of
a short-lived Sod null mutant (Parkes et al., 1998). SOD1 knock-out mice appear
phenotypically normal, although female homozygous mice exhibit markedly reduced
fertility (Ho et al., 1998).

GPX1 functions in the detoxification of hydrogen peroxide, and is one of the most important
antioxidant enzymes in humans. Paraquat has been shown to upregulate Gpx1 in normal
cells and Gpx1 knockout mice are highly sensitive to this oxidant (de Haan et al., 1998).
Cortical neurons from Gpx1 knockout mice are more susceptible to peroxide (de Haan et al.,
1998).

CAT is a common enzyme found in nearly all living organisms, where it functions to
catalyze the decomposition of hydrogen peroxide to water and oxygen. CAT has one of the
highest turnover numbers of all enzymes; one molecule of catalase can convert millions of
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molecules of hydrogen peroxide to water and oxygen per second. CAT largely determines
the functional antioxidant capacity of mitochondria and is the enzyme that is most affected
in aging (Terlecky et al., 2006). Transgenic mice that overexpress mitochondrial CAT have
increased median and maximum life spans (Schriner et al., 2005). In these animals, cardiac
pathology and cataract development were delayed, oxidative damage was reduced, and the
development of mitochondrial deletions was reduced (Schriner et al., 2005). In C. elegans,
loss of CAT results in the organism manifesting a progeric phenotype (Petriv and
Rachubinski, 2004). Processing of reactive oxygen species becomes altered, peroxisome
morphology is changed, and the organism's lifespan is shortened. Similarly, lifespan of the
yeast S. cerevisiae is significantly reduced when its CAT is knocked out (Petriv and
Rachubinski, 2004). In rats and mice cellular CAT levels drop with age, which is
accompanied by an increase in reactive oxygen species and resultant oxidative stress (Beier
et al., 1993; Ishii et al., 1996; Ito et al., 1986). Calorically restricted animals reverse this
trend – they express elevated levels of CAT and are more long-lived (Rao et al., 1990).

Chronically reducing catalase activity causes cells to display a cascade of accelerated aging
reactions (Koepke et al., 2008). In particular, hydrogen peroxide and related reactive oxygen
species are produced, protein and DNA are oxidatively damaged, and mitochondrial
biogenesis is corrupted (Koepke et al., 2008). In addition, mitochondria are functionally
impaired, losing their ability to maintain a membrane potential and synthesize reactive
oxygen species (Koepke et al., 2008). Sirt1 has also been shown to affect CAT expression
and be a determinant of cell apoptosis by regulating cellular ROS levels (Hasegawa et al.,
2008). Sirt1 maintains cell survival by regulating CAT expression and by preventing the
depletion of ROS required for cell survival (Hasegawa et al., 2008). In contrast, excess ROS
upregulates Sirt1, which activates CAT leading to rescuing apoptosis (Hasegawa et al.,
2008).

Antioxidant defense gene variants
Variants in SOD2 and CAT have been associated with aging and age-related outcomes. In
the Framingham Study, polymorphisms in SOD2 were associated with age at death and
biological age scored determined using the osseographic scoring system (Lunetta et al.,
2007). The most extensively studied polymorphism in SOD2 is the Ala16Val substitution
(Rosenblum et al., 1996). This polymorphism may alter the leader signal and affect the
import of SOD2 into mitochondria (Shimoda-Matsubayashi et al., 1996). The alanine variant
of SOD2 has been associated with an increased risk for breast cancer (Ambrosone et al.,
1999) and Parkinson‘s disease (Shimoda-Matsubayashi et al., 1996).

A common functional -262C/T substitution polymorphism in the promoter region of the
human CAT gene influences transcription factor binding, reporter gene transcription and is
correlated to blood catalase levels (Forsberg et al., 2001). The -262T allele may protect
against neurodegenerative and physical decline (Christiansen et al., 2004). In a study of
2223 Danish individuals, aged 45–93 years, the CAT -262 TT genotype was associated with
improved physical function and the T allele with improved cognitive functioning
(Christiansen et al., 2004).

Mitochondrial fission and fusion
A typical mammalian cell can have hundreds of mitochondria. However, each
mitochondrion is not autonomous, because fusion and fission events mix mitochondrial
membranes and contents (including mtDNA) (Chan, 2006a; Chen and Chan, 2005; Detmer
and Chan, 2007). As a result, mitochondrial fusion, fission, and trafficking control
mitochondrial shape, number, size, distribution, and physiology. The dynamic equilibrium
between fusion and fission has major implications for mitochondrial morphology and
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function of the mitochondrial population. In normal cells, high rates of fusion and fission
enable mitochondria to cooperate with each other through continual exchange of contents.
Individual mitochondria can stochastically lose essential components, but such defects are
short-lived, because mitochondrial fusion will restore the missing components from
neighboring mitochondria. In cells lacking mitochondrial fusion, such restoration of activity
cannot occur, and defective mitochondria accumulate. In the absence of fusion, a large
population of mitochondria lack mtDNA. Therefore, mitochondrial fusion is essential to
allow defective mitochondria a pathway to recover mtDNA. This defect has been shown to
account for the respiratory and membrane potential aberrations found in fusion-deficient
cells.

Mitochondrial fusion is a membrane-remodeling process that coordinately merges the outer
and inner membranes between two mitochondria. Mitochondrial fusion is important not only
for maintenance of mitochondrial morphology, but also for cell growth, mitochondrial
membrane potential, and respiration. It requires three large GTPases: the mitofusins MFN1
and MFN2 (Chen et al., 2003a), and the dynamin-related protein OPA1 (Song et al., 2007).
Mitochondrial fusion is likely to be more complicated than most other intracellular
membrane fusion events, because four lipid bilayers must be coordinately fused. MFN1 and
MFN2 are transmembrane GTPases embedded in the outer membrane of mitochondria and
are essential for fusion of mitochondria (Chen et al., 2003a). MFN1 and MFN2 form
homotypic and heterotypic complexes that are capable of tethering mitochondria and are the
only conserved mitochondrial outer membrane proteins involved in fusion. Mouse
embryonic fibroblasts lacking Mfn1 or Mfn2 display fragmented mitochondria, a phenotype
due to a severe reduction in mitochondrial fusion (Chen et al., 2003a). Cells lacking both
Mfn1 and Mfn2 have completely fragmented mitochondria and show no detectable
mitochondrial fusion activity (Chen et al., 2005). OPA1 is associated with the inner
membrane and interactions with the mitofusins are still being elucidated. Mitochondrial
fission requires the recruitment and assembly of the dynamin-related GTPase DNM1/DRP1
(Chan, 2006b), which constricts the diameter of mitochondria. The mitochondrial outer
membrane protein FIS1 (Zhang and Chan, 2007) mediates DNM1/DRP1 recruitment to the
mitochondrial surface. The machineries mediating mitochondrial fusion and fission are
being elucidated, however little is known about how mitochondrial dynamics is regulated.

PINK1 and Parkin
Oxidative stress and mitochondrial dysfunction occur early in the pathogenesis of both
sporadic and familial forms of Parkinson's disease (Bueler, 2009). Loss-of-function
mutations in the PTEN-induced kinase 1 (PINK1) or Parkin genes, which encode a
mitochondrially localized serine/threonine kinase and an ubiquitin-protein ligase,
respectively, result in recessive familial forms of Parkinsonism (Poole et al., 2008;
Whitworth and Pallanck, 2009). PINK1 and Parkin maintain mitochondrial integrity by
regulating diverse aspects of mitochondrial function, including membrane potential, calcium
homeostasis, cristae structure, respiratory activity, and mtDNA integrity (Bueler, 2010;
Whitworth and Pallanck, 2009). Mutations in the PINK1 and Parkin genes result in enlarged
or swollen mitochondria, and in the absence of PINK1 or Parkin cells often develop
fragmented mitochondria (Bueler, 2010), suggesting a possible regulatory role for the
PINK1/Parkin pathway in mitochondrial morphology (Poole et al., 2008). PINK1 is required
to recruit Parkin to dysfunctional mitochondria (Ziviani et al., 2010) where PINK1 and
Parkin promote mitochondrial fragmentation by targeting core components of the
mitochondrial morphogenesis machinery for ubiquitination (Poole et al., 2010) leading to
their degradation by autophagy. The PINK1/Parkin pathway also regulates the mitochondrial
remodeling process by promoting mitochondrial fission (Park et al., 2009; Poole et al.,
2008). The loss of mitochondrial integrity and the accumulation of defective mitochondria in
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PINK1 and Parkin mutants derives from reduced mitochondrial fission and autophagy which
promote neurodegeneration in Parkinson disease (Poole et al., 2008; Poole et al., 2010;
Vives-Bauza et al., 2010).

Mitochondrial DNA somatic mutations
While most aging-related studies to date have focused on inherited mtDNA mutations or
deletions, somatic mutations in mtDNA lead to a condition called mtDNA heteroplasmy: a
mixture of —normal and mutant mtDNA molecules in a cell. With the typical cell
containing hundreds of mitochondria and each mitochondrion housing 2 to 7 mtDNA
molecules, there are potentially thousands of copies of the mitochondrial genome per cell
(Shuster et al., 1988). In addition, mtDNA has a mutation rate that is 10–20 times higher
than that of nuclear DNA (Merriwether et al., 1991; Neckelmann et al., 1987; Wallace et al.,
1997) . Both mutation and genetic drift within a mitochondrial population lead to
heteroplasmy; they can can also drive a mutant mtDNA to become the dominant form(Jones
et al., 2001). Somatic mtDNA mutations are common in postmitotic tissues (ie. heart, brain,
nerve) and have been identified in many human tumors (Alonso et al., 1997; Bianchi et al.,
1995; Chen et al., 2003b; Chen et al., 2002; Chinnery et al., 2002; Copeland et al., 2002;
Fliss et al., 2000; Habano et al., 1999; Horton et al., 1996; Jeronimo et al., 2001; Jones et al.,
2001; Kirches et al., 2001; Kurtz et al., 2004; Lee et al., 2004; Liu et al., 2001; Maitra et al.,
2004; Nomoto et al., 2002; Parrella et al., 2001; Polyak et al., 1998; Sanchez-Cespedes et
al., 2001; Sui et al., 2006; Tong et al., 2003; Wu et al., 2005; Yeh et al., 2000; Zhou et al.,
2007; Zhou et al., 2006). In addition to somatically acquired mtDNA mutations, sequence
deletions have also been reported in various tissues (Lee et al., 1994; Linnane et al., 1989;
Melov et al., 1999b; Melov et al., 1995; Nagley et al., 1992; von Wurmb et al., 1998)
including mitotic tissue (Fellous et al., 2009; Greaves et al., 2006; McDonald et al., 2008;
Taylor et al., 2003), and tumors (Alonso et al., 1997; Bianchi et al., 1995; Horton et al.,
1996; Lee et al., 2004; Maitra et al., 2004; Nomoto et al., 2002; Parrella et al., 2001; Wu et
al., 2005)

Most individuals inherit intact healthy mitochondria at birth. Age-related somatic mtDNA
mutations accumulate in postmitotic tissues until a certain tissue-specific threshold in the
level of mutant to normal mtDNA molecules is surpassed and cells become compromised
energetically (Hayashi et al., 1991; Rossignol et al., 1999; Wallace, 1994; Wallace et al.,
1997). Heteroplasmic mutations and rearrangements of mtDNA have been reported in
various tissues of elderly individuals (Hayashi et al., 1991; Melov et al., 1995; Wei, 1992;
Wei, 1998a; Wei, 1998b; Zhang et al., 1998) and large-scale mtDNA deletions increase with
age in skeletal muscle, heart, brain and central nervous system (Arnheim and Cortopassi,
1992; Cortopassi et al., 1992; Melov et al., 1999b; Pesce et al., 2001). The age-related
accumulation of mtDNA mutations leads to impaired capacity for energy generation by
OXPHOS (Melov et al., 1995; Wallace, 1995; Wallace et al., 1992; Wallace et al., 1995),
decreased cellular stress resistance, and accelerated cellular mortality (Driggers et al., 1996;
Ozawa, 1995a; Ozawa, 1995b; Simonetti et al., 1992; Trounce et al., 1989). Moreover,
elderly adults develop more mtDNA damage and exhibit reduced activity of OXPHOS
enzymes in postmitotic tissues compared to young and middle aged adults (Lu et al., 1999;
Trounce et al., 1989). In general, organs with the highest ATP requirements and the lowest
regenerative capacities, such as the brain, heart and skeletal muscle, are the most sensitive to
the effects of mtDNA mutations (Wallace, 1994; Wallace et al., 1995).

There is evidence that heteroplasmic mtDNA for specific mutations are also associated with
aging (Lee et al., 1997; Linnane et al., 1990; Linnane et al., 1989; von Wurmb-Schwark et
al., 2003; Yen et al., 1994; Yen et al., 1992; Yen et al., 1991), degenerative diseases
(Linnane et al., 1990; Linnane et al., 1989; Wallace, 2001) and tumors of the breast, colon,
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liver, head and neck, lung and prostate (Copeland et al., 2002; Horton et al., 1996; Mithani
et al., 2007; Penta et al., 2001; Petros et al., 2005; Polyak et al., 1998). A common deletion
of 4,977 base pairs has accumulates with age in several human postmitotic tissues (Arnheim
and Cortopassi, 1992; Corral-Debrinski et al., 1992a; Corral-Debrinski et al., 1994;
Cortopassi and Arnheim, 1990; Cortopassi et al., 1992; Linnane et al., 1990; Shenkar et al.,
1996; Soong et al., 1992; von Wurmb-Schwark et al., 2003). When the proportion of
deletion-positive mitochondria within a cell exceeds 50–60%, skeletal muscle fibers
manifest a reduction in cytochrome c oxidase activity, and mitochondrial gene translation is
inhibited (Hayashi et al., 1991). With the 8344A/G mutation, which causes the syndrome of
myoclonic epilepsy and ragged-red fibers, the heteroplasmic threshold level is about 85%
mutated DNA (Chomyn, 1998). Once this is exceeded, large changes in the phenotype can
be observed with minor increases in the proportion of the mutant mtDNA. Another
mutation, A3243A/G, may be related to age of onset of diabetes mellitus depending on the
degree of mtDNA heteroplasmy (Guttman et al., 2001; Kato et al., 2002)and levels of
mtDNA 3243A/G heteroplasmy are higher in diabetics than non-diabetics(Coon et al., 2006)
(Majamaa-Voltti et al., 2006). Additional heteroplasmic mutations related to diabetes,
hyperglycemia, insulin dependence and obesity include 3398T/C (Chen et al., 2000), 3254C/
A (Chen et al., 2000), 3316G/A (Chen et al., 2000), 3156A/G (Ohkubo et al., 2001), 3357G/
A (Ohkubo et al., 2001), 3375C/A (Ohkubo et al., 2001), and 3394T/C (Chen et al., 2000;
Ohkubo et al., 2001). Several mutations in mitochondrial tRNA genes show age-related
variation: 3243A/G (Poulton and Morten, 1993), 8344A/G(Lertrit et al., 1992) and 12320A/
G(Weber et al., 1997), and the 3243A/G mutation is also associated with diabetes mellitus.

Oxidative stress has been implicated in the pathogenesis of neurodegenerative diseases such
as Alzheimer‘s disease (AD) and Parkinson‘s disease. In an analysis of the mtDNA control
region (CR), 65% of AD brains harbored a 414T/G mutation (Coskun et al., 2004).
Moreover, AD brains had an average 63% increase in heteroplasmic mtDNA CR mutations;
those from patients 80 years and older had a 130% increase in heteroplasmic CR mutations.
The reported CR mutations preferentially altered known mtDNA regulatory elements.
Certain AD brains harbored the disease-specific CR mutations at levels up to 70–80%
heteroplasmy (Coskun et al., 2004). The MitoChip was recently used to assess heteroplasmy
in the platelets of 19 AD patients and 18 matched controls (Coon et al., 2006).

Somatic mutations and longevity
Several studies support the importance of the acquired (Iwata et al., 2007; Rose et al., 2007;
Zhang et al., 2003) and inherited (Niemi et al., 2005) C150T mutant for longevity. Rose et
al. (Rose et al., 2007) set out to determine whether the accumulation of C150T heteroplasmy
in leukocytes is a phenotypic consequence of extreme ageing or a genetically controlled
event that may favor longevity. Centenarians and their descendants, despite the different
ages, showed similar levels of C150T heteroplasmy which were significantly higher than
levels in controls. In addition, heteroplasmy levels were significantly correlated in parent-
offspring pairs but were independent of mtDNA inherited variability (haplogroup and
sequence analyses). These findings suggest that the high degree of C150T heteroplasmy
observed in centenarians is genetically controlled, and that such genetic control is
independent of mtDNA variability and likely due to the nuclear genome. Iwata et al. (Iwata
et al., 2007) examined leukocyte mtDNA from three groups of an Ashkenazi Jew
population, including 124 95+ year old female participants, their mixed gender offspring,
and mixed gender control subjects to examine the association of the C150T mutation with
longevity. This analysis revealed a very low incidence of the C150T transition in the
centenarians and near- centenarians and the other two groups. By contrast, a fairly high
frequency of a homoplasmic T152C transition and of a homoplasmic T195C transition was
seen in all three groups of subjects. An aging-related increase in incidence of the
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heteroplasmic T152C transition, presumably resulting from somatic events, was
demonstrated in the Ashkenazi Jews (Iwata et al., 2007). Zhang et al. (Zhang et al., 2003)
carried out a large-scale screening of the mtDNA CR in leukocytes from centenarians and
younger controls. They found that the C150T mutation was significantly more common in
centenarians than in younger controls, and provided evidence that somatic events, probably
under nuclear genome control, contribute to the selective accumulation of this mutation in
centenarians.

Conclusion
There is substantial evidence that mitochondria and mtDNA are involved in the aging
process and possibly achieving a long life. Potential explanations include mtDNA
abundance and the accumulation of somatic mutations, inherited variability, and cross-talk
with the nuclear genome. We hypothesize that aging and longevity, as complex traits having
a significant genetic component, are likely to be controlled by nuclear gene variants
interacting with both inherited and somatic mtDNA variability. However, most previous
studies of mtDNA in human subjects have had low statistical power due to the complexity of
inherited lineages (haplogroups and sub-haplogroups) and small sample sizes. Perhaps more
importantly, they have been unable to examine mitonuclear genetic interactions. In order to
fully examine the complexity of mitochondrial-nuclear epistatsis, future studies will require:
1.) Large numbers of aged subjects; 2.) The entire sequence of mtDNA in order to consider
genome-wide complexity; and 3.) An assessment of interacting mitochondrial and nuclear
genes encoding mitochondrial proteins. With regard to human longevity, it is critical to
examine the oldest old since there is considerable evidence that the extreme phenotype of
human longevity (e.g., survival to centenarianship) is strongly heritable, even more so than
survival to ages 90 or 95 (Perls and Terry, 2003; Tan et al., 2008). Thus, examining the
genomes of centenarians is likely to identify genetic pathways that affect human aging and
longevity.

Identifying mitochondrial genetic variants and the effects of interacting mitochondrial and
nuclear genes that impact human longevity may provide insight into our understanding of
aging and have relevance for many age-related diseases such as cardiovascular disease,
diabetes, and Alzheimer‘s disease.
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